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Abstract

The total generalised colourings considered in this paper are colourings
of graphs such that the vertices and edges of the graph which receive the
same colour induce subgraphs from two prescribed hereditary graph prop-
erties while incident elements receive different colours. The associated total
chromatic number is the least number of colours with which this is possible.

We study such colourings for sets of planar graphs and determine, in
particular, upper bounds for these chromatic numbers for proper colourings
of the vertices while the monochromatic edge sets are allowed to be forests.
We also prove that if an even planar triangulation has a Hamilton cycle H

for which there is no cycle among the edges inside H, then such a graph
needs at most four colours for a total colouring as described above.

The paper is concluded with some conjectures and open problems.
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1. Introduction

All graphs considered will be finite, undirected and simple. An additive hereditary

graph property is a class of graphs which is closed under unions, subgraphs and
isomorphisms. For undefined notions on graphs in general we refer the reader to
[6], and for hereditary graph properties to [3].

We need a few well-known properties of graphs and list them with their
standard names:

O = {G ∈ I : G is edgeless, i.e., E(G) = ∅},
Ok = {G ∈ I : each component of G has at most k + 1 vertices},
Dk = {G ∈ I : G is k-degenerate, i.e., the minimum degree δ(H) ≤ k for each

H ⊆ G},
Tk = {G ∈ I : G contains no subgraph homeomorphic to Kk+2 or K⌊ k+3

2
⌋,⌈ k+3

2
⌉}.

2. Generalised Total Colourings

Let P and Q be additive hereditary graph properties and let C = {1, . . . , k}.
Then a function c : V ∪ E → C is a total (P,Q)-colouring of G if

(1) G[{c−1(i)} ∩ V ] ∈ P, for all i ∈ C,

(2) G[{c−1(i)} ∩ E] ∈ Q, for all i ∈ C,

(3) if e = vu, then c(v) 6= c(e) 6= c(u), i.e., incident elements are coloured
differently.

The minimum number of colours needed in a total (P,Q)-colouring of G is called
the total (P,Q)-chromatic number and is denoted by χ

′′

P,Q(G). Clearly, when
P = O and Q = O1, a total (P,Q)-colouring of a graph G is nothing but a total
colouring of G so that χ

′′

O,O1
(G) = χ

′′

(G).

An acyclic k-colouring of a graph G is a proper vertex k-colouring of G

satisfying the additional requirement that the subgraph induced by the union of
every pair of colour classes is acyclic. The minimum k such that a graph G has
an acyclic k-colouring is called the acyclic chromatic number of G and is denoted
by χa(G).

There is a close link between acyclic colourings of a graph G and its total
(O,D1)-chromatic number.

Theorem 1. If a graph G has an acyclic k-colouring, then G has a total (O,D1)-
colouring with k colours when k is odd and with k + 1 colours when k is even.

Proof. If k is odd, we start by choosing for each colour i, k−1

2
pairs of colour

classes in such a way that each edge of G is in the acyclic subgraph of G induced
by two colour classes. These choices, which remind one of a near 1-factorisation
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of Kk, clearly determines a total (O,D1)-colouring with k colours. If k is even a
similar choice of k

2
pairs of colour classes, now reminding one of a 1-factorisation

of Kk, can be used to describe the required colouring of the edges but an extra
colour might be needed to colour the vertices.

This result will be useful in the next section. We remark that there is a more
general result, with a similar proof, which we only state (without proof) as

Theorem 2. Let G be vertex P-colourable with k colours such that the vertices

of the union of any two colour classes Vi, Vj induce a graph with a property Q.

Then G has a total (P,Q)-colouring with k colours when k is odd and with k+1
colours when k is even.

3. Results for Classes of Planar Graphs

A number of results from the literature can be combined with Theorem 1 to give
bounds for the total (O,D1)-chromatic number of some classes of planar graphs.
To start with, we have for the set T3 of all planar graphs Borodin’s Theorem [1],
with the corollary now following immediately from this result and Theorem 1.

Theorem 3. Every planar graph has an acyclic 5-colouring.

Corollary 1. If G is a planar graph, then χ
′′

O,D1
(G) ≤ 5.

Next we do the same for some known results for subclasses of T3. The first
result is by Borodin, Kostochka and Woodall [2].

Theorem 4. Every planar graph G with girth g(G) ≥ 7 has an acyclic 3-
colouring.

Corollary 2. If G is a planar graph with girth g(G) ≥ 7, then χ
′′

O,D1
(G) ≤ 3.

The case of planar 3-colourable graphs will be treated in full in the next
section.

For planar bipartite graphs we have the following theorem of Kostochka and
Mel’nikov [9].

Theorem 5. If G is a planar bipartite graph, then χa(G) ≤ 5 and the bound is

sharp.

Applying Theorem 1 again to these graphs would give the result: If G is a
planar bipartite graph, then χ

′′

O,D1
(G) ≤ 5. However, it is relatively easy to prove

a better bound for this class.
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Theorem 6. If G is a planar bipartite graph, then χ
′′

O,D1
(G) ≤ 4 and the bound

is sharp.

Proof. We can use two colours for a proper colouring of the vertices (since G is
bipartite) and two other colours for the edges by the theorem of Ringel [12].

Figure 1

The bound is sharp since for the graph G = K3,3 − e in Figure 1 we have
χ

′′

O,D1
(G) = 4: If there is a total (O,D1)-colouring using only the three colours

1, 2 and 3, then a contradiction can be derived in each of the following few cases.

(a) Only two colours, say 1 and 2, are used for the vertices of G—then each edge
has to receive a colour different from 1 and 2 and two other colours are needed.

(b) All three colours are used for the vertices of G—then there are two non-
adjacent vertices which have different colours. Each of the three cases in this
situation are now easily checked to verify that a total colouring of G using only
these three colours cannot be completed.

Lastly we have, as a special case of the theorem of Ding et al. [7], the follo-
wing theorem; using it in conjunction with Theorem 1 we immediately derive its
corollary.

Theorem 7. Every K5-minor free graph has an acyclic 5-colouring.

Corollary 3. If G is a K5-minor free graph, then χ
′′

O,D1
(G) ≤ 5.

4. Hamiltonicity and Total Colourings of Even Triangulations

We shall now continue the discussion of total (O,D1)-colourings of classes of
planar graphs by showing in Theorems 8 and 9 that many 3-colourable planar
graphs have total (O,D1)-colouring with four colours such that only colours 1, 2
and 3 are used to colour the vertices of the graph while colours 1, 2, 3 and 4 are
used to colour the edges of the graph. Since this idea was initially formulated by
Peter Mihók as a conjecture for all 3-colourable planar graphs, we shall refer to
such a total colouring as a Mihók colouring.
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In our results we often deal with plane embeddings of planar graphs and we
find it convenient not to distinguish between such a graph and its embedding. It
is useful to consider also the hamiltonicity of even planar triangulations; in this
connection, we start right away with

Theorem 8. Every even planar triangulation which has a Hamilton cycle H for

which there is no cycle among the edges inside H has a Mihók colouring.

Proof. Let G be an even planar triangulation of order n which has a Hamilton
cycle H for which there is no cycle among the the edges inside H. Using H, we
identify three sets of edges of G: EO, the set of edges outside H, EH , the set of
edges of H, and EI , the set of edges inside H.

It is well known that χ(G) = 3 and we start by taking any 3-colouring of
the vertices of G. (There is, in fact, up to a permutation of the colours used,
a unique 3-colouring of the vertices of G.) Next we colour the edges using the
same three colours: once the two colours of the end-vertices of an edge have been
chosen as above, we colour the edge between them with the third colour. This
is an (O,P)-total colouring of G (with P = D2) and will be referred to as the
standard colouring.

Using the fact that there is no cycle among the edges in EI , we now describe
an (O,D1)-total colouring of G with four colours such that one of the colours is
not used for any vertices of the graph but appears only at edges of the graph.
This colouring is obtained by starting with the standard colouring of G described
above and recolouring each edge of EI with colour 4. Since there is no cycle
among these edges, it is immediate that the subgraph induced by the edges of
colour 4 is in D1. It is also clear that each edge uv receives a colour which differs
from the colours of the vertices u and v.

Finally, we need to prove that there is no cycle among the edges with colour
i for i = 1, 2 and 3. In order to do this, we need only consider G−EI . Note that,
since H is a Hamilton cycle, the subgraph G−EI of G is a (maximal) outerplanar
graph and the colours of the vertices and edges of this graph are those that were
given to them in the standard colouring we started with.

Suppose now that there is a cycle C in (any) one of these colours, say colour 1.
Then the vertices of C (which are all on H) are coloured alternately 2 and 3 by
the standard colouring. Hence the cycle C is an even cycle. But the outside of H
is triangulated; hence C has one or more diagonals (outside H) and one of them
necessarily joins two vertices of C which are both of colour 2 or both of colour 3,
a contradiction, since the standard colouring is a proper colouring on the vertices
of G.

This proves that the subgraph induced by the edges of colour i is also in D1

for i = 1, 2 and 3 and completes the proof.
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It is well known, as shown for example in [10], that every 3-colourable planar
graph is a subgraph (although not necessarily an induced subgraph) of an even
planar triangulation. The result of Theorem 8 therefore contributes to our belief
in the following two conjectures.

Conjecture 1. χ
′′

O,D1
(G) ≤ 4 for every 3-colourable planar graph.

Conjecture 2. Every 3-colourable planar graph has a Mihók colouring.

It is easy to see that these conjectures, if true, would be best possible too.

a b

c d

e f

g
K : L :J :

Figure 2

In the theorem which follows, we consider possible counterexamples to these
conjectures. To formulate it, let G be an even planar triangulation with minimum
degree four which does not contain three vertices of degree four which are pairwise
adjacent or which does not contain four vertices of degree four which are all
adjacent to a vertex of degree six and induce two independent edges or it does
not contain three vertices of degree four which are all adjacent to two vertices of
degree greater than or equal to six and induce a path. We shall refer to these
forbidden structures as three forbidden configurations of G; they are named J ,
K and L , respectively , and depicted in Figure 2. Using three reductions, we are
now ready to formulate and able to prove

Theorem 9. An even planar triangulation on the least number of vertices which

does not have a Mihók colouring, if one exists, contains none of the forbidden

configurations J , K and L.

Proof. Suppose that the theorem is not true so that there is a counterexample,
i.e., there is an even planar triangulation which does not have a Mihók colouring
which contains at least one of these three forbidden configurations; yet every even
planar triangulation with fewer vertices has a Mihók colouring. Let G be such
a counterexample. Then G certainly contains no four pairwise adjacent vertices
of degree four, for they would form a K4 which is not a subgraph of G since G

is 3-colourable. We shall show below, under the headings Reduction 1, 2 and 3,
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that whichever one of the three configurations J,K and L are contained in G, it
results in G having a Mihók colouring.

Reduction 1. If G contains J , i.e., three pairwise adjacent vertices of degree
four as depicted in Figure 3(a), then there will be three such vertices which are
the only vertices in a face of an even planar triangulation with fewer vertices.

1

2 3
1

3 2

1

1

1

1

1

2

2

2
2

2

3

3

3

3

4

4

4

3

(a) (b)

Figure 3

But this (smaller) even planar triangulation then has a Mihók colouring,
which is also shown in Figure 3(a). In Figure 3(b) we now show how an extension
of this Mihók colouring to a Mihók colouring of G can be made. It could be
remarked that this extension remains a Mihók colouring, even if one or two of
the outside edges in Figure 3(a) have the colour 4.

bc bc

bcbc

b

p

x

s u

q

v w
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a

b
dc

f

e

(b)

K :

(a)

K ′ :

Figure 4

Reduction 2. Suppose G contains K, i.e., four vertices of degree four which
are all adjacent to a vertex of degree six and induce two independent edges.
Then G contains the configuration depicted in Figure 4(a), with q, r, v and w the
vertices of degree 4 and t the vertex of degree 6. In this reduction we may of
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course assume that p and x are not of degree 4, for otherwise we could employ
Reduction 1 to deal with the case.

Again one can assume that there is a Mihók colouring of the smaller graph
G′ obtained by replacing K in G with the smaller configuration K ′ (depicted
in Figure 4(b)). Consider any Mihók colouring of the graph G′. Note that this
colouring forces a unique colouring, up to a permutation of the three colours used,
on the six vertices of K ′ and hence we may assume without loss of generality that
this colouring assigns 1 to a and f , 2 to c and e and 3 to b and d. No matter how
many and which of the four edges pu, ux, sx and ps are coloured with colour 4
and irrespective of the colours allocated to the other edges of K ′, the following
colouring of K completes a Mihók colouring of K and thus of G.

Vertices: Colour p, x, t with 1, u, q, v with 2 and s, r, w with 3.
Edges: Use the same colours for pu, ux, xs, sp as for ae, ef , fb, ba, respec-

tively. Next colour pr, rq, tu, tw, vx with 4 and give every other internal edge
of K the colour prescribed by the standard colouring. Since internal edges of K
induce no monochromatic cycle and there is no monochromatic path joining two
vertices of p, u, x, s containing internal edges, the resulting colouring is a Mihók
colouring of G.

Reduction 3. Suppose G contains L, i.e., it contains three vertices of degree
four which are all adjacent to two vertices of degree greater than or equal to
six and induce a path (see Figure 5(a) where names of such vertices are also
indicated). A smaller graph G′ is then obtained by contracting the vertices r, s, t
of the configuration L to e to obtain the smaller configuration L′ and deleting
parallel edges and loops (see Figure 5(b)). Clearly, G′ is also an even planar
triangulation.

L : L′ :

a

d

c

b

a

b

c

dtsr

(b)(a)

e

Figure 5

Consider any Mihók colouring of the graph G′. Note that this colouring
forces a unique colouring, up to a permutation of the three colours used, on the
five vertices of L′ and hence we may assume without loss of generality that this
colouring assigns 1 to e, 2 to b and d and 3 to a and c. We now describe partially
how a Mihók colouring of L, and thus of G, can be obtained.
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Vertices: Use the same colours for a, b, c and d and colour r and t with 1 and
s with 2.

Edges: Use the same colours for ab, bc, cd and ad, and colour cs with 1, rc, at
with 2, st with 3 and as, ct with 4.

Note that there should be at least one, but not all, of the four edges ab, bc, cd
and ad that are coloured with colour 4 in the given colouring of G′; hence there
are, up to symmetry, four cases to consider on how colour 4 can be distributed
among these four edges of G′.

The proof can then be completed by considering, for each of these four cases,
the subcases obtained by looking at all possible ways in which colours 1, 2, 3,
and 4 can be allocated to the remaining four edges inside L′. These subcases
are of course limited by the fact that only four edges of L are uncoloured and
that the given colouring of G′ is a total (O,D1)-colouring. These cases have
been considered (and re-checked!) one-by-one by the authors but are very space-
consuming to describe; hence they are left to the reader.

5. Why the Graphs J , K and L Are Forbidden

We now give a construction, for each of the three forbidden configurations, of
an even planar triangulation which has no Hamilton cycle at all or which has a
cycle among the edges inside and a cycle among the edges outside every Hamilton
cycle. We start with the configuration J .

If an even planar triangulation does have three pairwise adjacent vertices of
degree four, then it is possible that the graph has no Hamilton cycle. This can
be seen by using the following construction: If G and H are planar triangulations
and F is a set of faces of H, we construct the graph H(F , G) by putting a copy
of G in every face of F with the outside triangle of G onto the triangle which is
the boundary of the face in F under consideration. We shall refer to the graph H

in this construction as the big graph and to the copies of G as the small graphs.
Clearly, when G and H both are even planar triangulations, then so is H(F , G)
for every choice of the set F of faces of H.

We shall now show that many graphs of the form H(F , F ), with H an even
planar triangulation with at least four faces and F the graph depicted in Figure 6,
are non-Hamiltonian even planar triangulations. This can be seen by remarking
that, if H(F , F ) has a Hamilton cycle, it can only visit the three vertices inside
a small copy of F by entering the face of H where this copy of F is placed and
exiting this face at two different (adjacent) vertices u and v of H on this face.
The function θ, which assigns this edge uv to every face in F is necessarily one-
to-one: If two faces of F share such an edge, then the Hamilton cycle only visits
the vertices on or in these two faces.
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Figure 6

Hence θ(F) is a set E of edges of H with |θ(F)| = |E|. Hence, if H is a
graph of order n and F is chosen with |θ(F)| > n, the edges of θ(F) will induce
a subgraph of H with at least one vertex of degree at least three. But then the
Hamilton cycle of H(F , F ) has a vertex of degree at least three, a contradiction.
We remark that the choice above can, for example, be made in F (F , F ) since F

has eight faces and six vertices.

The other forbidden configuration used in Theorem 9, depicted as the graph
K in Figure 2, is now used to create an even planar triangulation in which every
Hamilton cycle has a cycle among its inside edges and one among its outside
edges. This construction starts by taking a planar embedding of K2,n for an even
n ≥ 6; say with vertices u and v, both of degree n and w1, . . . , wn, all of degree
2. The required graph is then obtained by inserting a copy of K in each of the n

faces of this embedding and joining, for each of these copies, a and b to u, c and d

to v and identifying e with wi and f with wi+1 (with arithmetic done modulo n).

Any Hamilton cycle of this graph will have to visit at least one copy of K by
traversing one of the paths eabgcdf or ecdgabf in this copy. However, both choices
will leave two triangles; one with its edges on one side of H and the other with
its edges on the other side of H, see Figure 7. In a similar way one can construct
an even planar triangulation using K2,n and the forbidden configuration depicted
as the graph L in Figure 2, see Figure 7.

Yet another construction can be made from K2,n by using the graph in Figure
8 in a similar way as K and L are used (repeatedly) in Figure 7. The graph
obtained will then be an even planar triangulation in which the vertices of degree
4 induce an independent set so that the graph constructed does not contain any
one of the three forbidden configurations J , K and L. It is easy to prove that
any Hamilton cycle H of this graph will also not use the edges of (at least) two
triangles; one with its edges on one side of H and the other with its edges on the
other side of H.
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Figure 7

Figure 8

We remark that the set F = {J,K,L} of forbidden configurations is there-
fore not sufficient to prove a result which reads “If an even planar triangulation
contains no graph in F as a forbidden configuration, then it has a Hamilton cycle
H for which there is no cycle among the edges inside H.” This remark is proven
by the last construction, since the graph constructed there does not contain any
one these three forbidden configurations. It would be of interest to find a set F
with sufficiently many graphs which would enable one to prove such a result.

6. Mihók-Type Total Colourings of a Class of Planar Graphs

A graph G is 1-immersed into a surface if it can be drawn on the surface so that
each edge is crossed by at most one other edge. In particular, a graph is 1-planar
if it is 1-immersed into the plane (i.e., has a plane 1-immersion). The notion of a
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1-planar graph was introduced by Ringel [11] in connection with the problem of
the simultaneous colouring of vertices and faces of plane graphs in which adjacent
vertices, adjacent faces and vertices incident to faces receive different colours.

A graph G is outer-1-planar if G can be 1-immersed into a plane such that
all vertices are on the outer face. This notion was introduced by Eggleton [8]. It
is clear that every outer-1-planar graph is planar.

An outer-1-planar graph G is maximal if G is not a proper spanning sub-
graph of an outer-1-planar graph. The characterization of maximal outer-1-planar
graphs presented as Theorem 3.5 in [13] (where they are called pseudo-outerplanar

graphs) is not quite correct. We give in Theorem 10 a corrected version (with-
out proof). This characterization is constructive and starts with any maximal
outer-1-planar graph H. To formulate it, we need two additional definitions.

Let C be the boundary cycle of the outer face of a maximal outer-1-planar
graph G. An edge e ∈ E(G) is called external if e belongs to the cycle C. An
external edge e is strong if e belongs to a subgraph of G isomorphic to K4.

Theorem 10. Every maximal outer-1-planar graph G is obtained from a maximal

outer-1-planar graph H by gluing a K4 along an external edge of H or by gluing

K3 along an external strong edge.

Figure 9

The example of a maximal outer-1-planar graph shown in Figure 9 can be
obtained by choosing any triangle of this graph (which is the boundary of a face)
for H, the maximal outer-1-planar graph with which the construction is started.
Note that if we glue a K3 to a K3, the resulting graph is not a maximal outer-1-
planar graph. Hence if one starts the construction with H = K3, the next step
should be to glue a K4; this also then creates the first strong edge.

Note also that it follows from Theorem 10 that every outer-1-planar graph is
3-degenerate.

Corollary 4. Let G be a maximal outer-1-planar graph. Then there is a total

(O,D1)-colouring of G with five colours such that
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• only colours 1, 2, 3 and 4 are used to colour the vertices of G while

• colours 1, 2, 3, 4 and 5 are used to colour the edges of G.

Proof. Let G be a maximal outer-1-planar graph and consider a construction
of G as described in Theorem 10 using the graphs H1, H2, . . . , Hp, in this order,
with each Hi isomorphic to K3 or K4.

Let G1 := H1, and let, for i = 1, . . . , p − 1, the graph Gi+1 := Gi|Hi+1 be
obtained by the operation of gluing Hi+1 to an edge of the graph Gi so that
Gp = G.

To colour the vertices of G we apply the greedy algorithm to colour the
vertices in the order in which they were added by the construction to form G.
First colour properly the vertices of G1 in an arbitrary order—this is easy since
G1 is isomorphic to K3 or K4. If all the vertices of Gi have been coloured for
some i, 1 ≤ i ≤ p − 1, then the graph Gi+1 has one or two uncoloured vertices
and they can also be coloured greedily in an arbitrary order. It now follows that
G is 4-colourable, and, if K4 ≤ G, then χ(G) = 4.

Since G, when constructed in this way, has a “tree-like” structure, every two
colour classes induce an acyclic graph. This property can also be deduced in an
inductive way from the fact that, if Gi has this property, then the graph Gi+1

also has it. Thus the acyclic chromatic number of G satisfies χa(G) = 4. The
result then follows by Theorem 1 and the proof is complete.

7. Conclusion

To conclude, we mention some open problems. Since for K5-minor free graphs we
have by [7] the same upper bound as for planar graphs one wonders if the Four
Colour Theorem can be strengthened to

Conjecture 3. If G is a planar graph, then χ
′′

O,D1
(G) ≤ 4.

This conjecture, which suggests a stronger result than the Four Colour Theo-
rem, would clearly be very difficult to prove. A weaker conjecture is stated in [4].

Conjecture 4. If G is a planar graph, then χ
′′

D1,D1
(G) ≤ 4.

It seems not unreasonable to expect that a Mihók type (D1,D1)-total colour-
ing might be used to prove this conjecture. By this we mean that the colouring
of the vertices of a planar graph can perhaps be done using only the three colours
1, 2 and 3 (which, independently of what we aim for in a total colouring, can be
done since the arboricity of every planar graph is at most three by [5]) while the
colours 1, 2, 3 and 4 are then used for the edges of the graph—similar to what
was done in the proof of Theorem 8.
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As has been mentioned in Corollary 1, χ
′′

O,D1
(G) ≤ 5 for any planar graph.

Taking Corollary 4 in to account, we expect that a Mihók type (O,D1)-total
colouring might be useful to prove a stronger result.

Conjecture 5. If G is a planar graph, then G has (O,D1)-total (4, 5)-colouring,
i.e., only colours {1, 2, 3, 4} are used to colour the vertices of a graph, and colours

{1, 2, 3, 4, 5} are used to colour the edges of the graph.
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