END SIMPLICIAL VERTICES IN PATH GRAPHS

Marisa Gutierrez
Conicet
Departamento de Matemática, Facultad de Ciencias Exactas
Universidad Nacional de La Plata, Argentina
e-mail: marisa@mate.unlp.edu.ar

AND

Silvia B. Tondato
Departamento de Matemática, Facultad de Ciencias Exactas
Universidad Nacional de La Plata, Argentina
e-mail: tondato@mate.unlp.edu.ar

Abstract

A graph is a path graph if there is a tree, called $U V$-model, whose vertices are the maximal cliques of the graph and for each vertex x of the graph the set of maximal cliques that contains it induces a path in the tree. A graph is an interval graph if there is a $U V$-model that is a path, called an interval model. Gimbel [3] characterized those vertices in interval graphs for which there is some interval model where the interval corresponding to those vertices is an end interval. In this work, we give a characterization of those simplicial vertices x in path graphs for which there is some $U V$-model where the maximal clique containing x is a leaf in this $U V$-model.

Keywords: chordal graphs, clique trees, path graphs.
2010 Mathematics Subject Classification: 05C75.

1. Introduction

A graph is chordal if it contains no cycle of length at least four as an induced subgraph. Various characterizations of chordal graphs have appeared in the literature $[2,6,7]$. Here we use the classical result of Gavril that states that a graph G is chordal if and only if there is a tree T, called clique tree, whose vertices are
the maximal cliques of the graph and for every vertex x of G the maximal cliques that contain x, called C_{x}, induce in the tree a subtree which we will denote by T_{x}. Clique trees are also called models of the graph. A model of a chordal graph often reduces the size of the data structure needed to store the graph, permitting the use of efficient algorithms that take advantage the compactness of the representation [1]. Since some chordal graphs have many distinct models, it is interesting to consider which one is most desirable under various circumstances.

Natural subclasses of chordal graphs are path graphs and interval graphs. In [5], Monma and Wei introduced the notation $U V$ to refer to the class of path graphs. They also proved that a graph G is a path graph, or a $U V$ graph, if it admits a $U V$-model, i.e., a clique tree T such that T_{x} is a subpath of T for every $x \in V(G)$. It is clear that a graph is an interval graph if it admits a clique tree which is a path. By definition we have the following inclusions between the different considered classes (and these inclusions are strict): interval \subset path graphs \subset chordal, see Figure 1.

path graph
non interval graph

chordal graph
non path graph

Figure 1.
Given an interval graph G, a vertex is an end vertex if the maximal clique that contains it is a leaf in some interval model, see Figure 2. Gimbel [3] characterized those vertices that are end vertices in interval graphs.

Figure 2. a, b, d are end vertices, c is not an end vertex.

Theorem 1 (Gimbel). A vertex a in an interval graph G is an end vertex if and only if G contains, as induced subgraphs, none of the graphs presented in Figure 3 , where a is the designated vertex.

Simplicial vertices play an important role in chordal graphs; some of them occupy special positions in the models. Blair and Peyton [1] gave a characterization of maximal cliques that are leaves of some model; the simplicial vertices that
are in these maximal cliques are called end vertices of chordal graphs. We will study the end vertices of $U V$ graphs, i.e., simplicial vertices that are in maximal cliques which are leaves in some $U V$-model. It is clear that if a is an end vertex of G, then there do not exist two non-simplicial vertices $u \neq v$ that are neighbors of a in G such that $C_{u} \cap C_{v}=\left\{Q^{a}\right\}$, where Q^{a} is the unique maximal clique of G that contains a. On the other hand, we observe that among the family given by Gimbel, the graphs in Figure 4 have a $U V$-model where a is an end vertex.

In this paper, we obtain a characterization of end vertices of $U V$ graphs similar to Gimbel's characterization, stated in the following result.

Theorem 2. Let G be a UV graph. A simplicial vertex a is an end vertex of G if and only if there do not exist two non-simplicial vertices $u \neq v$ that are neighbors of a in G such that $C_{u} \cap C_{v}=\left\{Q^{a}\right\}$ and G contains as induced subgraphs none of the graphs presented in Figure 5, where a is the designated vertex.

Observe that in Figure 5, the graphs G_{1}, G_{2}, G_{3} and the family G_{4} are obtained from Gimbel's graph by adding an universal vertex.

The paper is organized as follows: in Section 2, we give some definitions and background. In Section 3, we prove some lemmas that allow us to restrict the study to UV graphs with certain conditions. Finally, in Section 4, we give a proof of Theorem 2.

Figure 3. Gimbel's graphs.

Figure 4. Gimbel's graphs with $U V$-models where a is an end vertex.

2. Definitions and Background

A clique in a graph G is a set of pairwise adjacent vertices. Let $\boldsymbol{C}(G)$ be the set of all maximal cliques of G. We denote by C_{x} the set of the maximal cliques that contain x.

Figure 5. Graphs and its unique $U V$-models.

The neighborhood of a vertex x is the set $N(x)$ of vertices adjacent to x, and the closed neighborhood of x is the set $N[x]=\{x\} \cup N(x)$. A vertex a is simplicial if its (closed) neighborhood is a maximal clique, which we will denote Q^{a} instead of $N[a]$. Two adjacent vertices x and y are twins if $N[x]=N[y]$.

A clique tree T of a graph G is a tree whose vertices are the elements of $\boldsymbol{C}(G)$ and such that for each vertex x of G, C_{x} induces a subtree of T, which we will denote by T_{x}. When T_{x} is not a subpath of T, we will say that T has a claw.

Let F be a finite family of non-empty sets. A graph G is the intersection graph for F if there is a one-to-one correspondence between the vertices of G and the sets in F such that two vertices in G are adjacent if and only if the corresponding sets have non-empty intersection.

Note that if T is a clique tree of G, G is the intersection graph of the subtrees $\left(T_{x}\right)_{x \in V(G)}$. Gavril [2] proved that a graph is chordal if and only if it has a clique tree. Clique trees are called models of the graph.

A graph is a path graph or a $U V$ graph (see [5]) if it admits a $U V$-model, i.e., a clique tree T such that T_{x} is a subpath of T for every $x \in V(G)$.

Let T be a clique tree. We often use capital letters to denote the vertices of a clique tree as these vertices correspond to maximal cliques of G. In order to simplify the notation, we often write $Q \in T$ instead of $Q \in V(T)$, and $e \in T$ instead of $e \in E(T)$. If T^{\prime} is a subtree of T, then $G_{T^{\prime}}$ denotes the subgraph of G that is induced by the vertices of $\bigcup_{Q \in V\left(T^{\prime}\right)} Q$.

In a clique tree T, the label of an edge $Q Q^{\prime}$ of T is defined as $\operatorname{lab}\left(Q Q^{\prime}\right)=$ $Q \cap Q^{\prime}$. For each edge e of a clique tree, in every clique tree, there is \widetilde{e} such that $\operatorname{lab}(e)=\operatorname{lab}(\widetilde{e})$; we will say that e and \widetilde{e} are equivalent, see Figure 7 . We will say that e, e^{\prime} in the same clique tree T are twin edges if $l a b(e)=l a b\left(e^{\prime}\right)$, see Figure 6.

Figure 6. Twin edges.

Figure 7. Equivalent edges.

Let T be a $U V$-model of G, let Q be a vertex of T, and let e be an edge of T. Let T_{1} and T_{2} be the two connected components of $T-e$ where Q is in T_{1}. We say that vertices in $l a b(e)$ have the same end with respect to Q if there exists a vertex Q^{\prime} in T_{1}, possibly $Q^{\prime}=Q$, such that for each $x \in \operatorname{lab}(e)$, one endpoint of T_{x} is Q^{\prime} (recall that T_{x} is a subpath of T).

If G is a graph and $V^{\prime} \subseteq V(G)$, then $G \backslash V^{\prime}$ denotes the subgraph of G induced by $V(G) \backslash V^{\prime}$. If $E^{\prime} \subseteq E(G)$, then $G-E^{\prime}$ denotes the subgraph of G induced by $E(G) \backslash E^{\prime}$. If G, G^{\prime} are two graphs, then $G+G^{\prime}$ denotes the graph whose vertices are $V(G) \cup V\left(G^{\prime}\right)$ and the edges are $E(G) \cup E\left(G^{\prime}\right)$. Note that if T, T^{\prime} are two trees such that $\left|V(T) \cap V\left(T^{\prime}\right)\right|=0$, then $T+T^{\prime}$ is a forest.

Let T be a tree. For $X, Y \in V(T), T[X, Y]$ is the subpath of T between X and Y. Note that the path may be reduced to a single vertex when X and Y are equal. For $e, e^{\prime} \in E(T)$ and $X \in V(T)$, we denote $Q \in T\left[e, e^{\prime}\right]$ if e, Q, e^{\prime} appear in this order in T.

A simplicial vertex a in a $U V$ graph G is an end vertex if there is a $U V$-model T of G where Q^{a} is a leaf of T.

3. About Reduced Conditions

The following lemmas allow us to reduce the study to $U V$ graphs with certain conditions.

Lemma 3. Let G be a UV graph, let T be a $U V$-model of G, and let a be a simplicial vertex of G that is not an end vertex of $G, u \in N(a)$ is a cut vertex of G. Suppose that $e_{i} \in T$ for $i=1, \ldots, n$ are edges whose label is $\{u\}$, and T_{1} is the connected component of $T-\left\{e_{1}, \ldots, e_{n}\right\}$ with $Q^{a} \in T_{1}$. Then a is not an end vertex of $G_{T_{1}}$ or for all $v \in N(a)-\{u\}, C_{v} \cap C_{u}=\left\{Q^{a}\right\}$.

Proof. Suppose that a is an end vertex of $G_{T_{1}}$, and there is $v \in N(a)-\{u\}$ such that $C_{v} \cap C_{u} \neq\left\{Q^{a}\right\}$. As a is an end vertex of $G_{T_{1}}$, then there is a $U V$-model T_{1}^{\prime} of $G_{T_{1}}$ such that Q^{a} is a leaf. Let T_{2}, \ldots, T_{k} be the connected components of $T-\left\{e_{1}, \ldots, e_{n}\right\}$ different from T_{1}. Let $Q_{1} \in T_{1}^{\prime}$ be such that $u \in Q_{1}$ and the distance in T_{1}^{\prime} between Q^{a} and Q_{1} is largest possible. Observe that Q_{1} may be Q^{a}. As there is $v \in N(a)-\{u\}$ such that $C_{v} \cap C_{u} \neq\left\{Q^{a}\right\}$, then $Q_{1} \neq Q^{a}$ (recall that Q^{a} is a leaf of T_{1}^{\prime}). Let $Q_{i}, Q_{i}^{\prime} \in T_{i}$ for $i=2, \ldots, k$ be such that $\left(T_{i}\right)_{u}=T_{i}\left[Q_{i}, Q_{i}^{\prime}\right]$. It is clear that $T^{\prime}=T_{1}^{\prime}+Q_{1} Q_{2}+T_{2}+\sum_{i=2}^{k-1}\left(Q_{i}^{\prime} Q_{i+1}+T_{i+1}\right)$ is a model of G which has Q^{a} as a leaf, see Figure 8. As $Q_{1} \cap Q_{2}=Q_{i}^{\prime} \cap Q_{i+1}=\{u\}$ and $Q_{1}, Q_{i}^{\prime}, Q_{i+1}$ are leaves of $\left(T_{1}^{\prime}\right)_{u},\left(T_{i}\right)_{u}$ and $\left(T_{i+1}\right)_{u}$ respectively, then T^{\prime} does not have claws. Therefore, T^{\prime} is a $U V$-model of G which has Q^{a} as a leaf since $Q_{1} \neq Q^{a}$, contradicting the fact that a is not an end vertex.

Figure 8. $T^{\prime} U V$-model for Lemma 3.
Lemma 4. Let G be a $U V$ graph, let T be a $U V$-model of G, let a be a simplicial vertex of G that is not an end vertex, let $e \in T$ be an edge that is not incident to Q^{a} such that for all $x \in \operatorname{lab}(e), T_{x}$ in direction to Q^{a} in T have the same end, and let T_{1} be the connected component of $T-e$ with $Q^{a} \in T_{1}$. Then a is not an end vertex of $G_{T_{1}}$.

Proof. Let $e=Q Q^{\prime}$ with $Q^{\prime} \in T\left[Q^{a}, Q\right]$. Observe that $Q^{\prime} \neq Q^{a}$ because e is not incident to Q^{a}. Suppose that a is an end vertex of $G_{T_{1}}$. Then there is a $U V$-model T_{1}^{\prime} of $G_{T_{1}}$ such that Q^{a} is a leaf. By our choice of e, the elements of $\operatorname{lab}(e)$ are twins in $G_{T_{1}}=G_{T^{\prime}}$, and e is not incident to Q^{a}. It follows that, for $x \in \operatorname{lab}(e),\left(T_{1}^{\prime}\right)_{x}=T_{1}^{\prime}\left[Q_{1}, Q^{\prime \prime}\right]$ for some $Q_{1}, Q^{\prime \prime} \in C(G)$ with $Q^{\prime \prime} \neq Q^{a}$ (observe that Q_{1} may be Q^{a}). Let T_{2} be the connected component of $T-e$ different from T_{1}. It is clear that $T^{\prime}=T_{1}^{\prime}+Q^{\prime \prime} Q+T_{2}$ is a model of G which has Q^{a} as a leaf, see Figure 9. As $Q^{\prime \prime} \neq Q^{a}$ is a leaf of $\left(T_{1}^{\prime}\right)_{x}$ where $x \in \operatorname{lab}(e), Q$ is a leaf of $\left(T_{2}\right)_{x}$ and $\operatorname{lab}(e)=\operatorname{lab}\left(Q^{\prime \prime} Q\right)$, we conclude that T^{\prime} does not have claws. Therefore T^{\prime} is a $U V$-model of G which has Q^{a} as a leaf, a contradiction.

Lemma 5. Let G be a $U V$ graph, let T be a $U V$-model of G, let a be a simplicial vertex of G that is not an end vertex, let $e, e^{\prime} \in T$ be twin edges where $e=Q Q^{\prime}$,

Figure 9. T and $T^{\prime} U V$-model for Lemma 4.
$e^{\prime}=Q_{1} Q_{1}^{\prime}$ with $Q^{\prime}, Q_{1} \in T\left[Q, Q_{1}^{\prime}\right]$, and let T_{1}, T_{2}, T_{3} be the connected components of $T-\left\{e, e^{\prime}\right\}$ with $Q^{\prime}, Q_{1} \in T_{2}, Q^{a} \notin T_{2}$, and $T_{1}^{\prime}=T_{1}+Q Q_{1}^{\prime}+T_{3}$. Then a is not an end vertex of $G_{T_{1}^{\prime}}$.

Proof. Suppose that a is an end vertex of $G_{T_{1}^{\prime}}$. Then there is a $U V$-model $T_{1}^{\prime \prime}$ of $G_{T_{1}^{\prime}}$ such that Q^{a} is a leaf. Let $\overline{Q Q_{1}^{\prime}}$ be an edge of $T_{1}^{\prime \prime}$ equivalent to $Q Q_{1}^{\prime}$ with ends $\bar{Q}, \overline{Q_{1}^{\prime}}$. It is clear that $T^{\prime}=T_{1}^{\prime \prime}-\overline{Q Q_{1}^{\prime}}+\bar{Q} Q^{\prime}+Q_{1} \overline{Q_{1}^{\prime}}+T_{2}$ is a model of G which has Q^{a} as a leaf, see Figure 10. Let L_{1} and L_{2} be the connected components of $T_{1}^{\prime \prime}-\overline{Q Q_{1}^{\prime}}$ with $Q^{a}, \bar{Q} \in L_{1}$ and $\overline{Q_{1}^{\prime}} \in L_{2}$. For all $x \in \operatorname{lab}(e)=\operatorname{lab}\left(e^{\prime}\right)=\operatorname{lab}\left(\overline{Q Q_{1}^{\prime}}\right)$, $\left(T_{2}\right)_{x}=T_{2}\left[Q^{\prime}, Q_{1}\right]$ and $\bar{Q}, \overline{Q_{1}^{\prime}}$ are leaves of $\left(L_{1}\right)_{x},\left(L_{2}\right)_{x}$ respectively, so T^{\prime} does not have claws. Therefore T^{\prime} is a $U V$-model of G which has Q^{a} as a leaf.

4. Proof of the Main Theorem

Proof. (\Longrightarrow) Suppose that G has as induced subgraph G_{i}, one of the graphs presentaed in Figure 5 for $i \in\{1,2,3,4,5\}$, and there is a $U V$-model T of G which has Q^{a} as a leaf of T. It is possible to build T_{i}, a $U V$-model of G_{i}, from T considering T and $\left(T_{x}\right)_{x \in V\left(G_{i}\right)}$ which has Q^{a} as a leaf. This is a contradiction because G_{i} does not have such a $U V$-model (this can be readily verified, see Figure 5). Hence, in every $T, U V$-model of G, Q^{a} is not a leaf of T.
(\Longleftarrow) Suppose that G is the smallest graph such that a is not an end vertex of G, and there do not exist two non-simplicial vertices $u \neq v$ that are neighbors of a in G such that $C_{u} \cap C_{v}=\left\{Q^{a}\right\}$. We will prove that G contains some G_{i} where $i \in\{1,2,3,4,5\}$ as induced subgraph. By our assumption, G is a connected

Figure 10. T and $T^{\prime} U V$-model for Lemma 5.
graph, there are no two twin simplicial vertices b, c and as a consequence of Lemmas $3,4,5, G$ does not have cut vertices in the neighborhood of a. Also, in each $U V$-model T of G there are no twin edges in the same connected component of $T-Q^{a}$, and the elements of the edges whose labels are contained in $N(a)$ do not have the same end to Q^{a} with the exception of edges incident to Q^{a}.

Since a is not an end vertex, in each $U V$-model Q^{a} is an internal vertex. As G is a connected graph, it follows that $\left|Q^{a}\right|>1$. By the assumption, G does not have neighbors of a which are cut vertices, so $\left|Q^{a}\right| \geq 3$.

Let T be a $U V$-model, $e, e^{\prime} \in T$ with $Q^{a} \in T\left[e, e^{\prime}\right]$ and $\operatorname{lab}(e) \subset N(a)$, $\operatorname{lab}\left(e^{\prime}\right) \subset N(a)$ maximizing the distance between e and e^{\prime}. By the assumption, $|l a b(e)|>1$ and $\left|l a b\left(e^{\prime}\right)\right|>1$ since there are no cut vertices that are neighbors of a.

Case 1. If $\operatorname{lab}(e)=\operatorname{lab}\left(e^{\prime}\right)$, then neither e nor e^{\prime} are incident in leaves of T since the elements in these labels do not have the same end to Q^{a}. In particular, there are vertices in lab(e) with different ends to Q^{a}. Namely, we may assume that e, Q^{a}, e^{\prime} appear in this order in T, and there are two vertices x and y in $l a b(e)$ such that $T_{x}=T\left[Q, Q_{1}\right], T_{y}=T\left[Q_{2}, Q_{3}\right], Q \neq Q_{2}, Q_{3} \neq Q_{1}$. Observe that Q, Q_{1}, Q_{2}, Q_{3} may be on the same path in T.

Case 1.1. In case that Q, Q_{1}, Q_{2}, Q_{3} appear on the same path in T we have that $Q, Q_{2}, Q_{3}, Q_{1}\left(Q_{2}, Q, Q_{3}, Q_{1}\right)$ or $Q, Q_{2}, Q_{1}, Q_{3}\left(Q_{2}, Q, Q_{1}, Q_{3}\right)$ appear in this order in T. As $x, y \in \operatorname{lab}(e)$ and $l a b(e) \subset N(a),\{x, y, a\}$ is a clique.

Case 1.1.1. Suppose that Q, Q_{2}, Q_{3}, Q_{1} appear in this order in T. So $x, y \in$ Q_{2} and $x, y \in Q_{3}$. Let $Q_{2}^{\prime}, Q_{3}^{\prime}$ be vertices adjacent to Q_{2} and Q_{3} respectively with $Q_{2}, Q_{3} \in T\left[Q_{2}^{\prime}, Q_{3}^{\prime}\right]$ and $Q_{2}^{\prime}, Q_{3}^{\prime} \in T\left[Q, Q_{1}\right]$. By the choice of e and e^{\prime}, there are

Figure 11. T UV-model, $\operatorname{lab}(e)=\operatorname{lab}\left(e^{\prime}\right)$.

Figure 12. T UV-model, $\operatorname{lab}(e)=l a b\left(e^{\prime}\right)$.
vertices $x^{\prime} \in Q_{2}^{\prime} \cap Q_{2}-N(a), y^{\prime} \in Q_{3}^{\prime} \cap Q_{3}-N(a), s \in Q_{2}^{\prime}-Q_{2}$ and $s^{\prime} \in Q_{3}^{\prime}-Q_{3}$. Observe that $s, s^{\prime} \notin N(a)$ since $Q_{2}^{\prime}, Q_{2}, Q^{a}, Q_{3}, Q_{3}^{\prime}$ appear in this order in T, see Figure 11. It is clear that $x^{\prime} y^{\prime}$ is not an edge of G by the choice of x^{\prime}, y^{\prime} and since $x^{\prime}, y^{\prime} \notin N(a)$. Observe that $\left\{s, x, x^{\prime}\right\},\left\{x, x^{\prime}, y\right\},\{x, y, a\},\left\{x, y, y^{\prime}\right\},\left\{x, y^{\prime}, s^{\prime}\right\}$ are cliques. Clearly, $G\left[s, s^{\prime}, x, x^{\prime}, y, y^{\prime}, a\right]=G_{2}$.

Case 1.1.2. Suppose that Q, Q_{2}, Q_{1}, Q_{3} appear in this order in T. So $x, y \in$ $Q_{2} \cap Q_{1}$. Let $Q_{2}^{\prime}, Q_{1}^{\prime}$ be vertices adjacent to Q_{2} and Q_{1}, respectively, with $Q_{2}, Q_{1} \in$ $T\left[Q_{2}^{\prime}, Q_{1}^{\prime}\right]$ and $Q_{2}^{\prime}, Q_{1}^{\prime} \in T\left[Q, Q_{3}\right]$. By the choice of e and e^{\prime}, there are vertices $x^{\prime} \in Q_{2}^{\prime} \cap Q_{2}-N(a), y^{\prime} \in Q_{1}^{\prime} \cap Q_{1}-N(a), s \in Q_{2}^{\prime}-Q_{2}$ and $s^{\prime} \in Q_{1}^{\prime}-Q_{1}$. It is clear that $s, s^{\prime} \notin N(a)$ since $Q_{2}^{\prime}, Q_{2}, Q^{a}, Q_{1}, Q_{1}^{\prime}$ appear in this order in T, see Figure 12. Observe that $\left\{s, x, x^{\prime}\right\},\left\{x, x^{\prime}, y\right\},\{x, y, a\},\left\{x, y, y^{\prime}\right\},\left\{y, y^{\prime}, s^{\prime}\right\}$ are cliques. Clearly, $G\left[s, s^{\prime}, x, x^{\prime}, y, y^{\prime}, a\right]=G_{5}$.

Case 1.2. In case that all four maximal cliques Q, Q_{1}, Q_{2}, Q_{3} are not on the same path in T, by symmetry we can assume that Q, Q_{1}, Q_{3} are not on the same path in T, see Figure 13. So suppose that Q_{1}, Q_{3} are not. Let $Q^{*}, Q^{* *}$ be vertices of T such that $T_{x} \cap T_{y}=T\left[Q^{*}, Q^{* *}\right]$. By the assumption, $Q^{* *} \neq Q_{1}, Q_{3}$.

Figure 13. T UV-model, $l a b(e)=l a b\left(e^{\prime}\right)$.

Observe that Q^{*} may be Q or $Q_{2}\left(Q \neq Q_{2}\right)$. By symmetry, we may assume that $Q^{*} \neq Q$. Let $Q_{0}^{*} \in T\left[Q, Q_{1}\right]$ be a vertex adjacent to Q^{*} with $Q^{*} \in T\left[Q_{0}^{*}, Q^{a}\right]$, and $Q_{1}^{*} \in T\left[Q, Q_{1}\right]$ be a vertex adjacent to $Q^{* *}$ with $Q^{* *} \in T\left[Q^{a}, Q_{1}^{*}\right]$. Observe that Q_{1}^{*} may be Q_{1} and Q_{0}^{*} may be Q. By the choice of e and e^{\prime}, there are vertices $x^{\prime} \in Q_{0}^{*} \cap Q^{*}-N(a)$ and $y^{\prime} \in Q_{1}^{*} \cap Q^{* *}-N(a)$. Clearly, x^{\prime}, y^{\prime} are not adjacent, but x^{\prime}, y^{\prime} are both adjacent to x and y. Let $s^{\prime} \in Q_{1}^{*}-Q^{* *}$ and $s \in Q_{0}^{*}-Q^{*}$. Observe that $s^{\prime}, s \notin N(a)$. Since $x, x^{\prime}, s \in Q_{0}^{*}$ and $y^{\prime}, x, s^{\prime} \in Q_{1}^{*}$, so $\left\{x, x^{\prime}, s\right\}$, $\left\{y^{\prime}, x, s^{\prime}\right\}$ are cliques. Clearly, $G\left[s^{\prime}, x^{\prime}, x, y, a, y^{\prime}, s\right]=G_{2}$.

Case 2. In case that $\operatorname{lab}(e) \subset \operatorname{lab}\left(e^{\prime}\right)$ and $\operatorname{lab}\left(e^{\prime}\right) \nsubseteq \operatorname{lab}(e)$, suppose that e, Q^{a}, e^{\prime} appear in this order in T. By our assumption, e^{\prime} is not incident to a leaf since the elements in $\operatorname{lab}(e)$ have different ends to Q^{a} and there are vertices $x, y \in \operatorname{lab}(e) \cap \operatorname{lab}\left(e^{\prime}\right)$ with different ends to $Q^{a}, x^{\prime} \in \operatorname{lab}\left(e^{\prime}\right)-l a b(e)$ such that $T_{x}=T\left[Q, Q_{1}\right], T_{y}=T\left[Q_{2}, Q_{3}\right], T_{x^{\prime}}=T\left[Q_{5}, Q_{6}\right]$, and $Q_{4} \in T\left[Q, Q_{1}\right] \cap T\left[Q_{5}, Q_{6}\right]$ is the closest vertex of $T_{x^{\prime}}$ to Q and Q_{2}. Clearly, $Q_{4} \in T\left[Q, Q_{1}\right] \cap T\left[Q_{2}, Q_{3}\right]$, $Q_{1} \neq Q_{3}$ and Q, Q_{1}, Q_{3} may be on the same path in T.

Case 2.1. Suppose that Q_{1}, Q_{3}, Q_{6} are on the same path in T. Then Q_{6}, Q_{1}, Q_{3} or Q_{1}, Q_{6}, Q_{3} or Q_{1}, Q_{3}, Q_{6} or Q_{6}, Q_{3}, Q_{1} or Q_{3}, Q_{6}, Q_{1} or Q_{3}, Q_{1}, Q_{6} appear in this order in T. Observe that Q_{6} may be equal to Q_{1} or to Q_{3}. As $x, y, x^{\prime} \in \operatorname{lab}\left(e^{\prime}\right)$ and $\operatorname{lab}\left(e^{\prime}\right) \subset N(a)$, it follows that $\left\{x, y, x^{\prime}, a\right\}$ is a clique. Let $e=Q_{0} Q_{0}^{\prime}$ with $Q_{0} \in T\left[Q_{0}^{\prime}, Q^{a}\right]$, and let $s \in Q_{0}^{\prime}-Q_{0}$. Clearly, $s \notin N(a)$. Since $x, y \in \operatorname{lab}(e)$, so $x, y \in Q_{0}^{\prime}$. Also $x^{\prime} \notin \operatorname{lab}(e)$, so x^{\prime}, s are not adjacent. Hence, $\{x, y, s\}$ is a clique.

Case 2.1.1. Suppose that Q_{6}, Q_{1}, Q_{3} appear in this order in T. Let Q_{1}^{\prime} be a vertex adjacent to Q_{1} with $Q_{1}^{\prime} \in T\left[Q_{1}, Q_{3}\right]$. By the choice of e^{\prime}, there are vertices in the labels of edges in $T\left[Q_{6}, Q_{1}^{\prime}\right]$ that are not neighbors of a. Let x_{1}, \ldots, x_{k} be vertices chosen in the labels of these edges such that x_{i} is only adjacent to x_{i+1} for $i=1, \ldots, k-1, x_{1} \in Q_{6}, x_{k} \in Q_{1}^{\prime}, s^{\prime} \in Q_{1}^{\prime}-Q_{1} . s^{\prime} \notin N(a)$ since Q^{a},

Figure 14. T UV-model, $\operatorname{lab}(e) \subset l a b\left(e^{\prime}\right)$ and $l a b\left(e^{\prime}\right) \nsubseteq l a b(e)$.

Figure 15. T UV-model, $\operatorname{lab}(e) \subset l a b\left(e^{\prime}\right)$ and $l a b\left(e^{\prime}\right) \nsubseteq l a b(e)$.
Q_{1}, Q_{1}^{\prime} appear in this order in T, see Figure 14. Observe that k may be equal to 1. Moreover, $\{x, y, s\},\left\{x, y, x^{\prime}, a\right\},\left\{x, y, x^{\prime}, x_{1}\right\},\left\{x, y, x_{i}, x_{i+1}\right\}_{i=1, \ldots, k-1}$ and $\left\{x_{k}, y, s^{\prime}\right\}$ are cliques. Clearly, $G\left[s, s^{\prime}, x, x^{\prime}, x_{1}, \ldots, x_{k}, y, a\right]=G_{i}$ for $i=3$ if $k=1$ or $i=4$, otherwise. It is easy to see that we obtain the same induced subgraphs if the order is Q_{6}, Q_{3}, Q_{1}.

Case 2.1.2. Suppose that Q_{1}, Q_{6}, Q_{3} or Q_{1}, Q_{3}, Q_{6} appear in this order in T. In the first case, we can assume that $Q_{1} \neq Q_{6}$, since otherwise we obtain G_{i} for $i=3$ or $i=4$ following the earlier arguments. Let $s^{\prime} \in Q_{6}-Q_{1}$ if Q_{1}, Q_{6}, Q_{3} appear in this order in T or $s^{\prime} \in Q_{3}-Q_{1}$ if Q_{1}, Q_{3}, Q_{6} appear in this order in T. Clearly, $s^{\prime} \notin N(a)$ and s^{\prime}, y are adjacent. As $Q_{1} \neq Q_{6}, Q_{3}, x, s^{\prime}$ are not adjacent, see Figure 15. Observe that $\{s, x, y\},\left\{x, y, x^{\prime}, a\right\},\left\{x^{\prime}, y, s^{\prime}\right\}$ are cliques. Clearly, $G\left[x, x^{\prime}, y, s, s^{\prime}, a\right]=G_{1}$. It is easy to see that we obtain the same induced subgraphs if the order is Q_{3}, Q_{6}, Q_{1} or Q_{3}, Q_{1}, Q_{6}.

Case 2.2. Now suppose that Q_{1}, Q_{3}, Q_{6} are not on the same path in T. Let $Q_{1}^{*} \in T_{x} \cap T_{y}$ be the closest vertex to Q_{1} and Q_{3}, let $Q_{6}^{*} \in T_{x} \cap T_{y} \cap T_{x^{\prime}}$ be the closest vertex to Q_{1}^{*}. Observe that Q_{1}^{*} may be Q_{6}^{*}. Clearly, $Q_{1}^{*}, Q_{6}^{*}, Q_{3}$ are on the

Figure 16. T UV-model; $\operatorname{lab}(e) \nsubseteq l a b\left(e^{\prime}\right), \operatorname{lab}\left(e^{\prime}\right) \nsubseteq l a b(e)$ and $l a b(e) \cap l a b\left(e^{\prime}\right) \neq \emptyset$.
same path in T and $Q_{6}^{*}, Q_{1}^{*}, Q_{3}$ or $Q_{1}^{*}, Q_{6}^{*}, Q_{3}$ appear in this order in T. Following the earlier arguments we obtain G_{i} for $i=1$ or $i=3$ or $i=4$.

Case 3. In case that $\operatorname{lab}(e) \nsubseteq l a b\left(e^{\prime}\right)$ and $\operatorname{lab}\left(e^{\prime}\right) \nsubseteq l a b(e)$, there are $x \in$ $l a b(e)-l a b\left(e^{\prime}\right)$ and $y \in l a b\left(e^{\prime}\right)-l a b(e)$. Clearly, $\{x, y, a\}$ is a clique since $l a b(e) \subset$ $N(a)$ and $l a b\left(e^{\prime}\right) \subset N(a)$. Let $e=Q_{0} Q_{0}^{\prime}$ with $Q_{0} \in T\left[Q_{0}^{\prime}, Q^{a}\right]$ and $e^{\prime}=\overline{Q_{0}} \overline{Q_{0}^{\prime}}$ with $\overline{Q_{0}} \in T\left[Q^{a}, \overline{Q_{0}^{\prime}}\right]$.

Case 3.1. If there is a vertex $x^{\prime} \in l a b(e) \cap l a b\left(e^{\prime}\right)$, then let $s \in Q_{0}^{\prime}-Q_{0}$ and $s^{\prime} \in \overline{Q_{0}^{\prime}}-\overline{Q_{0}}$. Clearly, $s, s^{\prime} \notin N(a)$. As $x, x^{\prime} \in Q_{0}^{\prime}$ and $y \notin Q_{0}^{\prime}$, s is adjacent to x, x^{\prime} but not adjacent to y. Since $y, x^{\prime} \in \overline{Q_{0}^{\prime}}$ and $x \notin \overline{Q_{0}^{\prime}}, s^{\prime}$ is adjacent to y, x^{\prime} but not adjacent to x, see Figure 16. Observe that $\left\{s, x, x^{\prime}\right\},\left\{x, x^{\prime}, y, a\right\},\left\{x^{\prime}, y, s^{\prime}\right\}$ are cliques. Clearly, $G\left[x, x^{\prime}, y, s, s^{\prime}, a\right]=G_{1}$.

Case 3.2. If there is not a vertex in $\operatorname{lab}(e) \cap l a b\left(e^{\prime}\right)$, then since there are no cut vertices in G, we get $\left|l a b(e)-l a b\left(e^{\prime}\right)\right|>1$ and $\left|l a b\left(e^{\prime}\right)-l a b(e)\right|>1$. Thus there exist $x, x^{\prime} \in \operatorname{lab}(e)-l a b\left(e^{\prime}\right)$ with different ends to Q^{a} and $y, y^{\prime} \in l a b\left(e^{\prime}\right)-l a b(e)$ with different ends to Q^{a}. It is clear that $\left\{x, y, x^{\prime}, y^{\prime}, a\right\}$ is a clique since $l a b(e) \subset$ $N(a)$ and $l a b\left(e^{\prime}\right) \subset N(a)$. Let $T_{x}=T\left[Q, Q_{1}\right], T_{x^{\prime}}=T\left[Q_{2}, Q_{3}\right]$ with $Q_{1} \neq Q_{3}$ and let Q_{4}, Q_{5} be the ends of T_{x} and $T_{x^{\prime}}$, respectively, between e and e^{\prime} with Q^{a}, Q_{4}, Q_{5} appearing in this order in T, see Figure 18. Let $Q_{1}^{*} \in T_{x} \cap T_{x^{\prime}}$ be the closest vertex to Q_{1} and Q_{3}. Observe that Q_{1}^{*} may be Q_{1} or Q_{3} or Q_{4}. We may assume that $Q_{1}^{*} \neq Q_{3}$ and Q^{a}, Q_{1}^{*}, Q_{3} appear in this order in T. Observe that Q_{1}^{*} may be Q_{4}, and Q_{3} may be Q_{5}.

Case 3.2.1. Suppose that $Q_{4} \neq Q_{5}$. Clearly, there is $s^{\prime} \in Q_{5}-Q_{4}$ and $y \in Q_{4} \cap Q_{5} ; s^{\prime} \notin N(a)$ since Q^{a}, Q_{4}, Q_{5} appear in this order in T. Also s^{\prime} is not adjacent to x since $Q_{4} \neq Q_{5}$. Observe that $\left\{s^{\prime}, x^{\prime}, y\right\}$ is a clique. Let $s \in Q_{0}^{\prime}-Q_{0}$. Clearly $s \notin N(a)$. As $y \notin l a b(e)$ but $x, x^{\prime} \in l a b(e)$ it follows that s is adjacent to x and x^{\prime} but not adjacent to y, see Figure 17. The sets $\left\{x, x^{\prime}, y, a\right\},\left\{x, x^{\prime}, s\right\}$ and $\left\{s^{\prime}, x^{\prime}, y\right\}$ are cliques and $G\left[x, x^{\prime}, y, s, s^{\prime}, a\right]=G_{1}$.

Figure 17. T UV-model; $\operatorname{lab}(e) \nsubseteq l a b\left(e^{\prime}\right), \operatorname{lab}\left(e^{\prime}\right) \nsubseteq \operatorname{lab}(e)$ and $\operatorname{lab}(e) \cap l a b\left(e^{\prime}\right)=\emptyset$.

Figure 18. T UV-model; $l a b(e) \nsubseteq l a b\left(e^{\prime}\right), \operatorname{lab}\left(e^{\prime}\right) \nsubseteq l a b(e)$ and $l a b(e) \cap l a b\left(e^{\prime}\right)=\emptyset$.

Figure 19. T UV-model; $\operatorname{lab}(e) \nsubseteq l a b\left(e^{\prime}\right), \operatorname{lab}\left(e^{\prime}\right) \nsubseteq l a b(e)$ and $\operatorname{lab}(e) \cap l a b\left(e^{\prime}\right)=\emptyset$.

Figure 20. T UV-model; $\operatorname{lab}(e) \nsubseteq l a b\left(e^{\prime}\right), l a b\left(e^{\prime}\right) \nsubseteq l a b(e)$ and $l a b(e) \cap l a b\left(e^{\prime}\right)=\emptyset$.

Case 3.2.2.i. Suppose that $Q_{4}=Q_{5}$ and there is an edge \widetilde{e} such that $\operatorname{lab}(\widetilde{e}) \subset$ $N(a) ; Q^{a}, Q_{1}^{*}, Q_{3}, \widetilde{e}$ or $Q^{a}, Q_{1}^{*}, \widetilde{e}, Q_{3}$ or $Q^{a}, Q_{4}, \widetilde{e}, Q_{1}^{*}, Q_{3}$ appear in this order in T. Choose \widetilde{e} maximizing the distance between \widetilde{e} and e. By Case 2, we can assume that $l a b(\widetilde{e}) \nsubseteq \operatorname{lab}(e) ; \operatorname{lab}(e) \nsubseteq \operatorname{lab}(\widetilde{e})$ and $\operatorname{lab}(\widetilde{e}) \cap \operatorname{lab}(e) \cap N(a)=\emptyset$.

- In case that $Q_{1}^{*}, \widetilde{e}, Q_{3}$ appear in this order in T, since $\operatorname{lab}(\widetilde{e}) \nsubseteq \operatorname{lab}(e)$, there is $z \in \operatorname{lab}(\widetilde{e})-\operatorname{lab}(e)$. Let $s \in Q_{0}^{\prime}-Q_{0}$. Clearly $s \notin N(a)$. As $x, x^{\prime} \in Q_{0}^{\prime}$ and $z \notin Q_{0}^{\prime}$, so s is adjacent to x and x^{\prime} but is not adjacent to z. Since Q_{1}^{*}, \widetilde{e}, Q_{3} appear in this order, and x^{\prime} is in $\operatorname{lab}(\widetilde{e})$. Let $\widetilde{e}=\widetilde{Q_{0}} \widetilde{Q_{0}^{\prime}}$ with $\widetilde{Q_{0}} \in T\left[Q^{a}, \widetilde{Q_{0}^{\prime}}\right]$ and $s^{\prime} \in \widetilde{Q_{0}^{\prime}}-\widetilde{Q_{0}}$. Clearly $s^{\prime} \notin N(a)$. As $x^{\prime}, z \in \operatorname{lab}(\widetilde{e})$ and $x \notin \operatorname{lab}(\widetilde{e})$, we get $x^{\prime}, z \in \widetilde{Q_{0}^{\prime}}$ and $x \notin \widetilde{Q_{0}^{\prime}}$. Hence, s^{\prime} is adjacent to x^{\prime} and z but is not adjacent to x, see Figure 19. Observe that $\left\{x, x^{\prime}, z, a\right\},\left\{x, x^{\prime}, s\right\}$ and $\left\{s^{\prime}, x^{\prime}, z\right\}$ are cliques and $G\left[x, x^{\prime}, y, s, s^{\prime}, a\right]=G_{1}$.
- In case that $Q_{1}^{*}, Q_{3}, \widetilde{e}$ appear in this order in T, since $\operatorname{lab}(\widetilde{e}) \nsubseteq l a b(e)$ there is $z \in \operatorname{lab}(\widetilde{e})-\operatorname{lab}(e)$. Let $s \in Q_{0}^{\prime}-Q_{0}$. Clearly $s \notin N(a)$ and is adjacent to x and x^{\prime} but not adjacent to z. Since $Q_{1}^{*}, Q_{3}, \widetilde{e}$ appear in this order and $z \in N(a)$ so $z \in Q_{3} \cap Q_{1}^{*}$. As $Q_{1}^{*} \neq Q_{3}$, let $s^{\prime} \in Q_{3}-Q_{1}^{*}$; clearly $\left\{z, x^{\prime}, s\right\}$ is a clique, see Figure 20. Since $Q^{a}, Q_{4}, Q_{1}^{*}, Q_{3}$ appear in this order in $T, s^{\prime} \notin N(a)$. The sets $\left\{x, x^{\prime}, z, a\right\},\left\{x, x^{\prime}, s\right\}$ and $\left\{s^{\prime}, x^{\prime}, z\right\}$ are cliques and $G\left[x, x^{\prime}, z, s, s^{\prime}, a\right]=G_{1}$.
- Finally, suppose that $Q_{4}, \widetilde{e}, Q_{1}^{*}$ appear in this order in T. Since $\operatorname{lab}(\widetilde{e}) \nsubseteq$ $\operatorname{lab}(e)$ and $\operatorname{lab}(e) \nsubseteq \operatorname{lab}(\widetilde{e})$ we conclude that there are $z \in \operatorname{lab}(\widetilde{e})-\operatorname{lab}(e)$ and $v \in \operatorname{lab}(e)-\operatorname{lab}(\widetilde{e})$. Observe that $v \neq x, x^{\prime}$ since $x, x^{\prime} \in \operatorname{lab}(\widetilde{e})$ (this follows from the fact that $Q_{4}, \widetilde{e}, Q_{1}^{*}$ appear in this order in $\left.T\right)$. Let $s \in Q_{0}^{\prime}-Q_{0}$, let $\widetilde{e}=\widetilde{Q_{0}} \widetilde{Q_{0}^{\prime}}$ with $\widetilde{Q_{0}} \in T\left[Q^{a}, \widetilde{Q_{0}^{\prime}}\right]$ and $s^{\prime} \in \widetilde{Q_{0}^{\prime}}-\widetilde{Q_{0}}$. Clearly $s, s^{\prime} \notin N(a)$. Since $v, x^{\prime} \in \operatorname{lab}(e)$ and $z, x^{\prime} \in \operatorname{lab}(\widetilde{e}), s$ is adjacent to v and x^{\prime} but is not adjacent to z and s^{\prime} is adjacent to x^{\prime}, z but is not adjacent to v, see Figure 21. Observe that $\left\{v, x^{\prime}, z, a\right\}$, $\left\{v, x^{\prime}, s\right\}$ and $\left\{s^{\prime}, x^{\prime}, z\right\}$ are cliques and $G\left[v, x^{\prime}, z, s, s^{\prime}, a\right]=G_{1}$.

Case 3.2.2.ii. Suppose that $Q_{4}=Q_{5}$ and there is not an edge \widetilde{e} such that $\operatorname{lab}(\widetilde{e}) \subset N(a)$, and $Q^{a}, Q_{4}, Q_{3}, \widetilde{e}$ or $Q^{a}, Q_{4}, \widetilde{e}, Q_{3}$ or $Q^{a}, Q_{4}, \widetilde{e}, Q_{1}^{*}, Q_{3}$ ap-

Figure 21. T UV-model; $l a b(e) \nsubseteq l a b\left(e^{\prime}\right), l a b\left(e^{\prime}\right) \nsubseteq l a b(e)$ and $l a b(e) \cap l a b\left(e^{\prime}\right)=\emptyset$.

Figure 22. T UV-model; $l a b(e) \nsubseteq l a b\left(e^{\prime}\right), \operatorname{lab}\left(e^{\prime}\right) \nsubseteq l a b(e)$ and $l a b(e) \cap l a b\left(e^{\prime}\right)=\emptyset$.
pear in this order in T. Then $Q_{4} \neq Q^{a}$. Also there are vertices in the labels of edges in $T\left[Q_{4}, Q_{3}\right]$ that are not neighbors of a. Let Q_{1}^{\prime} be adjacent to Q_{1}^{*} with $Q_{1}^{\prime} \in T\left[Q_{1}^{*}, Q_{3}\right]$ and let x_{1}, \ldots, x_{k} be vertices chosen in these labels such that x_{i} is only adjacent to x_{i+1} for $i=1, \ldots, k-1, x_{1} \in Q_{4}, x_{k} \in Q_{1}^{\prime}$, $s^{\prime} \in Q_{1}^{\prime}-Q_{1}^{*}$ and $s \in Q_{0}^{\prime}-Q_{0}$. Clearly, $s \notin N(a)$ and s is adjacent to x, x^{\prime} but not adjacent to y since $y \in \operatorname{lab}\left(e^{\prime}\right)-\operatorname{lab}(e)$. Observe that k may be equal 1 and $y \in Q_{4}-Q_{1}^{\prime}$ (Q_{1}^{\prime} is not between e and e^{\prime}), see Figure 22. Moreover, $\left\{x, x^{\prime}, s\right\},\left\{x, y, x^{\prime}, a\right\},\left\{x, y, x^{\prime}, x_{1}\right\},\left\{x, y, x_{i}, x_{i+1}\right\}_{i=1, \ldots, k-1}$ and $\left\{x_{k}, x^{\prime}, s^{\prime}\right\}$ are cliques. Clearly, $G\left[s, s^{\prime}, x, x^{\prime}, x_{1}, \ldots, x_{k}, y, a\right]=G_{i}$ for $i=3$ if $k=1$ or $i=4$, otherwise.

Acknowledgements

We thank the referees for their remarks and suggestions which improved the presentation of the earlier draft of this manuscript.

References

[1] J.R.S. Blair and B.W. Peyton, On finding minimum-diameter clique trees, Nordic J. Comput. 1 (1994) 173-201.
[2] F. Gavril, The intersection graphs of subtrees in trees are exactly the chordal graphs, J. Combin. Theory Ser. B 16 (1974) 47-56. doi:10.1016/0095-8956(74)90094-X
[3] J. Gimbel, End vertices in interval graphs, Discrete Appl. Math. 21 (1988) 257-259. doi:10.1016/0166-218X(88)90071-6
[4] B. Lévêque, F. Maffray and M. Preissmann, Characterizing path graphs by forbidden induced subgraphs, J. Graph Theory 62 (2009) 369-384. doi:10.1002/jgt. 20407
[5] C. Monma and V. Wei, Intersection graphs of paths in a tree, J. Combin. Theory Ser. B 41 (1986) 141-181. doi:10.1016/0095-8956(86)90042-0
[6] Y. Shibata, On the tree representation of chordal graphs, J. Graph Theory 12 (1988) 421-428. doi:10.1002/jgt. 3190120313
[7] J.R. Walter, Representations of chordal graphs as subtrees of a tree, J. Graph Theory 2 (1978) 265-267.
doi:10.1002/jgt. 3190020311
Received 28 November 2013
Revised 17 July 2015
Accepted 17 July 2015

