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Abstract

In this paper, we study the signed total domination number in graphs
and present new sharp lower and upper bounds for this parameter. For
example by making use of the classic theorem of Turán [8], we present a
sharp lower bound on Kr+1-free graphs for r ≥ 2. Applying the concept
of total limited packing we bound the signed total domination number of

G with δ(G) ≥ 3 from above by n − 2
⌊

2ρo(G)+δ−3
2

⌋

. Also, we prove that

γst(T ) ≤ n − 2(s − s′) for any tree T of order n, with s support vertices
and s′ support vertices of degree two. Moreover, we characterize all trees
attaining this bound.
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1. Introduction

Let G = (V,E) be a graph with vertex set V = V (G) of order n and edge set
E = E(G). The minimum and maximum degree of G are denoted by δ = δ(G)
and ∆ = ∆(G), respectively. For a vertex v ∈ V , N(v) is the open neighborhood
of v, which is the set of vertices adjacent to v and N [v] = N(v)∪{v} is the closed
neighborhood of v. Let [A,B] be the set of of edges with end points in both A
and B. The set of leaves and support vertices of a tree T are denoted by L(T )
and S(T ), respectively. Also, we consider Lu as the set of all leaves adjacent
to the support vertex u. We use [9] as a reference for terminology and notation
which are not defined here.

A set S ⊆ V is a total dominating set if each vertex in V is adjacent to at least
one vertex in S. The total domination number γt(G) is the minimum cardinality
of a total dominating set. In [4], Henning and Slater studied the concept of open
packing in graphs. A subset B ⊆ V (G) is an open packing in G if for every
distinct vertices u, v ∈ B, N(u) ∩N(v) = ∅. The open packing number, ρo(G), is
the maximum cardinality of an open packing in G.

A generalization of total domination titled k-tuple total domination has been
studied by Henning and Kazemi in [3] (this concept had been studied by Zhao et

al. [11] as total k-domination). A subset S ⊆ V is a k-tuple total dominating set

in G if |N(v) ∩ S| ≥ k, for all v ∈ V (G). The k-tuple total domination number,
γ×k,t(G), is the smallest number of vertices in a k-tuple total dominating set.

Gallant et al. [1] introduced the concept of limited packing. They exhibited
some real-world applications of it to network security, NIMBY, market saturation
and codes. In fact, a set of vertices B ⊆ V is called a k-limited packing set in
G provided that for all v ∈ V (G), we have |N [v] ∩ B| ≤ k. The k-limited

packing number, denoted Lk(G), is the largest number of vertices in a k-limited
packing set. We can consider the concept of limited packing as the dual of tuple
domination in a graph. For more information the reader can consult [6].

The above discussions give us a motivation to introduce the concept of total
limited packing in graphs. Let G be a graph, and k ∈ N . A set of vertices
L ⊆ V (G) is called a k-total limited packing in G provided that for all v ∈ V (G),
we have |N(v) ∩ L| ≤ k. The k-total limited packing number, denoted Lk,t(G), is
the largest number of vertices in a k-total limited packing set. We can consider
total limited packing first as a generalization of open packing, second as a dual
of tuple total domination and third as a total version of limited packing. In fact,
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one can apply total limited packing to the subjects that we consider for limited
packing as applications.

Let S ⊆ V . For a real-valued function f : V → R we define f(S)=
∑

v∈S f(v).
Also, f(V ) is the weight of f . A signed total dominating function, abbreviated
STDF, of G is defined in [10] as a function f : V → {−1, 1} such that f(N(v)) ≥ 1
for every v ∈ V . The signed total domination number, abbreviated STDN, of G is
γst(G) = min{f(V )|f is a STDF of G}. There exist some real-world applications
of the signed total domination. For example, the author in [2] applied this concept
to model networks of people or organizations in which global decisions must be
made.

In this paper, we continue the study of the concept of the signed total domi-
nation in graphs. The authors noted that most of the existing bounds on γst(G)

are lower bounds. In Section 2, we prove that γst(G) ≤ n− 2
⌊

2ρo(G)+δ−3
2

⌋

, for a

graph G of order n with δ(G) ≥ 3. Also, we show that n− 2(s− s′) is an upper
bound of the signed total domination number of a tree T of order n with s support
vertices and s′ support vertices of degree two. Furthermore, we characterize all
trees attaining this bound. In Section 3, we give some lower bounds on the signed
total domination number of graphs. As an application of the well-known theorem
of Turán [8] we give a lower bound on this parameter for Kr+1-free graphs and
conclude the lower bounds given in [7] for r-partite graphs and for triangle-free
graphs as special cases.

2. Upper Bounds

First we apply the concept of total limited packing to obtain a sharp upper bound
on γst(G). It is easy to check that ρ◦(Kn) = 1, γst(K2n) = 2 and γst(K2n+1) = 3,
for all positive integers n. We make use of them to show that the following bound
is sharp.

Theorem 1. Let G be a graph of order n and δ ≥ 3. Then

γst(G) ≤ n− 2

⌊

2ρo(G) + δ − 3

2

⌋

,

and this bound is sharp.

Proof. Let L be a maximum ⌊ δ−1
2 ⌋-total limited packing set in G. Define f :

V −→ {−1, 1} by

f(v) =

{

−1 if v ∈ L,
1 if v ∈ V − L.

Since L is a ⌊ δ−1
2 ⌋-total limited packing, |N(v) ∩ (V − L)| = deg(v)− |N(v) ∩ L|

≥ δ−⌊ δ−1
2 ⌋. Therefore, for every vertex v∈V , we have f(N(v)) = |N(v)∩(V−L)|
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−|N(v) ∩ L| ≥ δ − ⌊ δ−1
2 ⌋ − ⌊ δ−1

2 ⌋ ≥ 1. Therefore f is a STDF of G with weight
n− 2|L| = n− 2L⌊ δ−1

2
⌋,t(G). This shows that

γst(G) ≤ n− 2L⌊ δ−1

2
⌋,t(G).(1)

Now let L be a maximun ⌊ δ−1
2 ⌋-total limited packing in G. We claim that

L 6= V . If L = V and u ∈ V such that deg(u) = ∆, then ∆ = |N(u)∩L| ≤ ⌊ δ−1
2 ⌋,

a contradiction. Now let u ∈ V −L. It is easy to check that |N(v)∩ (L∪{u})| ≤
⌊ δ−1

2 ⌋+1 for each v ∈ V . Therefore L∪{u} is a (⌊ δ−1
2 ⌋+1)-total limited packing

in G. Hence 1 + L⌊ δ−1

2
⌋,t(G) = |L ∪ {u}| ≤ L(⌊ δ−1

2
⌋+1),t(G). If we continue this

process we finally arrive at

L⌊ δ−1

2
⌋,t(G) ≥ 1 + L(⌊ δ−1

2
⌋−1),t(G) ≥ · · · ≥

⌊

δ − 1

2

⌋

− 1 + L1,t(G),

and since L1,t(G) = ρ◦(G), we have

L⌊ δ−1

2
⌋,t(G) ≥

⌊

δ − 1

2

⌋

− 1 + ρ◦(G).(2)

Inequalities (1) and (2) give the desired upper bound. Moreover, this bound is
sharp. It is sufficient to consider the complete graph Kn, when n ≥ 4.

As the reader can check, the signed total domination number of a tree could
be arbitrary large. Henning [2] characterized all trees T of order n satisfying
γst(T ) = n as all trees T in which every vertex is a support vertex or is adjacent
to a vertex of degree two. Now, we bound the signed total domination number of a
tree from above by considering the number of its support vertices and characterize
all trees attaining this bound. For this purpose, we define Ω to be the family of
all trees T satisfying:

(a) For any support vertex u with |Lu| ≥ 2, deg(u) ≤ 4;

(b) Every vertex in V (T ) \ (S(T ) ∪ L(T )) is adjacent to a support vertex or a
vertex of degree two.

Theorem 2. Let T be a tree of order n, with s support vertices and s′ support
vertices of degree two. Then

γst(T ) ≤ n− 2(s− s′)

with equality if and only if T ∈ Ω.

Proof. Let S′ be the set of all support vertices of degree two. We choose just
one of the leaves adjacent to v, for every support vertex v ∈ S \ S′ and consider
L′ as the set of all those leaves. We define f : V (T ) → {−1, 1} by f(v) = −1 if
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v ∈ L′, and f(v) = 1 if v ∈ V (T ) \ L′. It is easy to see that f is a STDF of G.
Thus

γst(T ) ≤ f(V (T )) = n− 2|L′| = n− 2(s− s′).

Suppose now that f : V (T ) → {−1, 1} is a minimum STDF of T with weight
n − 2(s − s′). Let u be a support vertex with degree at least three. Since f
is a minimum STDF, there must be at least one vertex v in N(u) with weight
−1 under f . Without loss of generality we assume that v belongs to L′. We
first show that T satisfies (a). Suppose that there is a support vertex u with
|Lu| ≥ 2 in which deg(u) ≥ 5, and let v ∈ L′ ∩N(u). Since f(N(v)) ≥ 1, we have
f(u) = 1. On the other hand, since f is a minimum STDF of T and deg(u) ≥ 5,
there exists a vertex w in N(u), different from v, with weight −1 under f . This
is a contradiction because of f(V (T )) ≤ n− 2(s− s′)− 1 = γst(T )− 1.

We now show that T satisfies (b). Suppose there exists a vertex v ∈ V (T ) \
(S(T )∪L(T )), in which v is not adjacent to support vertices and all of its neigh-
bors are of degree at least three. In this case, the function f ′ : V (T ) → {−1, 1}
that assigns to v the value −1 and to all other vertices w the value f(v) would
be a STDF of G with weight f ′(V (T )) ≤ f(V (T ))− 2. This is a contradiction.

We now let T ∈ Ω and f : V (T ) → {−1, 1} be a minimum STDF of T in which
f(v) = −1, for all v ∈ L′. Suppose to the contrary that f(V (T )) < n− 2(s− s′).
Therefore, there exists a vertex v ∈ V (T ) \ (S(T )∪L′) such that f(v) = −1. Let
v ∈ L(T ). Then v ∈ N(u) for some u ∈ S \S′. Therefore |Lu| ≥ 2 and (a) implies
f(N(u)) ≤ 0 which is a contradiction. If v ∈ V (T ) \ (S(T )∪L(T )), then v is not
adjacent to a support vertex, similarly. Therefore, v is adjacent to a vertex w of
order two, by (b). Hence, f(N(w)) ≤ 0 which yields a contradiction. The above
discussion implies γst(T ) = n− 2(s− s′).

We conclude this section by establishing an upper bound on the signed total
domination number of a connected cubic graph. Henning [2] proved that for every
cubic graph of order n, γst(G) ≤ 5n/7. We now show that if G is a connected
cubic graph different from the Heawood graph G14, then γst(G) ≤ 2n/3.

We need the following useful lemma.

Lemma 3 [5]. If G is a connected cubic graph of order n different from the

Heawood graph, then γ×2,t(G) ≤ 5n/6, and this bound is sharp.

Theorem 4. If G is a connected cubic graph of order n different from the Hea-

wood graph, then γst(G) ≤ 2n/3, and this bound is sharp.

Proof. Let f : V → {−1, 1} be a minimum STDF of G. Let V+ be the set of
vertices u for which f(u) = 1. Since f(N(v)) ≥ 1, it follows that |N(v)∩V+| ≥ 2
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Figure 1. Heawood graph.

for every vertex v ∈ V (G). Hence, V+ is a double total dominating set in G.
Therefore,

(n+ γst(G))/2 = |V+| ≥ γ×2,t(G).(3)

Now let D be a minimum double total dominating set in G. We define
f : V −→ {−1, 1} by f(v) = 1, if v ∈ D and f(v) = −1, if v ∈ V \ D. Then,
f(N(v)) = |N(v)∩D|− |N(v)∩ (V \D)| ≥ 1. Therefore f is a STDF of G. Thus,

γst(G) ≤ f(V (G)) = 2|D| − n = 2γ×2,t(G)− n.(4)

The inequalities (3) and (4) together imply γst(G) = 2γ×2,t(G)−n. Now Lemma
3 implies the desired upper bound.

3. Lower Bounds

At this point we are going to present some sharp lower bounds on γst(G). First,
let us introduce some notation. Let f : V → {−1, 1} be a minimum STDF of
G. We define V+ = {v ∈ V |f(v) = 1}, V− = {v ∈ V |f(v) = −1}, G+ = G[V+]
and G− = G[V−], where G+ and G− are the subgraphs of G induced by V+ and
V−, respectively. For convenience, let E+ = E(G+), E− = E(G−) and we define
Vo and Ve as the set of vertices with odd degree and the set of vertices with
even degree, respectively. Also V o

+ = V+ ∩ Vo, V
e
+ = V+ ∩ Ve, V

o
− = V− ∩ Vo and

V e
− = V− ∩ Ve. Finally, degG+

(v) = |N(v) ∩ V+| and degG
−

(v) = |N(v) ∩ V−|.

We begin with the following useful lemma.

Lemma 5. Considering the above notation, the following statements hold.

(a)
(⌊

δ
2

⌋

+ 1
)

|V−| ≤ |[V+, V−]| ≤
(⌈

∆
2

⌉

− 1
)

|V+|,
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(b) n+ |V−|+ 4|E−|+ |Ve| ≤ 2|E+|+ |[V+, V−]|.

Proof. (a) Let f be a minimum STDF of G. Let v ∈ V−. Since f(N(v)) ≥ 1, we

have degG+
(v) ≥

⌊

deg(v)
2

⌋

+ 1 ≥
⌊

δ
2

⌋

+ 1. Therefore |[V+, V−]| ≥
(⌊

δ
2

⌋

+ 1
)

|V−|.

Now let v ∈ V+. Then degG
−

(v) ≤
⌈

deg(v)
2

⌉

−1 ≤
⌈

∆
2

⌉

−1. Therefore |[V+, V−]| ≤
(⌈

∆
2

⌉

− 1
)

|V+|.
(b) Let f be a minimum STDF of G. First we derive a lower bound on

|[V+, V−]|. Let v ∈ V−. Since f(N(v)) ≥ 1, we observe that degG
−

(v) ≤ |[v, V+]|−
1 and degG

−

(v) ≤ |[v, V+]| − 2 when deg(v) is even. This leads to

2|E−| =
∑

v∈V
−

degG
−

(v) =
∑

v∈V e
−

degG
−

(v) +
∑

v∈V o
−

degG
−

(v)

≤
∑

v∈V e
−

(|[v, V+]| − 2) +
∑

v∈V o
−

(|[v, V+]| − 1) = |[V−, V+]| − |V−| − |V e
−|.

This implies

|[V+, V−]| ≥ |V−|+ 2|E−|+ |V e
−|.(5)

Now let v ∈ V+. Since f(N(v)) ≥ 1, we observe that degG+
(v) ≥ |[v, V−]|+1

and degG+
(v) ≥ |[v, V−]|+ 2 when deg(v) is even. It follows that

2|E+| =
∑

v∈V+

degG+
(v) =

∑

v∈V e
+

degG+
(v) +

∑

v∈V o
+

degG+
(v)

≥
∑

v∈V e
+

(|[v, V−]|+ 2) +
∑

v∈V o
+

(|[v, V−]|+ 1) = |[V+, V−]|+ |V+|+ |V e
+|,

and so

|[V+, V−]| ≤ 2|E+| − |V e
+| − |V+|.(6)

Combining (5) and (6), we obtain 2|E+| ≥ n+2|E−|+ |Ve|. Using this inequality
and (5), we deduce that

2|E+|+ |[V−, V+]| ≥ 2|E−|+ n+ |Ve|+ |V−|+ 2|E−|+ |V e
−|,

and this yields (b) immediately.

We are now in a position to present the following lower bounds.

Theorem 6. Let G be a graph of order n and size m. Then

(i) γst(G) ≥
(⌊ δ

2⌋−⌈
∆

2 ⌉+2)n
⌊ δ

2⌋+⌈
∆

2 ⌉
,
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(ii) γst(G) ≥
(5−3∆−2⌈∆

2 ⌉)n+2ne+8m

3∆+2⌈∆

2 ⌉−1
,

(iii) γst(G) ≥
(5+3δ−2⌈∆

2 ⌉)n+2ne−4m

3δ+2⌈∆

2 ⌉−1
,

and these bounds are sharp, where ne = |Ve|.

Proof. (i) Using (a) of Lemma 5 and |V+| =
n+γst(G)

2 and |V−| =
n−γst(G)

2 , the
desired bound is easy to verify.

(ii) Using 4m = 4|E−|+4|[V+, V−]|+4|E+| and Lemma 5(b), we deduce that

n+ |V−|+ |Ve|+ 4m ≤ 6|E+|+ 5|[V+, V−]|.

Applying

2|E+| =
∑

v∈V+

degG+
(v) =

∑

v∈V+

(deg(v)− |[v, V−]|) ≤ ∆|V+| − |[V+, V−]|,

we obtain n+ |V−|+ |Ve|+4m ≤ 3∆|V+|+2|[V+, V−]|. By Lemma 5(a), we have
2|[V+, V−]| ≤ 2(⌈∆2 ⌉ − 1)|V+| and therefore

n+ |V−|+ |Ve|+ 4m ≤

(

3∆ + 2

⌈

∆

2

⌉

− 2

)

|V+|.

Because of |V+| =
n+γst(G)

2 and |V−| =
n−γst(G)

2 , we obtain the desired bound.

(iii) Using 2m = 2|E−| + 2|[V+, V−]| + 2|E+| and Lemma 5(b), we conclude
that

n+ |V−|+ 6|E−|+ |Ve|+ |[V+, V−]| ≤ 2m.

Applying

2|E−| =
∑

v∈V+

degG
−

(v) =
∑

v∈V
−

(deg(v)− |[v, V+]|) ≥ δ|V−| − |[V−, V+]|,

we see that n+ (1 + 3δ)|V−|+ |Ve| − 2|[V+, V−]| ≤ 2m. By Lemma 5(a), we have
2|[V+, V−]| ≤ 2(⌈∆2 ⌉ − 1)|V+| and thus

n+ (1 + 3δ)|V−|+ |Ve| − 2

(⌈

∆

2

⌉

− 1

)

|V+| ≤ 2m.

This implies the last bound.
Since γst(Cn) = n, the cycle Cn attains all of the three lower bounds.

We note that the bound (i) in Theorem 6 can be found in the paper [2]
by Henning. However, our proof is much shorter and transparent. If G is an
r-regular graph of order n, then (i) leads to γst(G) ≥ 2n/r when r is even and
γst(G) ≥ n/r when r is odd. This is a result by Zelinka [10].
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Theorem 7. For every graph G of order n, minimum degree δ ≥ 1 and maximum

degree ∆,

γst(G) ≥ −n+ 2max

{⌈

∆+ 3

2

⌉

,

⌈

2γt(G) + δ − 1

2

⌉}

,

and this bound is sharp.

Proof. We first prove the following claims.

Claim 1. γst(G) ≥ −n+ 2
⌈

∆+3
2

⌉

.

Proof. Let f : V → {−1, 1} be a minimum STDF of G. Since f(N(v)) ≥ 1, it
follows that |N(v) ∩ V−| ≤

⌊

∆−1
2

⌋

for every vertex v ∈ V (G). Therefore V− is a
⌊

∆−1
2

⌋

-total limited packing in G. Thus

(n− γst(G))/2 = |V−| ≤ L⌊∆−1

2
⌋,t(G).(7)

On the other hand, similar to the proof of Theorem 1 and taking into account
that L∆+1,t(G) = n, we obtain

L⌊∆−1

2
⌋,t(G) ≤ L⌊∆−1

2
⌋+1,t(G)− 1 ≤ · · ·

≤ L∆+1,t(G)−∆+
⌊

∆−3
2

⌋

= n−
⌈

∆+3
2

⌉

.

Now inequality (7) implies γst(G) ≥ −n+ 2
⌈

∆+3
2

⌉

, as desired. �

Claim 2. γst(G) ≥ −n+ 2
⌈

2γt(G)+δ−1
2

⌉

.

Proof. Since f(N(v)) ≥ 1, it follows that |N(v) ∩ V+| ≥
⌈

δ+1
2

⌉

for every vertex

v ∈ V (G). Therefore V+ is a
⌈

δ+1
2

⌉

-tuple total dominating set in G. Thus

(n+ γst(G))/2 = |V+| ≥ γ×⌈ δ+1

2
⌉,t(G).(8)

Now let D be a minimum
⌈

δ+1
2

⌉

-tuple total dominating set in G. Then

|N(v)∩D| ≥
⌈

δ+1
2

⌉

, for every vertex v ∈ V (G). Let u ∈ D. It is easy to see that

|N(v)∩ (D\{u})| ≥
⌈

δ+1
2

⌉

−1, for all v ∈ V (G). Hence, D\{u} is a
(⌈

δ+1
2

⌉

− 1
)

-
tuple total dominating set in G. Therefore, γ×⌈ δ+1

2
⌉,t(G) ≥ γ×(⌈ δ+1

2
⌉−1),t(G) + 1.

By repeating this process, we obtain

γ×⌈ δ+1

2
⌉,t(G) ≥ γ×(⌈ δ+1

2
⌉−1),t(G) + 1 ≥ · · ·

≥ γ×1,t(G) +
⌈

δ+1
2

⌉

− 1 = γt(G) +
⌈

δ−1
2

⌉

.

By inequality (8),

(n+ γst(G))/2 ≥ γt(G) +

⌈

δ − 1

2

⌉

.
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This completes the proof of Claim 2. �

The result now follows by Claim 1 and Claim 2. The bound is sharp for the
complete graph.

A graph isKp-free if it does not contain the complete graphKp as a subgraph.
For our next lower bound, we use the following well-known theorem of Turán [8].

Theorem 8 [8]. If G is a Kr+1-free graph of order n, then

|E(G)| ≤
r − 1

2r
· n2.

Theorem 9. Let r ≥ 2 be an integer, and let G be a Kr+1-free graph of order n.
If c = ⌈(δ(G) + 1)/2⌉, then

γst(G) ≥
r

r − 1

(

−(c− 1) +

√

(c− 1)2 + 4
r − 1

r
cn

)

− n.

Proof. By Lemma 5(a), we have

|[V+, V−]| ≥

⌈

δ(G) + 1

2

⌉

|V−| = c|V−| = c(n− |V+|).(9)

Furthermore, Theorem 8 leads to

|[V+, V−]| =
∑

v∈V+

|N(v) ∩ V−| ≤
∑

v∈V+

(|N(v) ∩ V+| − 1)

= 2|E(G[V+])| − |V+| ≤
r − 1

r
|V+|

2 − |V+|.

Combining this inequality chain with (9), we obtain

(n− |V+|)c ≤
r − 1

r
|V+|

2 − |V+|

and thus
r − 1

r
|V+|

2 + (c− 1)|V+| − cn ≥ 0.

It follows that

|V+| ≥
r

2(r − 1)

(

−(c− 1) +

√

(c− 1)2 + 4
r − 1

r
cn

)

,

and so we arrive at the desired bound

γst(G) = 2|V+| − n ≥
r

r − 1

(

−(c− 1) +

√

(c− 1)2 + 4
r − 1

r
cn

)

− n.
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For the special case when G is an r-partite graph, Theorem 9 was proved
by Shan and Cheng in [7]. In that paper the authors have constructed r-partite
graphs with equality in the inequality of Theorem 9, and therefore this theorem
is sharp. In addition, one can find Theorem 9 for triangle-free graphs in [7].
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