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Abstract

We prove a theorem guaranteeing special paths of faces in 2-connected
plane graphs. As a corollary, we obtain a new proof of Thomassen’s theorem
that every 4-connected planar graph is Hamiltonian-connected.
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1. Introduction

Imagine planning a visit to a museum. The entrance and the last room (the
museum shop) are fixed, and there is one important room you must visit. Other
than that, you do not insist on visiting every room, but you want to skip only
“small” pieces, in some sense.

Our theorem models this situation. The rooms are the faces of a plane graph.
Following a list of rooms is equivalent to following a path in the dual graph, so
we call this a “face-path” to emphasize the original graph. Edges correspond to
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walls separating rooms, and we can cross any internal edge via a door in the wall.
Vertices are not very important in this scenario, but the notion of “small pieces”
in what is skipped involves them.

Well-known prior results for 4-connected plane graphs follow from our main
result. Whitney [3] proved that 4-connected triangulations are Hamiltonian,
meaning that they have spanning cycles. Tutte [2] extended the conclusion to
all 4-connected planar graphs. Thomassen [1] showed further that 4-connected
planar graphs are Hamiltonian-connected, meaning that for any two vertices u
and v, there is a spanning path with endpoints u and v.

Tutte and Thomassen proceeded by proving technically stronger statements
that facilitate inductive proof, showing the existence of special paths satisfying
additional conditions. Our approach also has this flavor, but our technical re-
sult is somewhat simpler. It is almost implied by Thomassen’s technical result.
Our graphs allow multiple edges but no loops; since we study 2-connected plane
graphs, the dual graphs also have no loops.

Stating our theorem requires additional terminology. A subgraph G′ of a
graph G is a thin subgraph of G if every block of G′ has at most three vertices
that have neighbors outside the block in the full graph G. Such vertices are
boundary vertices of the block.

Given a plane graph G, let F̂ denote the unbounded face of G, and let Ĉ
denote the boundary of F̂ ; in a 2-connected plane graph, Ĉ is a cycle. The weak

dual of G is the subgraph Ĝ obtained from the dual graph G∗ by deleting the
vertex corresponding to F̂ .

Faces are adjacent if they share an edge. A face-path in G is a list of faces
whose corresponding dual vertices form a path in G∗ in order. When P is a
face-path in G, let P ∗ denote the corresponding path in G∗. With E(P ∗) being
the edge set of that dual path, let Ê(P ) denote the corresponding edges of G;
these are the edges of G crossed while following P in G (Figure 1 shows Ê(P ) in
bold). A face-path P is a thick face-path if G− Ê(P ) is a thin subgraph of G. We
seek a thick face-path that begins with the unbounded face F̂ , crosses a specified
edge e of Ĉ to the bounded face Fe, and ends at a specified bounded face B.
Such a path is a thick [e,B]-face-path. Figure 1 shows a thick [e,B]-face-path,
denoted P .

A stronger conclusion is needed for an inductive proof. We could seek a thick
[e,B]-face-path inductively as follows. Let G′ = G − e, with e = ab. If G′ is 2-
connected, then let e′ be an external edge of G′ that is not external in G, incident
to a. Let P ′ be a thick [e′, B]-face-path in G′, and prepend the step across e to
form P in G. In Figure 1, P ′ could differ from P by going directly from A to B
instead of the last three steps. In that case b lies in a block of G′ − Ê(P ′) having
three boundary vertices as a subgraph of G′, but b becomes a fourth boundary
vertex in a block of G− Ê(P ) as a subgraph of G when e is restored.
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Figure 1. A thick [e,B]-face-path through F .

To overcome the difficulty and obtain an inductive proof, we specify another
face to visit along the way (the “important” room in the museum). An [e, F,B]-
face-path is an [e,B]-face-path in G that visits a specified face F . We will seek
a thick [e, F,B]-face-path for a face F that touches Ĉ, where a face of G touches

a subgraph G′ if the face and G′ share at least one vertex (see Figure 1; note
that neighboring faces still must have a common edge). Our main result is the
following.

Theorem 1.1. Given a 2-connected plane graph G with external cycle Ĉ, let e be

an edge of Ĉ, let B be a bounded face of G, and let F be a bounded face touching

Ĉ. If F lies on some [e,B]-face-path, then G has a thick [e, F,B]-face-path.

This statement implies the desired conclusion.

Corollary 1.2 (Thomassen [1]). Every 4-connected planar graph is Hamiltonian-

connected.

Proof. Given vertices x and y in a 4-connected (simple) planar graph H; we
seek a spanning x, y-path. Embed H with x on the outer face. Let G be the dual
of H, drawn so that the face F̂ corresponding to x is the unbounded face. Let e
be an edge of the boundary Ĉ of F̂ in G, bounding F̂ and Fe. Let B be the face
of G that is dual to y. Since dH(x) ≥ 4, in G some face F not in {Fe, B} has a
boundary edge on Ĉ.

Since it is the dual of a loopless planar graph, G is 2-connected. Since H −x
is 3-connected, F lies on some [e,B]-face-path. Hence by Theorem 1.1, G has a
thick [e, F,B]-face-path P ; Figure 2 illustrates this with Ê(P ) in bold. Vertices
of H are solid; those of G are hollow. If P visits all faces of G, then P ∗ is a
Hamiltonian x, y-path in H.

Otherwise, P misses some face of G. Hence G − Ê(P ) has a bounded face.
Let R be a maximal bounded region not entered by P (a union of faces in G cor-
responding to a connected subgraph of the dual, such that each face neighboring
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Figure 2. A thick [e, F,B]-face-path missing a region R.

this union is a face in P ). The vertices and edges of G in R form a block Q in
G−Ê(P ), since enlarging the 2-connected subgraph Q would require enlarging R.
Since P is a thick face-path, at most three vertices of Q have neighbors outside
Q in G. By the definition of R, the faces of G neighboring R are in P .

Since Q has at most three boundary vertices, at most three faces of G neigh-
bor R. Since P has at least four faces (F̂ , Fe, F , and B) and all faces on P are
outside R, deleting the faces neighboring R separates the faces inside R from at
least one face on P . This contradicts the hypothesis that H is 4-connected, so in
fact P ∗ is Hamiltonian.

The face F lies on no [e,B]-face-path if in Ĝ the vertices for Fe and B lie
outside the block containing the vertex for F . The face in G corresponding to
the cut-vertex of Ĝ between them then separates F from {Fe, B}. To incorporate
this possibility in a single inductive statement that applies in all situations, we
prove Theorem 1.1 in a more detailed form.

Theorem 1.3. Given a 2-connected plane graph G with external cycle Ĉ, let e
be an edge of Ĉ, let F be a face touching Ĉ, and let B be a bounded face of G.

Either G has a thick [e, F,B]-face-path, or G has a thick [e,B]-face-path P such

that F is inside a block of G− Ê(P ) having only two boundary vertices.

For convenience, let a face-path as specified in Theorem 1.3 be a suitable

path. Thomassen obtained his theorem on 4-connected planar graphs by proving
the following stronger result.

Theorem 1.4 (Thomassen [1]). Let H be a 2-connected plane graph with external

cycle C. If v ∈ V (C) and e ∈ E(C) and u ∈ V (H − v), then H has a u, v-path P
containing e such that each component of H − V (P ) has at most three neighbors

on P , and components of H − V (P ) containing an edge of C have at most two

neighbors on P .
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When H is 4-connected, Thomassen’s conclusion immediately implies that P
is a spanning u, v-path, since otherwise H would have a separating set of size at
most 3 in V (P ). With G being the dual of H, Theorem 1.4 almost implies our
Theorem 1.3. To explain the relationship, we describe what Theorem 1.4 says
about the dual graph.

Draw H with v on the external cycle; in G the face corresponding to v is F̂ .
The face corresponding to u is B. Thomassen’s edge e becomes adjacent faces F
and F ′, both touching Ĉ. Thus he specifies more than our single face F touching
Ĉ, but he does not specify the initial edge of P the way we specific the initial
edge e of Ê(P ). A component of H − V (P ) corresponds to a maximal region of
G− Ê(P ) not entered by the face path, which forms a block in G− Ê(P ). Having
at most three neighbors on P corresponds to being surrounded by at most three
faces of the face-path in G and hence having at most three boundary vertices.
The final clause is analogous to our case with F separated from {Fe, B}.

The aspect of our result that is not implied by Thomassen’s result is the
specification of the initial edge. The freedom to specify this edge in combining
subpaths is a key reason why our proof is simpler.

2. Proof of Theorem 1.3

We are given a 2-connected plane graph G with external cycle Ĉ, an edge e of
Ĉ, a face F touching Ĉ, and a bounded face B of G. We seek a suitable path P ,
defined as in Theorem 1.3. We emphasize that boundary vertices for blocks in
G− Ê(P ) are those having outside neighbors in G, not just outside neighbors in
G− Ê(P ).

Our approach is inductive. When G has only one bounded face, it serves as
all of {Fe, F,B}, the [e, F,B]-face-path P has length 1, and G− Ê(P ) is a path
(in which each block has only two vertices). Otherwise, we consider a minimal
counterexample G (fewest vertices). In various cases, we construct a suitable
path in G from suitable paths in subgraphs.

A separating face in a 2-connected plane graph G is a face X whose corre-
sponding dual vertex is a cut-vertex of the weak dual Ĝ. In terms of G, deleting
the vertices of X ∩ Ĉ disconnects Ĉ. An X-slice of G is a maximal subgraph of
G containing X (that is, its boundary) in which X is not a separating face.

Lemma 2.1. A minimal counterexample G has no separating face.

Proof. If G has a separating face X, then let G′ and G′′ be subgraphs of G such
that G′ ∪G′′ = G, each is a union of X-slices of G, and each X-slice appears in
only one of {G′, G′′}. Each of G′ and G′′ is 2-connected and smaller than G (see
Figure 3).
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Case 1. Fe and B lie in one of {G′, G′′}. By symmetry, letG′ be the subgraph
containing Fe and B. By the minimality of G, in G′ there is a suitable path P ; it
is an [e, F,B]-face-path if F is contained in G′, and otherwise it may be any thick
[e,B]-face-path. If P does not visit X, then the full boundary of X lies in one
block of G′− Ê(P ), and including the rest of G′′ just enlarges that block without
changing the boundary vertices. If P visits X, then edges on the boundary of X
that are shared with other faces in G′′ are single-edge blocks in G′ − Ê(P ) (and
none of them can be e). Adding the rest of G′′ absorbs them into a single block
of G− Ê(P ) having two boundary vertices as a subgraph of G, without changing
other blocks. Regardless of where F is, P is suitable for G.

Case 2. Fe and B do not both lie in one of {G′, G′′}. In particular, X /∈
{Fe, B}. We assemble a suitable path by combining suitable paths for G′ and G′′.
By symmetry, we may assume e ∈ E(G′). Let P ′ be a thick [e, F,X]-face-path in
G′ if F is a face in G′; otherwise P ′ is any thick [e,X]-face-path in G′. Now let
e′ be the edge across which P ′ enters X. The second path P ′′ is a thick [e′, F,B]-
face-path in G′′ if F is a face in G′′; otherwise it is any thick [e′, B]-face-path in
G′′. Combining P ′ and P ′′ yields a suitable path P in G.
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Figure 3. Excluding a separating face.

With separating faces forbidden, we will decompose G in a different way,
using subgraphs G1 and G2. After defining them, we will restrict the form of G1.

Definition 2.2. In a minimal counterexample G, the outer boundary Ĉ contains
two paths that join e and F . Since G has no separating face (by Lemma 2.1), at
least one of these paths is not touched by B. Let Q̂ be a path from e to F along
Ĉ that is not touched by B. Let F be the set of bounded faces of G from Fe to
F that touch Q̂. Let G1 be the subgraph of G consisting of the union of the faces
in F and all faces enclosed by F . Let G2 be the union of all bounded faces of G
that are not in G1 (this includes F ).

Lemma 2.3. In a minimal counterexample G, the weak dual of G1 is a path.

Proof. The plane graph G1 is bounded by Q̂ and portions of the boundaries of
the faces in F . We consider ways in which the weak dual Ĝ1 of G1 may fail to
be a path.
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If some face of G1 is not in F , then let Ĥ be a component of Ĝ − F . By
the construction of G1, there are two faces X and Y in G1 whose corresponding
vertices x and y in Ĝ1 form a separating set in Ĝ1. Let the plane graph H be the
union of the faces in G corresponding to the vertices of Ĥ. The outer boundary of
H consists of part of the boundary of X, part of the boundary of Y , and possibly
part of Ĉ joining X and Y . Figure 4 shows two ways this may occur, labeled H1

and H2. Note that H has no cut-vertex, since Ĥ is connected.

Such a subgraph H has at most three boundary vertices as a subgraph of
G. At most two boundary vertices lie along Ĉ. All other boundary vertices of
H are incident to both X and Y , since every edge bounding H lies along X or
Y or Ĉ. Also, if H has two boundary vertices that are incident to both X and
Y , then it has no other boundary vertices. In the case labeled H2 in Figure 4,
the dashed edges indicate the possibility of other similar blocks or single edges
caught between X and Y .

The remaining case is when faces X and Y in F have two common boundary
edges sharing a vertex z. This is shown in Figure 4 as H3.

In each case, we use the minimality of G to obtain suitable paths in smaller
graphs.
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Figure 4. Restricting G1.

Case 1. H exists and has two boundary vertices on Ĉ. Let u and v be the
boundary vertices of H on Ĉ, with u closer to e than v along Q̂ (see H1 in
Figure 4). Since H contains a vertex z interior to G1, in H there is more than
one face. Also, since H corresponds to a component of G1 − {x, y}, there is a
common vertex w of X and Y that is a boundary vertex of H. Hence H has
exactly three boundary vertices as a subgraph of G. (Note that w need not be
on the boundary of G2 as in Figure 4. There may be additional components of
Ĝ− {x, y} or single edges as shown under H2.)
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Let G′ be the graph obtained from G by replacing H with a single face K
having vertex set {u, v, w}, occupying the same region as H. The graph G′ is
2-connected; let P ′ be a face-path of G′ as guaranteed by the minimality of G. If
P ′ does not visit K, then P ′ has the desired properties in G, since replacing K
with H does not change the boundary vertices of any block obtained by deleting
Ê(P ′).

If P ′ visits K, then it must cross both uw and vw, crossing uw first. We
obtain a suitable path P in G by replacing K along P ′ with a suitable path in
H. Let e′ be the edge of the boundary of H that is incident to u and not on Ĉ,
let F ′ be a face of H touching Ĉ at v, and let B′ be the bounded face of H that
is incident to w and contains the first edge of the path from w to v along the
boundary that does not pass through u (see Figure 4). Since H is 2-connected
and smaller than G, we obtain a suitable path P ′′. Delete the initial outer face
of H from P ′′ and insert the rest into P ′ in place of K to form P .

In any block of G′ − Ê(P ′) containing w, already w is a boundary vertex,
since the edges wu and wv lie in G′ but not in the block. Hence replacing H
does not cause trouble for these blocks. If P ′′ does not enter F ′ (note that H
may have separating faces), then F ′ lies in a block of H − Ê(P ′′) having at most
two boundary vertices as a subgraph of H; adding the boundary vertex v when
viewing the block as a subgraph of G causes no trouble. Hence for the discussion
of v we may assume that P ′′ enters F ′.

For the role of u, v, or w as a boundary vertex, if Fe′ , F
′, or B′ (respectively)

is the only face of H incident to that vertex, then the block(s) of H − Ê(P ′′)
containing that vertex are single edges and hence thin. If there are other such
faces, then the edges of the visited face already ensure that the specified vertex
will be a boundary vertex of its block in H − Ê(P ′′) as a subgraph of H. Hence
expanding the graph to G does not add boundary vertices.

Case 2. H exists and has two boundary vertices, each a common vertex of X
and Y . Let v and w be the boundary vertices of H, with v closer to Ĉ along X
and Y (see H2 in Figure 4). Form G′ by replacing H with the single edge vw.
Again G′ is 2-connected; let P ′ be a resulting suitable path. If P ′ does not cross
vw, then P ′ is suitable in G.

If P ′ crosses vw, then we obtain the suitable path P in G by inserting into
P ′ (between X and Y ) a suitable path P ′′ for H (after deleting the outer face at
which it starts). Let e′ be the edge of the boundary of H incident to v that is
nearer to Fe along Q̂. Let B′ be the bounded face of H containing the edge of the
boundary incident to w that is farther from Fe along Q̂. Since H is 2-connected
and smaller than G, we obtain a thick [e′, B′]-face-path in H. As in Case 1, the
visiting of Fe′ and B′ ensures that v and w are boundary vertices (as subgraphs
of H) for the blocks containing them in H − Ê(P ′′). Hence inserting P ′′ into P ′

to obtain P causes no trouble, and P is a suitable path in G.
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Case 3. z is a common vertex of two edges in the boundary of both X and Y
(see H3 in Figure 4). In this case, form G′ by contracting one of the two edges
incident to z. Whether the resulting suitable path P ′ crosses the remaining edge
at z or not, re-expanding z allows P ′ to serve as a suitable path in G.

The next lemma completes the proof of the theorem.

Lemma 2.4. There is no minimal counterexample to Theorem 1.3.

Proof. Given a minimal counterexample G with inputs [e, F,B], define G1 and
G2 as in Definition 2.2. By Lemma 2.3, the weak dual of G1 is a path, corre-
sponding to a face-path P1 in G1 that enters G1 across e and ends in F .

Since G has no separating face, by Lemma 2.1, G2 is 2-connected. Let Q
be the path common to the boundaries of G1 and G2. Let e2 be the end edge
of Q that lies in the boundary of F . Let F2 be the bounded face in G2 that is
bounded by the edge at the other end of Q, which is shared also by Fe. Applying
the induction hypothesis to G2 with inputs [e2, F2, B], we obtain in G2 a suitable
path P2 (see Figure 5).

We aim to combine P1 and P2 (after deleting the unbounded face that starts
P2) to obtain a thick [e, F,B]-face-path in G. However, blocks in G2−Ê(P2) may
gain additional boundary vertices as subgraphs of G. For example, in Figure 5,
the block K in G2 − Ê(P2) has boundary vertices {u, v, w} as a subgraph of G2,
but it is also a block in G− Ê(P1 ∪P2) and then it gains x as a boundary vertex
when viewed as a subgraph of G.

Fe

F2

e
F
e2

B

G2

G1

uv

w

e′B′

F ′

x

K

Figure 5. Combining G1 and G2.

Any added boundary vertices for a block in G2− Ê(P2) lie along Q. Because
P2 visits F2 (or F2 lies in a block of G2 − Ê(P2) having two boundary vertices),
each block K of G2 − Ê(P2) that touches Q contains a subpath Q′ of Q, and
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the endpoints of Q′ are boundary vertices of K as a subgraph of G2. If K gains
a boundary vertex due to an edge in G1, then the endpoints u and v of Q′ are
distinct. Since K is thin in G2 − Ê(P2) as a subgraph of G2, it has at most one
more boundary vertex in G2; call it w if it exists.

We remedy the difficulty by making a detour from P1. Let u be the endpoint
of Q′ closer to Fe. Let e

′ be the internal edge of G1 that is the last edge crossed
by P1 before reaching a face Fe′ sharing an edge of Q′ with K. That edge is the
edge of Q′ incident to u; let B′ be the face of G1 bounded by the edge of Q′

incident to v. (If Fe′ and B′ are the same face, then no internal edges of G1 are
incident to Q′, and K remains thin as a subgraph of G, so no detour is needed.)

Since the weak dual of G1 is a path, P1 contains a face-path from Fe′ to
B′. Furthermore, adding these faces to K yields a 2-connected graph G′. Let
F ′ be a face of G′ touching w, if w exists (otherwise F ′ is arbitrary). Apply the
induction hypothesis to G′ with inputs [e′, F ′, B′] to obtain a suitable path P ′ in
G′. Replace the portion of P1 from Fe′ to B′ with P ′ (deleting the unbounded
face at the start of P ′).

After making such detours for each problematic block K, we have the final
face-path P , which we claim is suitable for G with inputs [e, F,B]. Besides u, v,
and possibly w, no vertices of K have neighbors in V (G2) outside V (K), due to
the properties of P2. Since P enters G′ across e′ and leaves it from B′, vertices
u and v are already boundary vertices for their blocks in G − Ê(P ). Since F ′

touches w, the same property holds for w if P ′ visits it. However, if P ′ does not
visit w, then w lies in a block of G′ − Ê(P ′) having two boundary vertices in G′,
and adding w as a boundary vertex for this block causes no problem.

We have shown that G− Ê(P ) is a thin subgraph of G.
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