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Abstract

A graph is a path graph if there is a tree, called UV -model, whose vertices
are the maximal cliques of the graph and for each vertex x of the graph
the set of maximal cliques that contains it induces a path in the tree. A
graph is an interval graph if there is a UV -model that is a path, called an
interval model. Gimbel [3] characterized those vertices in interval graphs
for which there is some interval model where the interval corresponding to
those vertices is an end interval. In this work, we give a characterization of
those simplicial vertices x in path graphs for which there is some UV -model
where the maximal clique containing x is a leaf in this UV -model.
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1. Introduction

A graph is chordal if it contains no cycle of length at least four as an induced
subgraph. Various characterizations of chordal graphs have appeared in the liter-
ature [2, 6, 7]. Here we use the classical result of Gavril that states that a graph
G is chordal if and only if there is a tree T , called clique tree, whose vertices are
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the maximal cliques of the graph and for every vertex x of G the maximal cliques
that contain x, called Cx, induce in the tree a subtree which we will denote by
Tx. Clique trees are also called models of the graph. A model of a chordal graph
often reduces the size of the data structure needed to store the graph, permit-
ting the use of efficient algorithms that take advantage the compactness of the
representation [1]. Since some chordal graphs have many distinct models, it is
interesting to consider which one is most desirable under various circumstances.

Natural subclasses of chordal graphs are path graphs and interval graphs. In
[5], Monma and Wei introduced the notation UV to refer to the class of path
graphs. They also proved that a graph G is a path graph, or a UV graph, if
it admits a UV-model, i.e., a clique tree T such that Tx is a subpath of T for
every x ∈ V (G). It is clear that a graph is an interval graph if it admits a clique
tree which is a path. By definition we have the following inclusions between
the different considered classes (and these inclusions are strict): interval ⊂ path
graphs ⊂ chordal, see Figure 1.

chordal graph
non path graph

path graph
non interval graph

Figure 1.

Given an interval graphG, a vertex is an end vertex if the maximal clique that
contains it is a leaf in some interval model, see Figure 2. Gimbel [3] characterized
those vertices that are end vertices in interval graphs.

a

b
c

d

Figure 2. a, b, d are end vertices, c is not an end vertex.

Theorem 1 (Gimbel). A vertex a in an interval graph G is an end vertex if and

only if G contains, as induced subgraphs, none of the graphs presented in Figure

3, where a is the designated vertex.

Simplicial vertices play an important role in chordal graphs; some of them
occupy special positions in the models. Blair and Peyton [1] gave a characteriza-
tion of maximal cliques that are leaves of some model; the simplicial vertices that
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are in these maximal cliques are called end vertices of chordal graphs. We will
study the end vertices of UV graphs, i.e., simplicial vertices that are in maximal
cliques which are leaves in some UV -model. It is clear that if a is an end vertex
of G, then there do not exist two non-simplicial vertices u 6= v that are neighbors
of a in G such that Cu ∩ Cv = {Qa}, where Qa is the unique maximal clique of
G that contains a. On the other hand, we observe that among the family given
by Gimbel, the graphs in Figure 4 have a UV -model where a is an end vertex.

In this paper, we obtain a characterization of end vertices of UV graphs
similar to Gimbel’s characterization, stated in the following result.

Theorem 2. Let G be a UV graph. A simplicial vertex a is an end vertex of G if

and only if there do not exist two non-simplicial vertices u 6= v that are neighbors

of a in G such that Cu ∩ Cv = {Qa} and G contains as induced subgraphs none

of the graphs presented in Figure 5, where a is the designated vertex.

Observe that in Figure 5, the graphs G1, G2, G3 and the family G4 are
obtained from Gimbel’s graph by adding an universal vertex.

The paper is organized as follows: in Section 2, we give some definitions and
background. In Section 3, we prove some lemmas that allow us to restrict the
study to UV graphs with certain conditions. Finally, in Section 4, we give a proof
of Theorem 2.

a

a

a

a

Figure 3. Gimbel’s graphs.

a

a

Figure 4. Gimbel’s graphs with UV -models where a is an end vertex.

2. Definitions and Background

A clique in a graph G is a set of pairwise adjacent vertices. Let C (G) be the set

of all maximal cliques of G. We denote by Cx the set of the maximal cliques that
contain x.
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Figure 5. Graphs and its unique UV -models.

The neighborhood of a vertex x is the set N(x) of vertices adjacent to x, and
the closed neighborhood of x is the set N [x] = {x}∪N(x). A vertex a is simplicial

if its (closed) neighborhood is a maximal clique, which we will denote Qa instead
of N [a]. Two adjacent vertices x and y are twins if N [x] = N [y].

A clique tree T of a graph G is a tree whose vertices are the elements of C (G)
and such that for each vertex x of G, Cx induces a subtree of T , which we will
denote by Tx. When Tx is not a subpath of T , we will say that T has a claw.

Let F be a finite family of non-empty sets. A graph G is the intersection

graph for F if there is a one-to-one correspondence between the vertices of G
and the sets in F such that two vertices in G are adjacent if and only if the
corresponding sets have non-empty intersection.

Note that if T is a clique tree of G, G is the intersection graph of the subtrees
(Tx)x∈V (G). Gavril [2] proved that a graph is chordal if and only if it has a clique
tree. Clique trees are called models of the graph.

A graph is a path graph or a UV graph (see [5]) if it admits a UV-model, i.e.,
a clique tree T such that Tx is a subpath of T for every x ∈ V (G).

Let T be a clique tree. We often use capital letters to denote the vertices
of a clique tree as these vertices correspond to maximal cliques of G. In order
to simplify the notation, we often write Q ∈ T instead of Q ∈ V (T ), and e ∈ T
instead of e ∈ E(T ). If T ′ is a subtree of T , then GT ′ denotes the subgraph of G
that is induced by the vertices of

⋃
Q∈V (T ′)Q.

In a clique tree T , the label of an edge QQ′ of T is defined as lab(QQ′) =
Q∩Q′. For each edge e of a clique tree, in every clique tree, there is ẽ such that
lab(e) = lab(ẽ); we will say that e and ẽ are equivalent, see Figure 7. We will say
that e, e′ in the same clique tree T are twin edges if lab(e) = lab(e′), see Figure 6.
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Figure 6. Twin edges.
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Figure 7. Equivalent edges.

Let T be a UV -model of G, let Q be a vertex of T , and let e be an edge of T .
Let T1 and T2 be the two connected components of T − e where Q is in T1. We
say that vertices in lab(e) have the same end with respect to Q if there exists a
vertex Q′ in T1, possibly Q′ = Q, such that for each x ∈ lab(e), one endpoint of
Tx is Q′ (recall that Tx is a subpath of T ).

If G is a graph and V ′ ⊆ V (G), then G \ V ′ denotes the subgraph of G
induced by V (G) \ V ′. If E′ ⊆ E(G), then G − E′ denotes the subgraph of G
induced by E(G) \ E′. If G,G′ are two graphs, then G + G′ denotes the graph
whose vertices are V (G) ∪ V (G′) and the edges are E(G) ∪ E(G′). Note that if
T, T ′ are two trees such that |V (T ) ∩ V (T ′)| = 0, then T + T ′ is a forest.

Let T be a tree. For X,Y ∈ V (T ), T [X,Y ] is the subpath of T between X
and Y . Note that the path may be reduced to a single vertex when X and Y are
equal. For e, e′ ∈ E(T ) and X ∈ V (T ), we denote Q ∈ T [e, e′] if e,Q, e′ appear
in this order in T .

A simplicial vertex a in a UV graph G is an end vertex if there is a UV -model
T of G where Qa is a leaf of T .

3. About Reduced Conditions

The following lemmas allow us to reduce the study to UV graphs with certain
conditions.

Lemma 3. Let G be a UV graph, let T be a UV-model of G, and let a be a

simplicial vertex of G that is not an end vertex of G, u ∈ N(a) is a cut vertex

of G. Suppose that ei ∈ T for i = 1, . . . , n are edges whose label is {u}, and T1 is

the connected component of T −{e1, . . . , en} with Qa ∈ T1. Then a is not an end

vertex of GT1
or for all v ∈ N(a)− {u}, Cv ∩ Cu = {Qa}.
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Proof. Suppose that a is an end vertex of GT1
, and there is v ∈ N(a)−{u} such

that Cv ∩ Cu 6= {Qa}. As a is an end vertex of GT1
, then there is a UV -model

T ′

1 of GT1
such that Qa is a leaf. Let T2, . . . , Tk be the connected components

of T − {e1, . . . , en} different from T1. Let Q1 ∈ T ′

1 be such that u ∈ Q1 and
the distance in T ′

1 between Qa and Q1 is largest possible. Observe that Q1 may
be Qa. As there is v ∈ N(a) − {u} such that Cv ∩ Cu 6= {Qa}, then Q1 6= Qa

(recall that Qa is a leaf of T ′

1). Let Qi, Q
′

i ∈ Ti for i = 2, . . . , k be such that

(Ti)u = Ti[Qi, Q
′

i]. It is clear that T
′ = T ′

1+Q1Q2+T2+
∑k−1

i=2 (Q
′

iQi+1+Ti+1) is
a model of G which has Qa as a leaf, see Figure 8. As Q1∩Q2 = Q′

i∩Qi+1 = {u}
and Q1, Q

′

i, Qi+1 are leaves of (T ′

1)u, (Ti)u and (Ti+1)u respectively, then T ′ does
not have claws. Therefore, T ′ is a UV -model of G which has Qa as a leaf since
Q1 6= Qa, contradicting the fact that a is not an end vertex.

Q

Q Q

Q

a
1

2 2

3

T

Figure 8. T ′ UV -model for Lemma 3.

Lemma 4. Let G be a UV graph, let T be a UV-model of G, let a be a simplicial

vertex of G that is not an end vertex, let e ∈ T be an edge that is not incident to

Qa such that for all x ∈ lab(e), Tx in direction to Qa in T have the same end,

and let T1 be the connected component of T − e with Qa ∈ T1. Then a is not an

end vertex of GT1
.

Proof. Let e = QQ′ with Q′ ∈ T [Qa, Q]. Observe that Q′ 6= Qa because e is
not incident to Qa. Suppose that a is an end vertex of GT1

. Then there is a
UV -model T ′

1 of GT1
such that Qa is a leaf. By our choice of e, the elements of

lab(e) are twins in GT1
= GT ′

1
, and e is not incident to Qa. It follows that, for

x ∈ lab(e), (T ′

1)x = T ′

1[Q1, Q
′′] for some Q1, Q

′′ ∈ C(G) with Q′′ 6= Qa (observe
that Q1 may be Qa). Let T2 be the connected component of T − e different from
T1. It is clear that T ′ = T ′

1 +Q′′Q+ T2 is a model of G which has Qa as a leaf,
see Figure 9. As Q′′ 6= Qa is a leaf of (T ′

1)x where x ∈ lab(e), Q is a leaf of (T2)x
and lab(e) = lab(Q′′Q), we conclude that T ′ does not have claws. Therefore T ′

is a UV -model of G which has Qa as a leaf, a contradiction.

Lemma 5. Let G be a UV graph, let T be a UV-model of G, let a be a simplicial

vertex of G that is not an end vertex, let e, e′ ∈ T be twin edges where e = QQ′,
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Figure 9. T and T ′ UV -model for Lemma 4.

e′ = Q1Q
′

1 with Q′, Q1 ∈ T [Q,Q′

1], and let T1, T2, T3 be the connected components

of T −{e, e′} with Q′, Q1 ∈ T2, Q
a /∈ T2, and T ′

1 = T1 +QQ′

1 +T3. Then a is not

an end vertex of GT ′

1
.

Proof. Suppose that a is an end vertex of GT ′

1
. Then there is a UV -model T ′′

1 of

GT ′

1
such that Qa is a leaf. Let QQ′

1 be an edge of T ′′

1 equivalent to QQ′

1 with ends

Q, Q′

1. It is clear that T
′ = T ′′

1 −QQ′

1 +QQ′ +Q1Q′

1 + T2 is a model of G which
has Qa as a leaf, see Figure 10. Let L1 and L2 be the connected components of
T ′′

1 −QQ′

1 with Qa, Q ∈ L1 and Q′

1 ∈ L2. For all x ∈ lab(e) = lab(e′) = lab(QQ′

1),
(T2)x = T2[Q

′, Q1] and Q, Q′

1 are leaves of (L1)x, (L2)x respectively, so T ′ does
not have claws. Therefore T ′ is a UV -model of G which has Qa as a leaf.

4. Proof of the Main Theorem

Proof. (=⇒) Suppose that G has as induced subgraph Gi, one of the graphs
presentaed in Figure 5 for i ∈ {1, 2, 3, 4, 5}, and there is a UV -model T of G
which has Qa as a leaf of T . It is possible to build Ti, a UV -model of Gi, from
T considering T and (Tx)x∈V (Gi) which has Qa as a leaf. This is a contradiction
because Gi does not have such a UV -model (this can be readily verified, see
Figure 5). Hence, in every T , UV -model of G, Qa is not a leaf of T .

(⇐=) Suppose that G is the smallest graph such that a is not an end vertex of
G, and there do not exist two non-simplicial vertices u 6= v that are neighbors of
a in G such that Cu ∩Cv = {Qa}. We will prove that G contains some Gi where
i ∈ {1, 2, 3, 4, 5} as induced subgraph. By our assumption, G is a connected
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Figure 10. T and T ′ UV -model for Lemma 5.

graph, there are no two twin simplicial vertices b, c and as a consequence of
Lemmas 3, 4, 5, G does not have cut vertices in the neighborhood of a. Also, in
each UV -model T of G there are no twin edges in the same connected component
of T −Qa, and the elements of the edges whose labels are contained in N(a) do
not have the same end to Qa with the exception of edges incident to Qa.

Since a is not an end vertex, in each UV -model Qa is an internal vertex. As
G is a connected graph, it follows that |Qa| > 1. By the assumption, G does not
have neighbors of a which are cut vertices, so |Qa| ≥ 3.

Let T be a UV -model, e, e′ ∈ T with Qa ∈ T [e, e′] and lab(e) ⊂ N(a),
lab(e′) ⊂ N(a) maximizing the distance between e and e′. By the assumption,
|lab(e)| >1 and |lab(e′)| >1 since there are no cut vertices that are neighbors of a.

Case 1. If lab(e) = lab(e′), then neither e nor e′ are incident in leaves of T
since the elements in these labels do not have the same end to Qa. In particular,
there are vertices in lab(e) with different ends to Qa. Namely, we may assume
that e, Qa, e′ appear in this order in T , and there are two vertices x and y in
lab(e) such that Tx = T [Q,Q1], Ty = T [Q2, Q3], Q 6= Q2, Q3 6= Q1. Observe that
Q,Q1, Q2, Q3 may be on the same path in T .

Case 1.1. In case that Q,Q1, Q2, Q3 appear on the same path in T we have
that Q,Q2, Q3, Q1 (Q2, Q,Q3, Q1) or Q,Q2, Q1, Q3 (Q2, Q,Q1, Q3) appear in this
order in T . As x, y ∈ lab(e) and lab(e) ⊂ N(a), {x, y, a} is a clique.

Case 1.1.1. Suppose that Q,Q2, Q3, Q1 appear in this order in T . So x, y ∈
Q2 and x, y ∈ Q3. Let Q

′

2, Q
′

3 be vertices adjacent to Q2 and Q3 respectively with
Q2, Q3 ∈ T [Q′

2, Q
′

3] and Q′

2, Q
′

3 ∈ T [Q,Q1]. By the choice of e and e′, there are
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Figure 11. T UV-model, lab(e) = lab(e′).

Ae e`

x

yx` y`

s`
s

a

Figure 12. T UV-model, lab(e) = lab(e′).

vertices x′ ∈ Q′

2∩Q2−N(a), y′ ∈ Q′

3∩Q3−N(a), s ∈ Q′

2−Q2 and s′ ∈ Q′

3−Q3.
Observe that s, s′ /∈ N(a) since Q′

2, Q2, Q
a, Q3, Q

′

3 appear in this order in T , see
Figure 11. It is clear that x′y′ is not an edge of G by the choice of x′, y′ and since
x′, y′ /∈ N(a). Observe that {s, x, x′}, {x, x′, y}, {x, y, a}, {x, y, y′}, {x, y′, s′} are
cliques. Clearly, G[s, s′, x, x′, y, y′, a] = G2.

Case 1.1.2. Suppose that Q,Q2, Q1, Q3 appear in this order in T . So x, y ∈
Q2∩Q1. LetQ

′

2, Q
′

1 be vertices adjacent toQ2 andQ1, respectively, withQ2, Q1 ∈
T [Q′

2, Q
′

1] and Q′

2, Q
′

1 ∈ T [Q,Q3]. By the choice of e and e′, there are vertices
x′ ∈ Q′

2 ∩ Q2 − N(a), y′ ∈ Q′

1 ∩ Q1 − N(a), s ∈ Q′

2 − Q2 and s′ ∈ Q′

1 − Q1.
It is clear that s, s′ /∈ N(a) since Q′

2, Q2, Q
a, Q1, Q

′

1 appear in this order in T ,
see Figure 12. Observe that {s, x, x′}, {x, x′, y}, {x, y, a}, {x, y, y′}, {y, y′, s′} are
cliques. Clearly, G[s, s′, x, x′, y, y′, a] = G5.

Case 1.2. In case that all four maximal cliques Q,Q1, Q2, Q3 are not on
the same path in T , by symmetry we can assume that Q,Q1, Q3 are not on the
same path in T , see Figure 13. So suppose that Q1, Q3 are not. Let Q∗, Q∗∗ be
vertices of T such that Tx ∩ Ty = T [Q∗, Q∗∗]. By the assumption, Q∗∗ 6= Q1, Q3.
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Figure 13. T UV-model, lab(e) = lab(e′).

Observe that Q∗ may be Q or Q2 (Q 6= Q2). By symmetry, we may assume that
Q∗ 6= Q. Let Q∗

0 ∈ T [Q,Q1] be a vertex adjacent to Q∗ with Q∗ ∈ T [Q∗

0, Q
a], and

Q∗

1 ∈ T [Q,Q1] be a vertex adjacent to Q∗∗ with Q∗∗ ∈ T [Qa, Q∗

1]. Observe that
Q∗

1 may be Q1 and Q∗

0 may be Q. By the choice of e and e′, there are vertices
x′ ∈ Q∗

0 ∩Q∗ −N(a) and y′ ∈ Q∗

1 ∩Q∗∗ −N(a). Clearly, x′, y′ are not adjacent,
but x′, y′ are both adjacent to x and y. Let s′ ∈ Q∗

1 − Q∗∗ and s ∈ Q∗

0 − Q∗.
Observe that s′, s /∈ N(a). Since x, x′, s ∈ Q∗

0 and y′, x, s′ ∈ Q∗

1, so {x, x′, s},
{y′, x, s′} are cliques. Clearly, G[s′, x′, x, y, a, y′, s] = G2.

Case 2. In case that lab(e) ⊂ lab(e′) and lab(e′) * lab(e), suppose that e,
Qa, e′ appear in this order in T . By our assumption, e′ is not incident to a
leaf since the elements in lab(e) have different ends to Qa and there are vertices
x, y ∈ lab(e) ∩ lab(e′) with different ends to Qa, x′ ∈ lab(e′) − lab(e) such that
Tx = T [Q,Q1], Ty = T [Q2, Q3], Tx′ = T [Q5, Q6], and Q4 ∈ T [Q,Q1] ∩ T [Q5, Q6]
is the closest vertex of Tx′ to Q and Q2. Clearly, Q4 ∈ T [Q,Q1] ∩ T [Q2, Q3],
Q1 6= Q3 and Q,Q1, Q3 may be on the same path in T .

Case 2.1. Suppose that Q1, Q3, Q6 are on the same path in T . Then Q6,
Q1, Q3 or Q1, Q6, Q3 or Q1, Q3, Q6 or Q6, Q3, Q1 or Q3, Q6, Q1 or Q3, Q1, Q6

appear in this order in T . Observe that Q6 may be equal to Q1 or to Q3. As
x, y, x′ ∈ lab(e′) and lab(e′) ⊂ N(a), it follows that {x, y, x′, a} is a clique. Let
e = Q0Q

′

0 with Q0 ∈ T [Q′

0, Q
a], and let s ∈ Q′

0 − Q0. Clearly, s /∈ N(a). Since
x, y ∈ lab(e), so x, y ∈ Q′

0. Also x′ /∈ lab(e), so x′, s are not adjacent. Hence,
{x, y, s} is a clique.

Case 2.1.1. Suppose that Q6, Q1, Q3 appear in this order in T . Let Q′

1 be a
vertex adjacent to Q1 with Q′

1 ∈ T [Q1, Q3]. By the choice of e′, there are vertices
in the labels of edges in T [Q6, Q

′

1] that are not neighbors of a. Let x1, . . . , xk
be vertices chosen in the labels of these edges such that xi is only adjacent to
xi+1 for i = 1, . . . , k − 1, x1 ∈ Q6, xk ∈ Q′

1, s
′ ∈ Q′

1 − Q1. s′ /∈ N(a) since Qa,
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s x

y

x` x 1
s`

e ea

Figure 14. T UV-model, lab(e) ⊂ lab(e′) and lab(e′) * lab(e).

s x

y

x` s`

e a e

Figure 15. T UV-model, lab(e) ⊂ lab(e′) and lab(e′) * lab(e).

Q1, Q
′

1 appear in this order in T , see Figure 14. Observe that k may be equal
to 1. Moreover, {x, y, s}, {x, y, x′, a}, {x, y, x′, x1}, {x, y, xi, xi+1}i=1,...,k−1 and
{xk, y, s

′} are cliques. Clearly, G[s, s′, x, x′, x1, . . . , xk, y, a] = Gi for i = 3 if k = 1
or i = 4, otherwise. It is easy to see that we obtain the same induced subgraphs
if the order is Q6, Q3, Q1.

Case 2.1.2. Suppose that Q1, Q6, Q3 or Q1, Q3, Q6 appear in this order in T .
In the first case, we can assume that Q1 6= Q6, since otherwise we obtain Gi for
i = 3 or i = 4 following the earlier arguments. Let s′ ∈ Q6 − Q1 if Q1, Q6, Q3

appear in this order in T or s′ ∈ Q3 − Q1 if Q1, Q3, Q6 appear in this order
in T . Clearly, s′ /∈ N(a) and s′, y are adjacent. As Q1 6= Q6, Q3, x, s

′ are not
adjacent, see Figure 15. Observe that {s, x, y}, {x, y, x′, a}, {x′, y, s′} are cliques.
Clearly, G[x, x′, y, s, s′, a] = G1. It is easy to see that we obtain the same induced
subgraphs if the order is Q3, Q6, Q1 or Q3, Q1, Q6.

Case 2.2. Now suppose that Q1, Q3, Q6 are not on the same path in T . Let
Q∗

1 ∈ Tx ∩ Ty be the closest vertex to Q1 and Q3, let Q
∗

6 ∈ Tx ∩ Ty ∩ Tx′ be the
closest vertex to Q∗

1. Observe that Q∗

1 may be Q∗

6. Clearly, Q
∗

1, Q
∗

6, Q3 are on the
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s
x`

x

y

s`

e a e

Figure 16. T UV-model; lab(e) * lab(e′), lab(e′) * lab(e) and lab(e) ∩ lab(e′) 6= ∅.

same path in T and Q∗

6, Q
∗

1, Q3 or Q
∗

1, Q
∗

6, Q3 appear in this order in T . Following
the earlier arguments we obtain Gi for i = 1 or i = 3 or i = 4.

Case 3. In case that lab(e) * lab(e′) and lab(e′) * lab(e), there are x ∈
lab(e)− lab(e′) and y ∈ lab(e′)− lab(e). Clearly, {x, y, a} is a clique since lab(e) ⊂
N(a) and lab(e′) ⊂ N(a). Let e = Q0Q

′

0 with Q0 ∈ T [Q′

0, Q
a] and e′ = Q0Q′

0

with Q0 ∈ T [Qa, Q′

0].

Case 3.1. If there is a vertex x′ ∈ lab(e) ∩ lab(e′), then let s ∈ Q′

0 −Q0 and
s′ ∈ Q′

0 − Q0. Clearly, s, s′ /∈ N(a). As x, x′ ∈ Q′

0 and y /∈ Q′

0, s is adjacent to
x, x′ but not adjacent to y. Since y, x′ ∈ Q′

0 and x /∈ Q′

0, s
′ is adjacent to y, x′ but

not adjacent to x, see Figure 16. Observe that {s, x, x′}, {x, x′, y, a}, {x′, y, s′}
are cliques. Clearly, G[x, x′, y, s, s′, a] = G1.

Case 3.2. If there is not a vertex in lab(e)∩lab(e′), then since there are no cut
vertices in G, we get |lab(e)− lab(e′)| > 1 and |lab(e′)− lab(e)| > 1. Thus there
exist x, x′ ∈ lab(e)− lab(e′) with different ends to Qa and y, y′ ∈ lab(e′)− lab(e)
with different ends to Qa. It is clear that {x, y, x′, y′, a} is a clique since lab(e) ⊂
N(a) and lab(e′) ⊂ N(a). Let Tx = T [Q,Q1], Tx′ = T [Q2, Q3] with Q1 6= Q3 and
let Q4, Q5 be the ends of Tx and Tx′ , respectively, between e and e′ with Qa, Q4,
Q5 appearing in this order in T , see Figure 18. Let Q∗

1 ∈ Tx ∩ Tx′ be the closest
vertex to Q1 and Q3. Observe that Q∗

1 may be Q1 or Q3 or Q4. We may assume
that Q∗

1 6= Q3 and Qa, Q∗

1, Q3 appear in this order in T . Observe that Q∗

1 may
be Q4, and Q3 may be Q5.

Case 3.2.1. Suppose that Q4 6= Q5. Clearly, there is s′ ∈ Q5 − Q4 and
y ∈ Q4 ∩Q5; s

′ /∈ N(a) since Qa, Q4, Q5 appear in this order in T . Also s′ is not
adjacent to x since Q4 6= Q5. Observe that {s′, x′, y} is a clique. Let s ∈ Q′

0−Q0.
Clearly s /∈ N(a). As y /∈ lab(e) but x, x′ ∈ lab(e) it follows that s is adjacent to
x and x′ but not adjacent to y, see Figure 17. The sets {x, x′, y, a}, {x, x′, s} and
{s′, x′, y} are cliques and G[x, x′, y, s, s′, a] = G1.
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Figure 17. T UV-model; lab(e) * lab(e′), lab(e′) * lab(e) and lab(e) ∩ lab(e′) = ∅.
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Figure 18. T UV-model; lab(e) * lab(e′), lab(e′) * lab(e) and lab(e) ∩ lab(e′) = ∅.
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Figure 19. T UV-model; lab(e) * lab(e′), lab(e′) * lab(e) and lab(e) ∩ lab(e′) = ∅.
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Figure 20. T UV-model; lab(e) * lab(e′), lab(e′) * lab(e) and lab(e) ∩ lab(e′) = ∅.

Case 3.2.2.i. Suppose that Q4 = Q5 and there is an edge ẽ such that lab(ẽ) ⊂
N(a); Qa, Q∗

1, Q3, ẽ or Q
a, Q∗

1, ẽ, Q3 or Q
a, Q4, ẽ, Q

∗

1, Q3 appear in this order in T .
Choose ẽ maximizing the distance between ẽ and e. By Case 2, we can assume
that lab(ẽ) * lab(e); lab(e) * lab(ẽ) and lab(ẽ) ∩ lab(e) ∩N(a) = ∅.

• In case that Q∗

1, ẽ, Q3 appear in this order in T , since lab(ẽ) * lab(e),
there is z ∈ lab(ẽ) − lab(e). Let s ∈ Q′

0 − Q0. Clearly s /∈ N(a). As x, x′ ∈ Q′

0

and z /∈ Q′

0, so s is adjacent to x and x′ but is not adjacent to z. Since Q∗

1, ẽ,

Q3 appear in this order, and x′ is in lab(ẽ). Let ẽ = Q̃0Q̃′

0 with Q̃0 ∈ T [Qa, Q̃′

0]

and s′ ∈ Q̃′

0 − Q̃0. Clearly s′ /∈ N(a). As x′, z ∈ lab(ẽ) and x /∈ lab(ẽ), we get

x′, z ∈ Q̃′

0 and x /∈ Q̃′

0. Hence, s
′ is adjacent to x′ and z but is not adjacent to x,

see Figure 19. Observe that {x, x′, z, a}, {x, x′, s} and {s′, x′, z} are cliques and
G[x, x′, y, s, s′, a] = G1.

• In case that Q∗

1, Q3, ẽ appear in this order in T , since lab(ẽ) * lab(e) there
is z ∈ lab(ẽ) − lab(e). Let s ∈ Q′

0 − Q0. Clearly s /∈ N(a) and is adjacent to x
and x′ but not adjacent to z. Since Q∗

1, Q3, ẽ appear in this order and z ∈ N(a)
so z ∈ Q3 ∩ Q∗

1. As Q∗

1 6= Q3, let s′ ∈ Q3 − Q∗

1; clearly {z, x′, s} is a clique, see
Figure 20. Since Qa, Q4, Q

∗

1, Q3 appear in this order in T , s′ /∈ N(a). The sets
{x, x′, z, a}, {x, x′, s} and {s′, x′, z} are cliques and G[x, x′, z, s, s′, a] = G1.

• Finally, suppose that Q4, ẽ, Q
∗

1 appear in this order in T . Since lab(ẽ) *
lab(e) and lab(e) * lab(ẽ) we conclude that there are z ∈ lab(ẽ) − lab(e) and
v ∈ lab(e)− lab(ẽ). Observe that v 6= x, x′ since x, x′ ∈ lab(ẽ) (this follows from

the fact that Q4, ẽ, Q
∗

1 appear in this order in T ). Let s ∈ Q′

0−Q0, let ẽ = Q̃0Q̃′

0

with Q̃0 ∈ T [Qa, Q̃′

0] and s′ ∈ Q̃′

0 − Q̃0. Clearly s, s′ /∈ N(a). Since v, x′ ∈ lab(e)
and z, x′ ∈ lab(ẽ), s is adjacent to v and x′ but is not adjacent to z and s′ is
adjacent to x′, z but is not adjacent to v, see Figure 21. Observe that {v, x′, z, a},
{v, x′, s} and {s′, x′, z} are cliques and G[v, x′, z, s, s′, a] = G1.

Case 3.2.2.ii. Suppose that Q4 = Q5 and there is not an edge ẽ such
that lab(ẽ) ⊂ N(a), and Qa, Q4, Q3, ẽ or Qa, Q4, ẽ, Q3 or Qa, Q4, ẽ, Q

∗

1, Q3 ap-
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Figure 21. T UV-model; lab(e) * lab(e′), lab(e′) * lab(e) and lab(e) ∩ lab(e′) = ∅.
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Figure 22. T UV-model; lab(e) * lab(e′), lab(e′) * lab(e) and lab(e) ∩ lab(e′) = ∅.

pear in this order in T . Then Q4 6= Qa. Also there are vertices in the la-
bels of edges in T [Q4, Q3] that are not neighbors of a. Let Q′

1 be adjacent to
Q∗

1 with Q′

1 ∈ T [Q∗

1, Q3] and let x1, . . . , xk be vertices chosen in these labels
such that xi is only adjacent to xi+1 for i = 1, . . . , k − 1, x1 ∈ Q4, xk ∈ Q′

1,
s′ ∈ Q′

1 − Q∗

1 and s ∈ Q′

0 − Q0. Clearly, s /∈ N(a) and s is adjacent to x, x′

but not adjacent to y since y ∈ lab(e′) − lab(e). Observe that k may be equal
1 and y ∈ Q4 − Q′

1 (Q′

1 is not between e and e′), see Figure 22. Moreover,
{x, x′, s}, {x, y, x′, a}, {x, y, x′, x1}, {x, y, xi, xi+1}i=1,...,k−1 and {xk, x

′, s′} are
cliques. Clearly, G[s, s′, x, x′, x1, . . . , xk, y, a] = Gi for i = 3 if k = 1 or i = 4,
otherwise.
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