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Abstract

Gutman and Wagner proposed the concept of the matching energy which
is defined as the sum of the absolute values of the zeros of the matching poly-
nomial of a graph. And they pointed out that the chemical applications of
matching energy go back to the 1970s. Let T be a tree with n vertices. In
this paper, we characterize the trees whose complements have the maximal,
second-maximal and minimal matching energy. Furthermore, we determine
the trees with edge-independence number p whose complements have the
minimum matching energy for p = 1, 2, . . . , ⌊n

2 ⌋. When we restrict our con-
sideration to all trees with a perfect matching, we determine the trees whose
complements have the second-maximal matching energy.
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1. Introduction

All graphs considered in this paper are undirected simple graphs. For notation
and terminologies not defined here, see [7, 18].

Let G = (V (G), E(G)) be a graph with the vertex set V (G) = {v1, v2, . . . , vn}
and the edge set E(G) = {e1, e2, . . . , em}. For any a vertex v ∈ V (G) (or an edge
e ∈ E(G)), let G−v (or G− e) denote the subgraph obtained from G by deleting
v (or e). Denote by G the complement of G. The path, star and complete graph
with n vertices are denoted by Pn, K1,n−1 and Kn, respectively. Let Tn,2 be a
tree obtained from the star K1,3 by attaching a path Pn−3 to one of the pendent
vertices of K1,3, and let T 1

n,2 be a tree obtained from the star K1,3 by attaching
two paths P2 and Pn−4 to two different pendent vertices of K1,3, respectively.
Let T p

n be a tree with n vertices obtained from the star K1,n−p by attaching a
pendent edge to each of p− 1 pendent vertices in K1,n−p for p = 1, 2, . . . , ⌊n2 ⌋.

A k-matching in G is a set of k pairwise non-incident edges. The number of
k-matchings in G is denoted by m(G, k). Specifically, m(G, 0) = 1, m(G, 1) = m
and m(G, k) = 0 for k > n

2 or k < 0. For a k-matching M in G, if G has no
k′-matching such that k′ > k, then M is called a maximum matching of G. The
number ν(G) of edges in a maximum matching M is called the edge-independence
number of G. We use Tn,p to denote the set of trees with n vertices and the edge-
independence number at least p for p = 1, 2, . . . , ⌊n2 ⌋. The Hosoya index Z(G) is
defined as the total number of matchings of G, that is

Z(G) =
∑⌊n

2
⌋

k=0
m(G, k).

Recall that for a graph G on n vertices, the matching polynomial µ(G, x) of
G is given by

(1) µ(G, x) =
∑

k≥0
(−1)km(G, k)xn−2k.

Its theory is well elaborated [4, 6, 7, 8, 9]. Gutman and Wagner [10] gave the defi-
nition of the quasi-order � as follows. If G and H have the matching polynomials
in the form (1), then the quasi-order � is defined by

(2) G � H ⇐⇒ m(G, k) ≥ m(H, k) for all k = 0, 1, . . . , ⌊n/2⌋.

Particularly, if G � H and there exists some k such that m(G, k) > m(H, k),
then we write G ≻ H.

Gutman and Wagner in [10] first proposed the concept of the matching energy

of a graph, denoted by ME(G), and defined as

(3) ME = ME(G) =
2

π

∫ ∞

0
x−2ln

[

∑

k≥0
m(G, k)x2k

]

dx.
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Meanwhile, they gave also another form of the definition of matching energy of
a graph. That is,

ME(G) =
∑n

i=1
|µi|,

where µi denotes the root of matching polynomial of G. Additionally, they found
some relations between the matching energy and energy (or reference energy).
By (2) and (3), we easily obtain the fact as follows.

(4) G � H =⇒ ME(G) ≥ ME(H) and G ≻ H =⇒ ME(G) > ME(H).

This property is an important technique to determine extremal graphs with the
matching energy.

Note that the energy (or reference energy) of graphs are extensively exam-
ined (see [1, 4, 5, 11, 12, 16]). However, the literature on the matching energy is
far less than that on the energy and reference energy. Up to now, we find only a
few papers about the matching energy published. Gutman and Wagner [10] gave
some properties and asymptotic results of the matching energy. Li and Yan [15]
characterized the connected graph with the fixed connectivity (resp. chromatic
number) which has the maximum matching energy. Ji et al. in [13] determined
the graphs with the extremal matching energy among all bicyclic graphs. Li et
al. [14] characterized the unicyclic graphs with fixed girth (resp. clique num-
ber) which has the maximum and minimum matching energy, respectively. Chen
and Shi [2] characterized the graphs with the maximal value of matching en-
ergy among all tricyclic graphs. Chen et al. in [3] characterized the graphs with
minimal matching energy among all unicyclic and bicyclic graphs with a given di-
ameter d. Xu et al. [20] determined the extremal graphs from T (n) with minimal
and maximal matching energies, respectively, where T (n) is a set of t-apex trees
of order n. And they also determined the extremal graphs from Gn,m minimizing
the matching energy [21], where Gn,m is a set of connected graphs of order n and
with m edges. Additionally, the present author [19] characterized completely the
graphs which has i-th maximal matching energy, where i = 2, 3, . . . , 16.

In this paper, inspired by the idea given in [22], we investigate the problem of
the matching energy of the complements of trees, and obtain the following main
theorems.

Theorem 1.1. Let T be a tree with n vertices. If T ≇ Tn,2 and T ≇ Pn, then

ME
(

T
)

< ME
(

Tn,2

)

< ME
(

Pn

)

.

Theorem 1.2. Let Tn,p denote the set of trees with n vertices and the edge-

independence number at least p for p = 1, 2, . . . , ⌊n2 ⌋. For a tree T ∈ Tn,p it

holds

ME
(

T
)

≥ ME
(

T p
n

)

with equality if and only if T ∼= T p
n .
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By Theorems 1.1 and 1.2, we obtain directly the following corollary.

Corollary 1.3. The complements of Pn and K1,n−1 have the maximum and mini-

mum matching energy in all complements of trees, respectively.

Theorem 1.4. Let Tn,n
2
be a proper subset of Tn,p containing all trees with a

perfect matching. Suppose that T ∈ Tn,n
2
, T 6∼= T

n
2
n and T 6∼= Pn. If n ≥ 6, then

ME

(

T
n
2
n

)

< ME
(

T
)

≤ ME
(

T 1
n,2

)

< ME
(

Pn

)

,

where the equality holds if and only if T ∼= T 1
n,2.

2. Some Lemmas

There exists a well-known formula which characterizes the relation between
m(G, r) and m(G, i) (see Lovász [17]), which will play a key role in the proofs of
the main theorems.

Lemma 2.1 [17]. Let G be a simple graph with n vertices and G the complement

of G. Then

(5) m(G, r) =
∑r

i=0
(−1)i

(

n− 2i

2r − 2i

)

(2r − 2i− 1)!!m(G, i),

where s!! = s× (s− 2)!!, and (−1)!! = 0!! = 1.

The following results about the matching polynomial of G can be found in
Godsil [7].

Lemma 2.2 [7]. The matching polynomial satisfies the following identities:

(i) µ(G ∪H,x) = µ(G, x)µ(H,x),

(ii) µ(G, x) = µ(G \ e, x)− µ(G− u− v, x) if e = {u, v} is an edge of G,

(iii) µ(G, x) = xµ(G \ u, x)−
∑

v∼u µ(G− u− v, x) if u ∈ V (G).

Lemma 2.3 [7]. Let m and n be two positive integers. Then

(6) µ(Pm+n) = µ(Pm)µ(Pn)− µ(Pm−1)µ(Pn−1).

Lemma 2.4 [22]. If T is a tree with n vertices and edge-independence number

ν(T ) = p, then T has at most n−p vertices of degree one. In particular, if T has

exactly n− p vertices of degree one, then every vertex of degree at least two in T
is adjacent to at least one vertex of degree one.
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3. Ordering Complements of Trees with Respect to Their

Matchings

For convenience, we use the same definitions of trees which are given in [22].

Definition 3.1. Let T1 be a tree with n + m + k vertices shown in Figure 1,
where T0 is a tree with k vertices (k ≥ 2) and u a vertex of T0, n ≥ 1 and m ≥ 1.
Suppose T2 is a tree with n + m + k vertices obtained from T0 by attaching a
path Pm+n to u in T0 (see Figure 1). We designate the transformation from T1

to T2 as of type 1 and denote it by F1: T1 →֒ T2 or F1(T1) = T2.

Figure 1. Two trees T1 and T2.

Theorem 3.1. Let T1 and T2 be the trees with m + n + k vertices defined in

Definition 3.1. Then T2 ≻ T1.

Proof. By Lemma 2.2,

µ(T1) = xµ(T0 − u)µ(Pm)µ(Pn)− µ(T0 − u)µ(Pm−1)µ(Pn)

− µ(T0 − u)µ(Pm)µ(Pn−1)−
∑

v∈V (T0)
uv∈E(T0)

µ(T0 − u− v)µ(Pm)µ(Pn),

µ(T2) = xµ(T0 − u)µ(Pm+n)− µ(T0 − u)µ(Pm+n−1)

−
∑

v∈V (T0)
uv∈E(T0)

µ(T0 − u− v)µ(Pm+n),

where the above sums range over all vertices of T0 adjacent to u. Hence

µ(T1)− µ(T2) = xµ(T0 − u)[µ(Pm)µ(Pn)− µ(Pm+n)]− µ(T0 − u)[µ(Pm−1)µ(Pn)

− µ(Pm+n−1) + µ(Pm)µ(Pn−1)]− [µ(Pm)µ(Pn)− µ(Pm+n)]
∑

v∈V (T0)
uv∈E(T0)

µ(T0 − u− v).
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By (6) and a routine calculation,

(7) µ(T1)− µ(T2) = −
∑

v∈V (T0)
uv∈E(T0)

µ(T0 − u− v)µ(Pm−1)µ(Pn−1).

For an arbitrary vertex v adjacent to u in T0, let T
∗
v be the forest (T0−u−v)

∪ Pm−1 ∪ Pn−1, which has n+m+ k − 4 vertices. By (5), we obtain

(8)

m
(

T1, r
)

−m
(

T2, r
)

=
r

∑

i=0

(−1)i
(

n+m+ k − 2i

2r − 2i

)

(2r − 2i− 1)!![m(T1, i)−m(T2, i)].

Note that m(T1, 0) = m(T2, 0) and m(T1, 1) = m(T2, 1). Hence

(9)

m
(

T1, r
)

−m
(

T2, r
)

= −
∑

v∈V (T0)
uv∈E(T0)

r
∑

i=2

(−1)i
(

n+m+ k − 2i

2r − 2i

)

(2r − 2i− 1)!!m(T ∗
v , i− 2).

Note that T ∗
v has n+m+ k − 4 vertices. So

m
(

T ∗
v , r − 2

)

=
r−2
∑

j=0

(−1)j
(

n+m+ k − 4− 2j

2(r − 2)− 2j

)

(2(r − 2)− 2j − 1)!!m(T ∗
v , j)

=
r

∑

i=2

(−1)i
(

n+m+ k − 2i

2r − 2i

)

(2r − 2i− 1)!!m(T ∗
v , i− 2).

Hence

(10) m
(

T1, r
)

−m
(

T2, r
)

= −
∑

v∈V (T0)
uv∈E(T0)

m
(

T ∗
v , r − 2

)

.

By the definition ofm(G, r) and (10), we havem(T ∗
v , r−2) ≥ 0, which implies

m(T1, r) ≤ m(T2, r). Particularly, if r = 2, then m(T1, r) − m(T2, r) ≤ −1. By
(2), T2 ≻ T1.

Remark 3.2. By Theorem 3.1 and (4), we obtain immediately a result as follows:
If T1 and T2 are the two trees defined in Definition 3.1, then ME(T2) > ME(T1).
Additionally, by the definition of the Hosoya index and Theorem 3.1, it is not
difficult to see that Z(T2) > Z(T1).

Definition 3.2. Let T3 and T4 be two trees with m + n + s + 1 vertices shown
in Figure 2, where s ≥ m ≥ 2, n ≥ 1. We designate the transformation from T3

to T4 in Figure 2 as of type 2 and denote it by F2: T3 7→ T4 or F2(T3) = T4.
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Figure 2. Two trees T3 and T4.

Theorem 3.3. Let T3 and T4 be two trees with m+ n+ s+1 vertices defined in

Definition 3.2. Then T4 ≻ T3.

Proof. Similarly to the proof of Theorem 3.1, we can obtain that

µ(T3)− µ(T4) = −µ(Pm−2)µ(Pn−1)µ(Ps−2).

Furthermore, we also have

(11) m
(

T3, r
)

−m
(

T4, r
)

= −m
(

Pm−2 ∪ Pn−1 ∪ Ps−2, r − 3
)

.

By the definition ofm(G, r) and (11), we havem
(

Pm−2 ∪ Pn−1 ∪ Ps−2, r − 3
)

≥ 0, which implies m
(

T3, r
)

≤ m
(

T4, r
)

. Especially, if r = 3 then

m
(

Pm−2 ∪ Pn−1 ∪ Ps−2, r − 3
)

= 1.

This means, by (2), that T4 ≻ T3. The proof is completed.

Definition 3.3. Let T5 and T6 be two trees with m + n + 2 vertices shown in
Figure 3, where m ≥ n ≥ 2. We designate the transformation from T5 to T6 in
Figure 3 as of type 3 and denote it by F3: T5 → T6 or F3(T5) = T6.

Figure 3. Two trees T5 and T6.
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Theorem 3.4. Let T5 and T6 be two trees with m + n + 2 vertices defined in

Definition 3.3. Then T6 ≻ T5.

Proof. Similarly to the proof of Theorem 3.1, we have

µ(T5)− µ(T6) = −µ(Pm−n)

and

(12) m
(

T5, r
)

−m
(

T6, r
)

= −m
(

Pm−n, r − n− 1
)

.

By the definition of m(G, r) and (12), we have m
(

Pm−n, r − n− 1
)

≥ 0,
which indicates m

(

T5, r
)

≤ m
(

T6, r
)

. Especially, when r = n + 1, then
m

(

Pm−n, r − n− 1
)

= 1. By (2), we get that T4 ≻ T3.

Definition 3.4. Suppose that T ′
1 and T ′

2 are two trees with m (m > 1) vertices
and with n (n > 1) vertices, respectively. Take one vertex u of T ′

1 and one v of
T ′
2. Construct two trees T7 and T8 with m + n vertices as follows. The vertex

set V (T7) of T7 is V (T ′
1) ∪ V (T ′

2) and the edge set of T7 is E(T ′
1) ∪ E(T ′

2) ∪ uv.
T8 is the tree obtained from T ′

1 and T ′
2 by identifying the vertex u of T ′

1 and the
vertex v of T ′

2 and adding a pendent edge uw = vw to this new vertex u (= v).
The resulting graphs are presented in Figure 4. We designate the transformation
from T7 to T8 as of type 4 and denote it by F4: T7 # T8 or F4(T7) = T8.

Figure 4. Two trees T7 and T8.

Theorem 3.5. Let T7 and T8 be two trees with m+n vertices defined in Definition

3.4. Then T7 ≻ T8.

Proof. By Lemma 2.2,

(13) µ(T7) = µ(T ′
1)µ(T

′
2)− µ(T ′

1 − u)µ(T ′
2 − v),

(14) µ(T8) = xµ(T8 − w)− µ(T ′
1 − u)µ(T ′

2 − v),
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Figure 5. Two trees T (1) and T (2).

(15) µ(T ′
1) = xµ(T ′

1 − u)−
s

∑

i=1

µ(T ′
1 − u− ui)

and

(16) µ(T ′
2) = xµ(T ′

2 − v)−
s

∑

j=1

µ(T ′
2 − v − vj),

where the first sum ranges over all vertices ui (1 ≤ i ≤ s) of T ′
1 adjacent to u and

the second sum ranges over all vj (1 ≤ j ≤ t) of T ′
2 adjacent to v. By (15) and

(16), we have

(17)

xµ(T8 − w) = x2µ(T ′
1 − u)µ(T ′

2 − v)− x
t

∑

j=1

µ(T ′
1 − u)µ(T ′

2 − v − vj)

− x
s

∑

i=1

µ(T ′
2 − v)µ(T ′

1 − u− ui)

and

µ(T ′
1)µ(T

′
2) = x2µ(T ′

1 − u)µ(T ′
2 − v)− x

t
∑

j=1

µ(T ′
1 − u)µ(T ′

2 − v − vj)

(18) −x
s

∑

i=1

µ(T ′
2 − v)µ(T ′

1 − u− ui) +
∑

1≤i≤s

1≤j≤t

µ(T ′
1 − u− ui)µ(T

′
2 − v − vj).

Combining (13), (14), (17) and (18),

(19) µ(T7)− µ(T8) =
∑

1≤i≤s

1≤j≤t

µ(T ′
1 − u− ui)µ(T

′
2 − v − vj).

As in the proof of Theorem 3.1, we can show that

m(T7, r)−m(T8, r) =
∑

1≤i≤s

1≤j≤t

m(µ(T ′
1 − u− ui) ∪ µ(T ′

2 − v − vj), r − 2),
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which implies that

m(T7, r) ≥ m(T8, r).

Note that m(T7, r)−m(T8, r) ≥ 1 when r = 2. So, by (2), the theorem holds.

Remark 3.6. For the trees T (1) and T (2) (see Figure 5), we note that neither
tree T (1) nor tree T (2) can be transformed into T p

m+n by a single transformation

4. Hence if T8 in Theorem 3.5 is T p
m+n, then T7 ≻ T8 = T p

m+n. Particularly,

T p
n ≻ T p−1

n for n ≥ 5. Similarly, as in earlier proofs, one can show that this
statement holds.

Definition 3.5. Suppose that T9 is a tree with n vertices and with the edge-
independence number p (shown in Figure 6) which has exactly n − p pendent
vertices, where |V (T0)| ≥ 2 and r ≥ 2. Let T10 be the tree with n vertices shown
in Figure 6, which is obtained from T9. We designate the transformation from T9

to T10 as of type 5 and denote it by F5: T9 99K T10 or F5(T9) = T10.

Figure 6. Two trees T9 and T10.

Theorem 3.7. Let T9 and T10 be two trees with n vertices defined in Definition

3.5. Then T9 ≻ T10.

Proof. By Lemma 2.2,

µ(T9) = xµ(T0 − u)µ(K1,r)− µ(K1,r)
∑

v∈V (T0)
uv∈E(T0)

µ(T0 − u− v)− µ(T0 − u)µ(P1)
r

= x2µ(T0 − u)µ(P1)
r− rxµ(T0 − u)µ(P1)

r−1− xµ(P1)
r
∑

v∈V (T0)
uv∈E(T0)

µ(T0 − u− v)

(20) + rµ(P1)
r−1

∑

v∈V (T0)
uv∈E(T0)

µ(T0 − u− v)− µ(T0 − u)µ(P1)
r
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and

µ(T10) = xµ(T0 − u)µ(P2)µ(P1)
r−1 − µ(P2)µ(P1)

r−1
∑

v∈V (T0)
uv∈E(T0)

µ(T0 − u− v)

− µ(T0 − u)µ(P1)
r − (r − 1)µ(T0 − u)µ(P2)µ(P1)

r−2

= x2µ(T0 − u)µ(P1)
r − xµ(T0 − u)µ(P1)

r−1

(21) − xµ(P1)
r

∑

v∈V (T0)
uv∈E(T0)

µ(T0 − u− v) + µ(P1)
r−1

∑

v∈V (T0)
uv∈E(T0)

µ(T0 − u− v)

− µ(T0 − u)µ(P1)
r − (r − 1)xµ(T0 − u)µ(P1)

r−1

+ (r − 1)µ(T0 − u)µ(P1)
r−2,

where the sum ranges over all vertices of T0 incident with u.

By (20) and (21), we have

µ(T9)−µ(T10) = −(r−1)µ(T0−u)µ(P1)
r−2+(r−1)µ(P1)

r−1
∑

v∈V (T0)
uv∈E(T0)

µ(T0−u−v).

By Lemma 2.4, there exists at least one pendent vertex v′ in T0 joining vertex u
of T0. Hence, µ(T0 − u) = xµ(T0 − u− v′), which implies that

µ(T9)− µ(T10) = (r − 1)
∑

v∈V (T0),v 6=v′

uv∈E(T0)

µ(P1)
r−1µ(T0 − u− v).

Similarly to the proof of Theorem 3.1,
(22)

m
(

T9, k
)

−m
(

T10, k) = (r − 1
)

∑

v∈V (T0),v 6=v′

uv∈E(T0)

m
(

(r − 1)P1 ∪ (T0 − u− v), k − 2
)

,

for every vertex v ( 6= v′) of T0 incident with u. Hence m
(

T9, k
)

≥ m
(

T10, k
)

.
Furthermore, if k = 2, then m

(

T9, k
)

−m
(

T10, k
)

≥ 1. So T9 ≻ T10.

Definition 3.6. Suppose that T11 is a tree with n vertices and with the edge-
independence number p (shown in Figure 7), which has exactly n − p pendent
vertices, where |V (T0)| ≥ 2, s ≥ 1 and t ≥ 1. Let T12 be the tree with n vertices
shown in Figure 7, which is obtained from T11. We designate the transformation
from T11 to T12 as of type 6 and denote it by F6: T11  T12 or F6(T11) = T12.
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Theorem 3.8. Let T11 and T12 be two trees with n vertices defined in Definition

3.6. Then T11 ≻ T12.

Figure 7. Two trees T11 and T12.

Proof. Suppose that s > 2. By Lemma 2.2,

µ(T11) = [x2µ(P1)µ(P2)− sxµ(P2)− txµ(P1)
2 − µ(P1)µ(P2)]

× µ(P1)
s−1µ(P2)

t−1µ(T0 − u)− [xµ(P1)µ(P2)− sµ(P2)− tµ(P1)
2]

× µ(P1)
s−1µ(P2)

t−1
∑

v∈V (T0)
uv∈E(T0)

µ(T0 − u− v)

and

µ(T12) = [x2µ(P1)
2µ(P2)− xµ(P1)µ(P2)− sxµ(P1)µ(P2) + sµ(P2)− µ(P2)

+ xµ(P1)µ(P2)− (t+ 1)µ(P1)
2µ(P2)]µ(P1)

s−2µ(P2)
t−1µ(T0 − u)

− [xµ(P1)µ(P2)− µ(P2)]µ(P1)
s−1µ(P2)

t−1
∑

v∈V (T0)
uv∈E(T0)

µ(T0 − u− v),

where the sum ranges over every vertex v of T0 adjacent to u.

Combining the above two equations, we obtain

µ(T11)− µ(T12) = − [(s+ t−1)x2 − (s−1)]µ(P1)
s−2µ(P2)

t−1µ(T0 − u)

+ [(s+ t−1)x2 − (s−1)]µ(P1)
s−1µ(P2)

t−1
∑

v∈V (T0)
uv∈E(T0)

µ(T0 − u− v).

By Lemma 2.4, there exists at least one pendent vertex v′ of T0 adjacent
to u. Hence, µ(T0 − u) = µ(T0 − u − v′). Thus, simplifying the above equation,



Extremal Matching Energy of Complements of Trees 517

we have

µ(T11)− µ(T12)
(23)

= [(s+ t− 1)µ(P1)
s−1µ(P2)

t + tµ(P1)
s−1µ(P2)

t−1]
∑

v∈V (T0),v 6=v′

uv∈E(T0)

µ(T0 − u− v).

As in the proof of Theorem 3.1, we can show that if s ≥ 1, then

m
(

T11, r
)

−m
(

T12, r
)

= (s+ t−1)
∑

v∈V (T0),v 6=v′

uv∈E(T0)

m
(

(s− 1)P1 ∪ tP2 ∪ (T0 − u− v), r − 2
)

+ t
∑

v∈V (T0),v 6=v′

uv∈E(T0)

m
(

(s− 1)P1 ∪ (t− 1)P2 ∪ (T0 − u− v), r − 3
)

,

which implies that m
(

T11, r
)

≥ m
(

T12, r
)

. By the above equation, if r = 2,
then m

(

T11, r
)

− m
(

T12, r
)

≥ 1. By (2) and the properties as above, we have
T11 ≻ T12.

4. Proofs of Theorems 1.1, 1.2 and 1.4

Proof of Theorem 1.1. We prove that if T ≇ Pn then ME(T ) < ME(Pn).
By repeated applications of transformation 1 presented in Definition 3.1, we can
transform T into Pn, that is, there exist trees T (i) for 0 ≤ i ≤ l such that

(24) T = T (0) →֒ T (1) →֒ T (2) →֒ · · · →֒ T (l−1) →֒ T (l) = Pn,

where T (l−1) 6= Pn. By Theorem 3.1, we have

Pn = T (l) ≻ T (l−1) ≻ · · · ≻ T (2) ≻ T (1) ≻ T .

By (4), we obtain immediately the result as follows:

ME
(

Pn

)

= ME
(

T (l)
)

> ME
(

T (l−1)
)

> · · · > ME
(

T (2)
)

> ME
(

T (1)
)

> ME
(

T
)

.

By the transformation 1 presented in Definition 3.1, Theorem 3.1 and (4), it
is clear that

ME
(

Pn

)

> ME
(

Tn,2

)

.
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Now we show that ME
(

Tn,2

)

> ME
(

T
)

. Suppose T 6= Tn,2. From (24), we

know that if T (l−1) = Tn,2, then Tn,2 ≻ T , which impliesME
(

T (n,2)
)

> ME
(

T
)

.

If T (1−1) 6= Tn,2, then T (1−1) must have the from of T3 in Figure 2. By repeated
applications of the transformations 2 and 3 presented in Definitions 3.2 and 3.3,
T3 can be transformed into Tn,2. By Theorems 3.3 and 3.4, we have Tn,2 ≻ T3 ≻ T .
By (4), ME

(

Tn,2

)

> ME
(

T
)

. This completes the proof of Theorem 1.1.

The following two lemmas were proved by Yan et al. [22].

Lemma 4.1 [22]. For an arbitrary tree T with n vertices and edge-independence

number ν(T ) = p, if the number of pendent vertices of T is less than n− p, then
by repeated applications of the transformation 4 presented in Definition 3.4, T
can be transformed into a tree T ′ with n vertices and with ν(T ′) = p, the number

of pendent vertices of which is exactly n− p.

Lemma 4.2 [22]. For an arbitrary tree T with n vertices and with ν(T ) > p,
repeated applications of the transformation 4 presented in Definition 3.4 trans-

form T into a tree T ′′ with n vertices and with ν(T ′′) = p, the number of pendent

vertices of which is exactly n− p.

Proof of Theorem 1.2. Assume T ≇ T p
n . Now we prove ME

(

T
)

> ME
(

T p
n

)

and distinguish the following three cases.

Case 1. We assume that the edge-independence number of T is p and it has
exactly n − p pendent vertices. By Lemma 2.4, the structure of T is clear. It is
not difficult that, with repeated applications of the transformations 5 and 6 from
Definitions 3.5 and 3.6, T can be transformed into T p

n . Furthermore, by Theorems

3.7 and 3.8, we have T ≻ T p
n . This indicates, by (4), that ME

(

T
)

> ME
(

T p
n

)

.

Case 2. Assume ν(T ) = p and the number of pendent vertices of T is less
than n − p. By Lemma 4.1, T can be transformed into one tree T ′ with n
vertices, ν(T ′) = p and the number of pendent vertices of which is exactly n− p.
If T ′ 6= T p

n , then, by Theorem 3.5, we have T ≻ T ′. By Case 1, we note that
T ≻ T p

n . If T ′ = T p
n , then, by Remark 2, we have T ≻ T ′. Similarly, by Case

1, we have T ≻ T ′ ≻ T p
n , which implies T ≻ T p

n . These mean, by (4), that

ME
(

T
)

> ME
(

T p
n

)

.

Case 3. Suppose ν(T ) > p. By Lemma 4.2, we know that T can be trans-
formed into one tree T ′′ with n vertices, ν(T ′′) = p and the number of pen-
dent vertices of which is exactly n − p. Similarly to Case 2, we can show that

ME
(

T
)

> ME
(

T p
n

)

.

Combining Cases 1–3, the theorem holds.
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Proof of Theorem 1.4. By Theorems 1.1 and 1.2, it can be seen thatME

(

T
n
2
n

)

< ME
(

T
)

< ME
(

Pn

)

and ME
(

T 1
n,2

)

< ME
(

Pn

)

. The following we prove

that ME
(

T
)

≤ ME
(

T 1
n,2

)

when T ∈ Tn,n
2
and T ≇ Pn.

Assume T ≇ Pn. Similarly to the proof of Theorem 1.1, there exist trees T (i)

for 0 ≤ i ≤ l such that

Pn = T (l) ≻ T (l−1) ≻ T (l−2) ≻ T (l−3) ≻ · · · ≻ T (2) ≻ T (1) ≻ T .

Obviously, T (l−2) = T 1
n,2 or T (l−2) has the from of T3 in Figure 2. By (4),

we know that if T (l−2) = T 1
n,2, then ME

(

T
)

< ME
(

T 1
n,2

)

. If T (l−2) 6= T 1
n,2,

then by repeated applications of the transformations 2 and 3 from Definitions
3.2 and 3.3, T3 can be transformed into T 1

n,2. By Theorems 3.3 and 3.4, we have

T 1
n,2 ≻ T . By (4), ME

(

T 1
n,2

)

> ME
(

T
)

.

Remark 4.3. Denote by Tn,p the proper subset of Tn,p containing all trees with
edge-independence number p. Examining Theorem 1.4, we see that if p = n

2

in Tn,p, then Pn and T 1
n,2 have the maximal and second-maximal matching en-

ergy, respectively. A natural question is how to characterize the trees with edge-
independence number p whose complements have the maximum matching energy
in complements of all trees with edge-independence number p.
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