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Abstract

The looseness of a triangulation G on a closed surface F 2, denoted by
ξ(G), is defined as the minimum number k such that for any surjection
c : V (G) → {1, 2, . . . , k + 3}, there is a face uvw of G with c(u), c(v) and
c(w) all distinct. We shall bound ξ(G) for triangulations G on closed surfaces
by the independence number of G denoted by α(G). In particular, for a
triangulation G on the sphere, we have

ξ(G) ≤
11α(G)− 10

6

and this bound is sharp. For a triangulation G on a non-spherical surface
F 2, we have

ξ(G) ≤ 2α(G) + l(F 2)− 2,

where l(F 2) = ⌊(2− χ(F 2))/2⌋ with Euler characteristic χ(F 2).
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1. Introduction

A triangulation G on a closed surface F 2 is a fixed embedding of a simple graph
embedded on F 2 with only triangular faces, except K3 on the sphere. (In this
paper, F 2 will be used to represent a closed surface.) Thus, each face can be iden-
tified as a triplet uvw consisting of its three corners. Negami and Midorikawa [5]
have defined a combinatorial invariant for a triangulation G called the “looseness”
of G, as follows.

Let G be a triangulation on F 2 and c : V (G) → {1, 2, . . . , n} a surjection,
which is regarded as an assignment of colors 1, 2, . . . , n. If c assigns three distinct
colors to the three corners u, v and w of a face uvw, then the face uvw is said
to be heterochromatic for c. We say that G is k-loosely tight if every surjection
f : V (G) → {1, 2, . . . , k + 3} admits a heterochromatic face. The looseness of G
is defined as the minimum number k such that G is k-loosely tight and is denoted
by ξ(G). It is obvious that ξ(G) ≤ |V (G)|−3, since all faces are heterochromatic
if all vertices have distinct colors.

In particular, if ξ(G) = 0, then G is said to be tight. It is not so difficult to
see that a tight triangulation must be a complete graph. However, there have
been constructed many untight triangulations with complete graphs [2, 3]. This
suggests that the value of ξ(G) depends on the embedding of G on F 2.

Negami and Midorikawa [5] have shown various facts on the looseness of
triangulations and given us some lower bounds for ξ(G) involving combinatorial
invariants of G. (We can find a study on a relation between the looseness of G and
some graph invariants of the dual of G in [4].) For example, they have considered
the independence number α(G), which is the maximum size of independent sets.
Take an independent set S of size α = α(G) and assign α different colors to
the vertices in S one by one and another color to the remaining vertices. It is
clear that there is no heterochromatic face for this assignment. This implies that
α+ 1 ≤ ξ(G) + 2 by the definition of ξ(G) and hence we have α(G)− 1 ≤ ξ(G).

In this paper, we shall give a nontrivial upper bound for ξ(G) using the
independence number α(G), as in the following.

Theorem 1. For any triangulation G on the sphere, we have

ξ(G) ≤
11α(G)− 10

6
.

In fact, this bound is the best possible.
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The following is the result for triangulations on surfaces with high genera.
Throughout the paper, χ(F 2) stands for Euler characteristic of F 2 and we further

put l(F 2) =
⌊

2−χ(F 2)
2

⌋

.

Theorem 2. Let G be a triangulation on F 2 with χ(F 2) < 2. Then

ξ(G) ≤ 2α(G) + l(F 2)− 2.

Let us consider the value l(F 2) defined for F 2. In particular, if F 2 is ori-
entable and of genus g, then χ(F 2) = 2 − 2g. Thus the value of l(F 2) in the
theorem coincides with the genus g of F 2 and can be regarded as the maximum
number of mutually disjoint nonseparating simple closed curves on F 2 (i.e., one
whose removal does not disconnect the surface).

On the other hand, if F 2 is nonorientable and of genus k, then χ(F 2) =
2 − k. However, we should notice that there are two types of simple closed
curves on a nonorientable closed surface. A simple closed curve locally separates
the surface into two sides. A simple closed curve is said to be 1-sided if its
tubular neighborhood is homeomorphic to a Möbius band, and to be 2-sided
otherwise. (Every simple closed curve on an orientable closed surface is 2-sided.)
Considering the fact that every nonorientable closed surface can be obtained from
an orientable one by adding one or two crosscaps, we can find that l(F 2) is equal
to the maximum number of mutually disjoint nonseparating 2-sided simple closed
curves on F 2.

As is mentioned above, the looseness ξ(G) depends on the embedding of G on
F 2. That is, if f : G → F 2 is another embedding of G on F 2, the value of ξ(f(G))
might be different from ξ(G). Let ξmax(G) and ξmin(G) denote the maximum
and the minimum values of ξ(f(G)) taken over all embeddings f : G → F 2,
respectively. Then these can be regarded as invariants for an abstract graph G
which can be embedded in F 2 as a triangulation. The above theorem implies that
α(G) − 1 ≤ ξmin(G) and ξmax(G) ≤ 2α(G) + l(F 2) − 2, and hence we obtained
the following corollary.

Corollary 3. Let G be a graph which can be embedded on F 2 as a triangulation.

Then we have

ξmax(G)− ξmin(G) ≤ α(G) + l(F 2)− 1.

Recently, Negami [6] has shown that ξmax(G) − ξmin(G) ≤ 2l(F 2). If α(G)
is enough small relatively to l(F 2), then our bound is superior to his bound. In
particular, if α(G) = 1, that is, if G is isomorphic to the complete graph Kn with
n = |V (G)| as a graph, then we have

ξmax(Kn)− ξmin(Kn) ≤ l(F 2).
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However, this estimation is not so good, since it is known ξmax(Kn) ≤ O(l
1

4 ) for
l = l(F 2) in [5].

In Section 2, we introduce the notion of “dividing systems” for color assign-
ments with no heterochromatic face. Using this, we shall give the upper bounds
in Theorems 1 and 2 in Section 3, and consider how good those estimations are
in Section 4.

2. Dividing Systems of Cycles

Here, we shall prepare a useful notion called “the dividing system” to investigate
the looseness of triangulations. This has been introduced in [5] and a similar
notion can be found in [2, 3]. Also it has been used to characterize 1-loosely
tight triangulations on the sphere, the projective plane, the torus and the Klein
bottle [8].

Let G be a triangulation on F 2 and c : V (G) → {1, 2, . . . , h} an assignment of
colors. The assignment c is said to be hetero-free (or a hetero-free h-assignment)
if there is no heterochromatic face for c. The dividing system Λc(G) of G for c
is the subgraph in the dual G∗ of G induced by all edges dual to those edges
in G that join two vertices having distinct colors for c. It is clear that each
vertex in Λc(G) has degree either 0, 2 or 3 and that it has degree 3 if and only
if it corresponds to a heterochromatic face. Thus, if c is hetero-free, then Λc(G)
consists of several disjoint cycles, each of which can be regarded as a simple closed
curve on F 2. Such a cycle is 2-sided, since it locally separates two colors into
both sides.

Let C1, . . . , Cn be mutually disjoint 2-sided cycles in G∗ such that both sides
of Ci meet different components of F 2 − C1 ∪ · · · ∪ Cn. Such a set {C1, . . . , Cn}
of cycles in G∗ is called a dividing system of cycles for G and each component of
F 2−C1∪· · ·∪Cn a region of the dividing system. The looseness of triangulations
can be characterized in terms of these notions, as follows.

Lemma 4. Let G be a triangulation on F 2. Then ξ(G) + 2 is equal to the maxi-

mum number of regions taken over all dividing systems of cycles for G.

Proof. Let Rmax denote the maximum number of regions in the lemma. Let
c : V (G) → {1, 2, . . . , ξ(G) + 2} be a hetero-free (ξ(G) + 2)-assignment and
consider Λc(G). Then Λc(G) consists of mutually disjoint cycles, which form a
dividing system of cycles for G. Each region contains only one color and each of
ξ(G) + 2 colors appears in some region. Thus, this dividing system has at least
ξ(G) + 2 regions and hence ξ(G) + 2 ≤ Rmax.

On the other hand, let {C1, . . . , Cn} be a dividing system of cycles for G
which attains the maximum Rmax. Assign colors 1, 2, . . . , Rmax to all regions
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one by one and define a color assignment to vertices so that each vertex gets
the same color as the region containing it has. Then this color assignment with
Rmax colors is hetero-free. This implies that ξ(G) + 2 ≥ Rmax. Hence we have
ξ(G) + 2 = Rmax.

Note that the number of regions of any dividing system on the sphere or
the projective plane is equal to the number of cycles plus one, since any 2-sided
simple closed curve separates these surfaces. However, the number of regions
cannot be determined uniquely only by the number of cycles in a dividing system
on any closed surface except the sphere and the projective plane.

Since any 2-sided simple closed curve on the sphere and the projective plane
separates the surface, any set of mutually disjoint 2-sided cycles in the dual G∗

becomes a dividing system for G automatically. Thus, the following corollary is
an immediate consequence of the above lemma.

Corollary 5. Let G be a triangulation on the sphere or the projective plane. Then

ξ(G) + 1 is equal to the maximum number of mutually disjoint 2-sided cycles in

the dual G∗ of G.

Let G be a triangulation on F 2 with a hetero-free h-assignment, and let
Λ = Λc(G) denote a dividing system for G. Then the division graph ΓΛ can
be constructed as follows. Prepare a vertex for each region of Λ and join two
vertices by an edge whenever the two regions corresponding to them meet each
other along a cycle in Λ. Clearly, since each edge of ΓΛ corresponds to a cycle
of Λ, and since any 2-sided simple closed curve on the sphere and the projective
plane separates the surface, we have the following.

Lemma 6. Let G be a triangulation on the sphere or the projective plane and

let Λ be a dividing system for G with h regions. Then the division graph ΓΛ is a

tree of h vertices.

3. Upper Bounds

In this section, we shall give upper bounds of the estimations in Theorems 1
and 2.

Lemma 7. If a triangulation G on the sphere admits a hetero-free h-assignment,

then α(G) ≥ 6h−2
11 .

Proof. Consider a dividing system Λc(G) of G for c. Then the number of regions
of Λc(G) is at least h, where we note h ≥ 3 by the definition. Now let T be the
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division graph of Λc(G). By Lemma 6, T is a tree with at least h vertices. Let
Vi = |{v ∈ V (T ) : degT (v) = i}|. Then, since T is a tree, we have

∑

i
Vi = |V (T )| ≥ h,

∑

i
iVi ≥ 2h− 2.(1)

Case 1. V1 ≥
6h−2
11 .

We have

α ≥ V1 ≥
6h− 2

11
,

since any two vertices of degree one are not adjacent in a tree with at least three
vertices.

Case 2. V1 <
6h−2
11 .

We focus on each region Rv of Λc(G) corresponding to a vertex v ∈ V (T ) of
degree exactly i in T , for i ≥ 2. Let H be the subgraph of G induced by the
vertices belonging to Rv. Since Rv has exactly i neighboring regions, H is a plane
graph with at least i faces; note that |V (H)| ≥ 3 here. By Euler’s formula and
the fact that |E(H)| ≤ 3|V (H)| − 6, we have |V (H)| ≥ F+4

2 , where F is the
number of faces of H. Since F ≥ i, we have

|V (H)| ≥
i+ 4

2
.(2)

Now we shall estimate |V (G)|. By (1), (2) and the assumption in Case 2, we
have

|V (G)| ≥ V1 +
∑

i≥2

i+ 4

2
Vi =

1

2

(

∑

i≥1

(i+ 4)Vi − 3V1

)

=
1

2

(

∑

i≥1

iVi + 4
∑

i≥1

Vi − 3V1

)

≥
1

2
(6h− 2− 3V1)

>
1

2

(

6h− 2− 3×
6h− 2

11

)

=
4(6h− 2)

11
.

Applying Four Color Theorem [1] to G, we have

α(G) ≥
|V (G)|

4
>

6h− 2

11
.

This completes a proof.

Now we shall deal with the nonspherical case.

Lemma 8. Let G be a triangulation on F 2. If G admits a hetero-free h-assign-
ment, then h ≤ 2α(G) + l(F 2).
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Proof. Let c : V (G) → {1, 2, . . . , h} be any hetero-free h-assignment, and con-
sider the dividing system Λ = Λc(G) for c, which consists of disjoint cycles in
G∗. We estimate the number of regions of Λ. Now, construct a division graph
ΓΛ associated with Λ. Take a spanning tree T in ΓΛ and let E = {e1, . . . , el′} be
the set of edges in ΓΛ not belonging to T . Then we have l′ ≤ l(F 2).

Since T is a tree, we can color its vertices with black and white so that any
two adjacent vertices get different colors. Call a region “black” (respectively,
“white”) if its corresponding vertex in ΓΛ gets black (respectively, white). This
vertex coloring of T cannot extend to a proper vertex coloring of the whole ΓΛ

in general, since ΓΛ might contain an odd cycle. Let B (respectively, W ) be the
set of edges in E which join two black (respectively, white) vertices in ΓΛ and let
W be for “white”. Then B ∩W = ∅ and |B ∪W | = |B|+ |W | ≤ l′ ≤ l(F 2). We
call each edge “a black edge” if it belongs to B and “a white edge” if to W .

Choose a set UB of black vertices in ΓΛ as small as possible so that UB covers

B, that is, at least one of the ends of each edge in B belongs to UB, and take one
vertex of G arbitrarily from each black region corresponding to a black vertex
in V (ΓΛ) − UB. Let SB be the set of such chosen vertices. Then SB forms an
independent set in G. Define UW and SW for “white” similarly. Also SW is an
independent set in G.

It is clear that the number of regions of Λ is equal to |SB|+|SW |+|UB|+|UW |.
Since both SB and SW are independent sets, we have |SB| + |SW | ≤ 2α(G) and
also have |UB| + |UW | ≤ l′ ≤ l(F 2). Therefore, the number of regions of Λ is at
most 2α(G) + l(F 2) and hence h does not exceed this.

4. Triangulations with High Looseness

In this section, for a fixed independence number, we construct triangulations on
closed surfaces with high looseness, which give lower bounds for the estimations
in Theorems 1 and 2.

Lemma 9. For any positive integer α, there exists a triangulation G on the

sphere with α(G) > α and looseness ξ(G) = 11α(G)−10
6 .

Proof. Let O be a plane triangulation isomorphic to an octahedron with disjoint
3-cycles a1a2a3 and b1b2b3, where ai is joined to bj , bk for any distinct i, j, k ∈
{1, 2, 3}. Let A be an annulus triangulation obtained from O by removing the
interior of the two faces a1a2a3 and b1b2b3, adding a vertex of degree 3 labeled
x (respectively, y) to {b1, a2, a3} (respectively, {a1, b2, b3}), and adding K4 to
other four faces. (See Figure 1. Adding K4 to a face v1v2v3 is to put a plane
triangulation isomorphic to K4 with boundary u1u2u3 and add edges viuj , viuk
for any distinct i, j, k ∈ {1, 2, 3}.) Since V (A) can be decomposed into six vertex-
disjoint K4’s, A has independence number 6.
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Figure 1. Annulus triangulation A with 24 vertices.

Let G1 be the plane triangulation obtained from A by pasting a 2-cell along
each of the two boundary components of the annulus and adding K4 to each
of the two new faces. Then G1 is a plane triangulation such that V (G1) can
be decomposed into eight vertex-disjoint K4’s, and hence G1 has independence
number 6 + 2 = 8.

Let us construct a hetero-free assignment of G1, as follows. Color V (O) =
{a1, a2, a3, b1, b2, b3} by a single color. Color each of the six K4’s added by two
colors so that an central vertex (i.e., one of degree 3 in G1) and the other three
are colored by distinct colors. Use a single color for each of the two vertices
x, y of degree 3 added. Consequently, using all distinct colors to them, we get a
hetero-free 15-assignment of G1, and hence we have ξ(G1) ≥ 15 − 2 = 13. This
coincides with the upper bound in Theorem 1: 11×8−10

6 = 13.

This can be generalized to an infinite sequence of plane triangulations at-
taining the equality in Theorem 1, as follows. Let Ā1, . . . , Āt be t copies of A.
Connect Āi and Āi+1 by inserting an annulus to join the boundary a1a2a3 of Āi

and the boundary b1b2b3 of Āi+1, and add edges aibj , aibk in the added annulus
for any distinct i, j, k ∈ {1, 2, 3}. Let At be the resulting annulus triangulation.
Let Gt be the plane triangulation obtained from At by adding K4 to each of the
two boundary components after capping it off by a 2-cell, and color Gt similarly
to that for G1 by using all distinct colors. Since each Āi is colored by eleven
colors, we get a hetero-free assignment of Gt by 11t + 4 colors. On the other
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hand, since each Āi has independence number six, Gt has independence number
6t+ 2, that is, α(Gt) = 6t+ 2. Therefore, we have

ξ(Gt) ≥ (11t+ 4)− 2 = 11×
α(Gt)− 2

6
+ 2 =

11α(Gt)− 10

6
.

So the Lemma follows, since α(Gt) can be taken to be arbitrarily large.

Remark 10. Actually, using the appropriate number of K4’s added in the above
argument, we can construct a triangulation G on the sphere with α = α(G)

and ξ(G) =
⌊

11α(G)−10
6

⌋

for any integer α ≥ 1. However, the construction is so

complicated that we omit it.

For some nonspherical surfaces F 2, we can construct an example of a trian-
gulation G on F 2 such that α(G) ≥ α for a fixed α > 0 and

ξ(G) ≥
11α(G)− 10

6
,

as follows. Let H be the triangulation constructed in Lemma 9, and let c be the
hetero-free (ξ(H) + 2)-assignment for H. We remove a vertex y from H(see Fig-
ure 1 again), and let H ′ be the resulting triangulation. Let K be a triangulation
on F 2 by a complete graph Kn. (It is known that a complete graph Kn triangu-

lates F 2 if and only if (n−3)(n−4)
6 = 2−χ(F 2) [7].) Now, let G be a triangulation

obtained from K and H ′ by identifying a face of K and the face a1b2b3 of H ′.
Since the graph of K is complete, we have α(G) = α(H) ≥ α. On the other hand,
we color the vertices of G so that the vertices in V (H ′) are colored by c in G and
the vertices in V (G) − V (H ′) by c(y). Then we obtain a hetero-free assignment

of G, and hence we have ξ(G) ≥ ξ(H) ≥ 11α(H)−10
6 = 11α(G)−10

6 .

5. Proof of Theorems

Proof of Theorems 1 and 2. Let G be a triangulation on the sphere. By the
definition, G admits a hetero-free (ξ(G) + 2)-assignment. By Lemma 7, we have

α(G) ≥ 6(ξ(G)+2)−2
11 and hence we obtain the upper bound of Theorem 1. On

the other hand, Lemma 9 gives an example attaining the upper bound of the
theorem. Similarly, the proof of Theorem 2 follows from Lemma 8.

We focused on a relation between looseness and independence number of tri-
angulations. Can we bound looseness of triangulations by using another invariant
of graphs, for example, diameter of graphs? In a triangulation G, from a fixed
vertex v of G, color each vertex of G according to its distance from v. Then we
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can get a hetero-free assignment. It seems to be interesting to bound looseness
of triangulations in various ways.

We considered an upper bound for looseness of triangulations on closed sur-
face by independence number. In the spherical case, we gave a best possible
bound, but we did not in the nonspherical case. So can we improve Theorem 2?
Moreover, as we can see, 3-cuts of graphs play an important role for the estima-
tion of the loosen ess in our theorems. So what happens when we assume the
4-connectivity of triangulations?

In the spherical case, Four Color Theorem is essential for bounding inde-
pendence number of planar graphs. Hence the argument in Theorem 1 does not
seem to apply to even the projective-planar case, though Lemma 6 holds on the
projective plane. So it will be interesting to extend our theorem to the projective
plane or other fixed closed surfaces.
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