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Abstract

The Wiener index W (G) of a connected graph G, introduced by Wiener
in 1947, is defined as W (G) =

∑

u,v∈V (G) d(u, v) where dG(u, v) is the dis-
tance between vertices u and v of G. The Steiner distance in a graph, intro-
duced by Chartrand et al. in 1989, is a natural generalization of the concept
of classical graph distance. For a connected graph G of order at least 2 and
S ⊆ V (G), the Steiner distance d(S) of the vertices of S is the minimum
size of a connected subgraph whose vertex set is S. We now introduce the
concept of the Steiner Wiener index of a graph. The Steiner k-Wiener index

SWk(G) of G is defined by SWk(G) =
∑

S⊆V (G)
|S|=k

d(S). Expressions for SWk

for some special graphs are obtained. We also give sharp upper and lower
bounds of SWk of a connected graph, and establish some of its properties in
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the case of trees. An application in chemistry of the Steiner Wiener index
is reported in our another paper.

Keywords: distance, Steiner distance, Wiener index, Steiner Wiener k-
index.
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1. Introduction

All graphs in this paper are undirected, finite, and simple. We refer to [3]
for graph theoretical notation and terminology not described here. Distance
is one of the basic concepts of graph theory [4]. If G is a connected graph and
u, v ∈ V (G), then the distance d(u, v) = dG(u, v) between u and v is the length
of a shortest path connecting u and v. If v is a vertex of a connected graph G,
then the eccentricity ε(v) of v is defined by ε(v) = max{d(u, v) |u ∈ V (G)}.
Furthermore, the radius rad(G) and diameter diam(G) of G are defined by
rad(G) = min{ε(v) | v ∈ V (G)} and diam(G) = max{ε(v) | v ∈ V (G)}. These
latter two concepts are related by the inequalities rad(G) ≤ diam(G) ≤ 2rad(G).
Goddard and Oellermann gave a survey paper on this subject [13].

The Wiener index W (G) of G is defined by

W (G) =
∑

u,v∈V (G)

dG(u, v) .

The first investigations of this distance-based graph invariant were done by
Harold Wiener in 1947, who realized that there exist correlations between the
boiling points of paraffins and their molecular structure, see [21, 22, 23]. Mathe-
maticians study the Wiener index since the 1970s [11].

The Wiener index obtained wide attention and numerous results have been
worked out, see the surveys [10, 15, 16, 24], the recent papers [2, 7, 17, 18, 19]
and the references cited therein.

The Steiner distance of a graph, introduced by Chartrand et al. [6] in 1989,
is a natural and nice generalization of the concept of the classical graph distance.
For a graph G(V,E) and a set S ⊆ V (G) of at least two vertices, an S-Steiner

tree or a Steiner tree connecting S (or simply, an S-tree) is a such subgraph
T (V ′, E′) of G that is a tree with S ⊆ V ′. Let G be a connected graph of order
at least 2 and let S be a nonempty set of vertices of G. Then the Steiner distance
d(S) among the vertices of S (or simply the distance of S) is the minimum
size of a connected subgraphs whose vertex set contains S. Note that if H is
a connected subgraph of G such that S ⊆ V (H) and |E(H)| = d(S), then H

is a tree. Clearly, d(S) = min{|E(T )| : S ⊆ V (T )}, where T is subtree of G.
Furthermore, if S = {u, v}, then d(S) = d(u, v) is nothing new, but the classical
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distance between u and v. Clearly, if |S| = k, then d(S) ≥ k − 1. If G is the
graph depicted in Figure 1(a) and S = {x, u, v}, then d(S) = 4. There could be
several trees of size 4 containing S. One such tree is shown in Figure 1(b).
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Figure 1. Graphs used to illustrate the basic definitions.

Let n and k be integers such that 2 ≤ k ≤ n. The Steiner k-eccentricity

εk(v) of a vertex v of G is defined by εk(v) = max{d(S) |S ⊆ V (G), |S| = k, and
v ∈ S}. The Steiner k-radius of G is sradk(G) = min{εk(v) | v ∈ V (G)}, while
the Steiner k-diameter of G is sdiamk(G) = max{εk(v) | v ∈ V (G)}. Note that
for every connected graph G, ε2(v) = ε(v) for all vertices v of G, srad2(G) =
rad(G) and sdiam2(G) = diam(G). Each vertex of the graph G of Figure 1(c) is
labeled with its Steiner 3-eccentricity, so that srad3(G) = 4 and sdiam3(G) = 6.
For more details on Steiner distance, we refer to [1, 5, 6, 8, 13, 20].

The following observation is easily seen.

Observation 1.1. Let k be an integer such that 2 ≤ k ≤ n. If H is a spanning

subgraph of G, then sdiamk(G) ≤ sdiamk(H).

We now generalize the concept of Wiener index by Steiner distance. The
Steiner k-Wiener index SWk(G) of G is defined by

SWk(G) =
∑

S⊆V (G)
|S|=k

d(S) .

For k = 2, the above defined Steiner Wiener index coincides with the ordinary
Wiener index. It is usual to consider SWk for 2 ≤ k ≤ n − 1, but the above
definition implies SW1(G) = 0 and SWn(G) = n− 1.

In Section 2, we obtain the exact values of the Steiner Wiener k-index of
the path, star, complete graph, and complete bipartite graph. In Section 3, we
obtain sharp lower and upper bounds for SWk for connected graphs and for
trees. In Section 4 we establish some relations for SWk of trees. An application
in chemistry of the Steiner Wiener index is reported in our another paper [14].
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2. Results for Some Special Graphs

Beginning this section, we note that the special case for k = 2 of all formulas
derived here for the Steiner Wiener index, thus pertaining to the ordinary Wiener
index, are well known and mentioned many times in the earlier literature.

Recently, we found the following concept about the Wiener distance. The
average Steiner distance µk(G) of a graph G is defined as the average of the
Steiner distances of all k-subsets of V (G), i.e.,

µk(G) =

(

n

k

)−1
∑

S⊆V (G),|S|=k

dG(S),

which was introduced by Dankelmann, Oellermann and Swart in [8]. This concept
is similar to our Steiner Wiener index. However, their motivation is to analyse
transportation or communication networks, but ours is from chemical applications
of the famous Wiener index. Therefore, fortunately most of their results are
different from ours. For more details on the average Steiner distance, we refer to
[8, 9].

For a connected graph G, one can easily see that

(1) SWk(G) = µk(G)

(

n

k

)

.

Corollary 2.1 of [8] implies that µk(Kn) = (k− 1)µ2(Kn). Then from (1) one
can immediately get the following result.

Proposition 2.1. Let Kn be the complete graph of order n, and let k be an

integer such that 2 ≤ k ≤ n. Then SWk(Kn) =
(

n
k

)

(k − 1).

For complete bipartite graphs, we have the following result.

Proposition 2.2. Let Ka,b be the complete bipartite graph of order a + b (1 ≤
a ≤ b), and let k be an integer such that 2 ≤ k ≤ a+ b. Then

SWk(Ka,b) =



















(k − 1)
(

a+b
k

)

+
(

a
k

)

+
(

b
k

)

, if 1 ≤ k ≤ a;

(k − 1)
(

a+b
k

)

+
(

b
k

)

, if a < k ≤ b;

(k − 1)
(

a+b
k

)

, if b < k ≤ a+ b.

Proof. Let G = Ka,b, and let U = {u1, u2, . . . , ua} and W = {w1, w2, . . . , wb} be
the two parts of G = Ka,b.

First, we consider the case 1 ≤ k ≤ a. For any S ⊆ V (G) and |S| = k, we have
S∩U = ∅, or S∩W = ∅, or S∩U 6= ∅ and S∩W 6= ∅. If S∩U = ∅, then S ⊆ W .
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Without loss of generality, let S = {w1, w2, . . . , wk}. Then the tree T induced by
the edges in {u1w1, u1w2, . . . , u1wk} is a Steiner tree connecting S. This implies
d(S) ≤ k. Since G = Ka,b is a complete bipartite graph, it follows that any tree
connecting S must use at least k edges, and hence d(S) ≥ k. Therefore, d(S) = k.
Similarly, if S ∩ W = ∅, then d(S) = k. Suppose S ∩ U 6= ∅ and S ∩ W 6= ∅.
Without loss of generality, let S = {u1, u2, . . . , ux, w1, w2, . . . , wk−x}. Then the
tree T induced by the edges in {u1w1, w1u2, w1u3, . . . , w1ux, u1w2, u1w3, . . . ,

u1wk−x} is a Steiner tree connecting S, which implies d(S) ≤ k − 1. Since
|S| = k, it follows that any tree connecting S must use at least k − 1 edges, and
hence d(S) = k − 1. Thus,

SWk(G) =
∑

S⊆V (G)
S∩U=∅

d(S) +
∑

S⊆V (G)
S∩U=∅

d(S) +
∑

S⊆V (G)
S∩U 6=∅,S∩U 6=∅

d(S)

= k

(

a

k

)

+ k

(

b

k

)

+ (k − 1)

[

a
∑

x=1

(

a

x

)(

b

k − x

)

]

= k

(

a

k

)

+ k

(

b

k

)

+ (k − 1)

[(

a+ b

k

)

−

(

b

k

)

−

(

a

k

)]

= (k − 1)

(

a+ b

k

)

+

(

a

k

)

+

(

b

k

)

.

Next, we consider the case a < k ≤ b. For any S ⊆ V (G) and |S| = k,
we have S ∩ U = ∅ or S ∩ U 6= ∅. If S ∩ U = ∅, then S ⊆ W . Without
loss of generality, let S = {w1, w2, . . . , wk}. Then the tree T induced by the
edges in {u1w1, u1w2, . . . , u1wk} is a Steiner tree connecting S, which implies
d(S) ≤ k. Since G = Ka,b is a complete bipartite graph, it follows that any
tree connecting S must use at least k edges, and hence d(S) ≥ k. There-
fore, d(S) = k. Suppose S ∩ U 6= ∅. Without loss of generality, let S =
{u1, u2, . . . , ux, w1, w2, . . . , wk−x} (1 ≤ x ≤ a). Then the tree T induced by the
edges in {u1w1, w1u2, w1u3, . . . , w1ux, u1w2, u1w3, . . . , u1wk−x} is a Steiner tree
connecting S, which implies d(S) ≤ k − 1. Since |S| = k, it follows that any tree
connecting S must use at least k − 1 edges, and hence d(S) = k − 1. Thus,

SWk(G) =
∑

S⊆V (G)
S∩U=∅

d(S) +
∑

S⊆V (G)
S∩U 6=∅

d(S) = k

(

b

k

)

+ (k − 1)

[

a
∑

x=1

(

a

x

)(

b

k − x
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]

= k

(

b

k
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+ (k − 1)

[

∞
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(
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x

)(
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k − x

)

]

= k

(

b

k

)

+ (k − 1)

[(

a+ b

k

)

−

(
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k

)]

= (k − 1)

(

a+ b

k

)

+

(

b

k

)

.
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At the end, we consider the remaining case b < k ≤ a+ b. For any S ⊆ V (G)
and |S| = k, we have S ∩ U 6= ∅ and S ∩ U 6= ∅. Without loss of general-
ity, let S = {u1, u2, . . . , ux, w1, w2, . . . , wk−x}. Then the tree T induced by the
edges in {u1w1, w1u2, w1u3, . . . , w1ux, u1w2, u1w3, . . . , u1wk−x} is a Steiner tree
connecting S, which implies d(S) ≤ k − 1. Since |S| = k, it follows that any tree
connecting S must use at least k − 1 edges, and hence d(S) = k − 1. Thus,

SWk(G) =
∑

S⊆V (G)
S∩U=∅

d(S) = (k − 1)

(

a+ b

k

)

.

The proof is now complete.

From the above proposition, we can derive the following corollary.

Corollary 2.3. Let Sn be the star of order n (n ≥ 3), and let k be an integer

such that 2 ≤ k ≤ n. Then

SWk(Sn) =

(

n− 1

k − 1

)

(n− 1) .

Proof. From Proposition 2.2, we have that SWk(Sn) = SWk(K1,n−1) =
(

n
n

)

(n−

1) = n − 1 for k = n and SWk(Sn) = SWk(K1,n−1) = (k − 1)
(

n
k

)

+
(

n−1
k

)

for
2 ≤ k ≤ n− 1. We conclude that

SWk(Sn) = (k − 1)

(

n

k

)

+

(

n− 1

k

)

=

(

n− 1

k − 1

)

(n− 1).

Lemma 2.1 of [8] says that µk(Pn) = k−1
k+1(n + 1). Then from (1) one can

easily get the following result.

Proposition 2.4. Let Pn be the path of order n (n ≥ 3), and let k be an integer

such that 2 ≤ k ≤ n. Then

SWk(Pn) = (k − 1)

(

n+ 1

k + 1

)

.

3. Lower and Upper Bounds for General Graphs

The following observation is immediate.

Observation 3.1. Let G be a connected graph of order n, e ∈ E(G), and let k

be an integer such that 2 ≤ k ≤ n. Furthermore, let H be the graph with vertex

set V (H) = V (G) and edge set E(G) \ e. Then

SWk(G) ≤ SWk(H).
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This straightforwardly leads to the following result.

Proposition 3.2. Let G be a connected graph of order n, and T a spanning tree

of G. Let k be an integer such that 2 ≤ k ≤ n. Then

SWk(G) ≤ SWk(T )

with equality if and only if G is a tree.

For a tree T , Proposition 3.1 of [8] says that k(1− 1
n
) ≤ µk(T ) ≤

k−1
k+1(n+1).

Then from (1) one can derive lower and upper bounds for the Steiner Wiener
index of a tree.

Theorem 3.3. Let T be a tree of order n, and let k be an integer such that

2 ≤ k ≤ n. Then

(

n− 1

k − 1

)

(n− 1) ≤ SWk(T ) ≤ (k − 1)

(

n+ 1

k + 1

)

.

Moreover, among all trees of order n, the star Sn minimizes the Steiner Wiener

k-index whereas the path Pn maximizes the Steiner Wiener k-index.

We recall that Theorem 3.3 provides a generalization of the much older results
known for the Wiener index [11], i.e., it yields this previous result by setting k = 2.

For a connected graph G, Theorem 2.1 of [8] says that k − 1 ≤ SWk(G) ≤
k−1
k+1(n+ 1). Then from (1) one can get the following upper and lower bounds of
SWk(G) for a general connected graph G.

Theorem 3.4. Let G be a connected graph of order n, and let k be an integer

such that 2 ≤ k ≤ n. Then

(

n

k

)

(k − 1) ≤ SWk(G) ≤ (k − 1)

(

n+ 1

k + 1

)

.

Moreover, the lower bound is sharp.

4. The Steiner Wiener Index for Trees

Theorem 4.1. Let T be a tree of order n, possessing p pendent vertices. Then

(2) SWn−1(T ) = n(n− 1)− p,

irrespective of any other structural detail of T .
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Proof. Since k = n− 1, the respective subsets S contain all except one vertices
of T . If the vertex missing from S is pendent, then the vertices contained in S

form a tree of order n − 1. Therefore d(S) = n − 2. There are p such subsets,
contributing to SWn−1 by p× (n− 2).

If the vertex of T , not present in S, is non-pendent, then the vertices con-
tained in S cannot form a tree, and the respective Steiner tree must contain all
the n vertices of T . Therefore, d(S) = n − 1. There are n − p such subsets,
contributing to SWn−1 by (n− p)× (n− 1).

Thus, SWn−1(T ) = p(n− 2) + (n− p)(n− 1), which straightforwardly leads
to (2).

Let G be any graph (not necessarily connected) with vertex set V (G). Let e
be an edge of G, connecting the vertices x and y. Define the sets

N1(e) = {u |u ∈ V (G), d(u, x) < d(u, y)},

N2(e) = {u |u ∈ V (G), d(u, x) > d(u, y)}

and let their cardinalities be n1(e) = |N1(e)| and n2(e) = |N2(e)|, respectively.
In other words, n1(e) counts the vertices of G, lying closer to one end of the edge
e than to its other end, and the meaning of n2(e) is analogous.

In his seminal paper [23], Wiener discovered the following result:

Proposition 4.2. If T is a tree, then for its Wiener index holds

W (T ) =
∑

e∈E(T )

n1(e)n2(e).

We now state the generalization of Proposition 4.2 to Steiner Wiener indices.

Theorem 4.3. Let k be an integer such that 2 ≤ k ≤ n. If T is a tree, then for

its Steiner k-Wiener index holds

(3) SWk(T ) =
∑

e∈E(T )

k−1
∑

i=1

(

n1(e)

i

)(

n2(e)

k − i

)

.

Proof. The Steiner k-Wiener index is equal to the sum of distances of all k-
element subsets S of the vertex set of T . Each such subset determines a unique
subtree of T and its contribution to SWk is just the number edges of this subtree.
Now, instead of counting these edges and adding them over all subsets S, we can
count how many times a given edge, say e, is contained in the subtrees formed
by all subsets S, and add this over all edges.

Let e be an edge of the tree T . On its two sides there are n1(e) and n2(e)
vertices, respectively. Choose i vertices on one side and k − i vertices on the
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other side. Such a choice determines a k-element subset S, whose associated
subtree contains the edge e. Evidently, the above described choice can be done
in

(

n1(e)
i

) (

n2(e)
k−i

)

different ways. If we sum these terms over all possible values of
i, we obtain the total number of times the edge e is in a k-vertex Steiner tree
of T . Equation (3) thus follows.

Corollary 4.4. Proposition 4.2 is obtained from (3) by setting k = 2.

Corollary 4.5. If k = 3, then the Steiner k-Wiener index of a tree of order n is

directly related to the ordinary Wiener index as

(4) SW3(T ) =
n− 2

2
W (T ).

Proof. The special case of (3) for k = 3 reads:

SW3(T ) =
∑

e∈E(T )

[(

n1(e)

1

)(

n2(e)

2

)

+

(

n1(e)

2

)(

n2(e)

1

)]

=
1

2

∑

e∈E(T )

n1(e)n2(e)
[

n1(e) + n2(e)
]

−
∑

e∈E(T )

n1(e)n2(e) .

Equation (4) follows now from Proposition 4.2 and the fact that for any edge
of an n-vertex tree, n1(e) + n2(e) = n.

Remark. The Wiener index or the Steiner 2-Wiener index for any graph can be
computed in polynomial time since one needs only to compute the distances of
(

n
2

)

pairs of vertices in a graph of order n. However, since the problem of “Steiner
Tree in Graphs” is NP-complete (see [12]), it is NP-hard to compute the Steiner
k-Wiener index SWk(G) for a general graph G and a general positive integer k.
Recall that the problem of “Steiner Tree in Graphs” is stated as follows: Given
a graph G = (V,E), a weight w(e) (a positive integer) for each e ∈ E, a subset
R ⊆ V and a positive integer B, is there a subtree of G that includes all the
vertices of R and such that the sum of the weights of the edges in the subtree
is no more than B? This problem remains NP-complete if all edge weights are
equal.
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Časopis Pest. Mat. 114 (1989) 399–410.

[7] C.M. da Fonseca, M. Ghebleh, A. Kanso and D. Stevanović, Counterexamples to
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