A CHARACTERIZATION OF HYPERGRAPHS WITH LARGE DOMINATION NUMBER

Michael A. Henning $^{1 a}$ and Christian Löwenstein ${ }^{2 a, b}$
${ }^{a}$ Department of Pure and Applied Mathematics
University of Johannesburg
Auckland Park, 2006, South Africa
${ }^{b}$ Institute of Optimization and Operations Research Ulm University Ulm 89081, Germany
e-mail: mahenning@uj.ac.za
christian.loewenstein@uni-ulm.de

Abstract

Let $H=(V, E)$ be a hypergraph with vertex set V and edge set E. A dominating set in H is a subset of vertices $D \subseteq V$ such that for every vertex $v \in V \backslash D$ there exists an edge $e \in E$ for which $v \in e$ and $e \cap D \neq \emptyset$. The domination number $\gamma(H)$ is the minimum cardinality of a dominating set in H. It is known [Cs. Bujtás, M.A. Henning and Zs. Tuza, Transversals and domination in uniform hypergraphs, European J. Combin. 33 (2012) 62-71] that for $k \geq 5$, if H is a hypergraph of order n and size m with all edges of size at least k and with no isolated vertex, then $\gamma(H) \leq(n+$ $\lfloor(k-3) / 2\rfloor m) /(\lfloor 3(k-1) / 2\rfloor)$. In this paper, we apply a recent result of the authors on hypergraphs with large transversal number [M.A. Henning and C. Löwenstein, A characterization of hypergraphs that achieve equality in the Chvátal-McDiarmid Theorem, Discrete Math. 323 (2014) 69-75] to characterize the hypergraphs achieving equality in this bound.

Keywords: domination, transversal, hypergraph.
2010 Mathematics Subject Classification: 05C69.

[^0]
1. Introduction

In this paper we continue the study of domination in hypergraphs. Hypergraphs are systems of sets which are conceived as natural extensions of graphs. A hypergraph $H=(V, E)$ is a finite set $V=V(H)$ of elements, called vertices, together with a finite multiset $E=E(H)$ of subsets of V, called hyperedges or simply edges.

We shall use the notation $n_{H}=|V|$ and $m_{H}=|E|$, and sometimes simply n and m without subscript if the actual H need not be emphasized, to denote the order and size of H, respectively. A k-edge in H is an edge of size k. The hypergraph H is said to be k-uniform if every edge of H is a k-edge. Every (simple) graph is a 2 -uniform hypergraph. Thus graphs are special hypergraphs. Two vertices x and y of H are adjacent if there is an edge e of H such that $\{x, y\} \subseteq e$.

The degree of a vertex v in H, denoted by $d_{H}(v)$ or simply by $d(v)$ if H is clear from the context, is the number of edges of H which contain v. The minimum degree among the vertices of H is denoted by $\delta(H)$. We define a hypergraph H to be edge-minimal if every edge of H contains at least one vertex of degree 1 in H.

If H^{\prime} is a hypergraph such that $V\left(H^{\prime}\right) \subseteq V(H)$ and $E\left(H^{\prime}\right) \subseteq E(H)$, then H^{\prime} is called a subhypergraph of H. Possibly, $H^{\prime}=H$. Two vertices x and y of H are connected if there is a sequence $x=v_{0}, v_{1}, v_{2}, \ldots, v_{k}=y$ of vertices of H in which v_{i-1} is adjacent to v_{i} for $i=1,2, \ldots, k$. A connected hypergraph is a hypergraph in which every pair of vertices are connected. A maximal connected subhypergraph of H is a component of H. Thus, no edge in H contains vertices from different components. A component of a hypergraph H that is isomorphic to a hypergraph F we call an F-component of H.

A subset T of vertices in a hypergraph H is a transversal (also called vertex cover or hitting set in many papers) if T has a nonempty intersection with every edge of H. The transversal number $\tau(H)$ of H is the minimum size of a transversal in H. A transversal of size $\tau(H)$ is called a $\tau(H)$-set.

A dominating set in H is a subset of vertices $D \subseteq V$ such that for every vertex $v \in V \backslash D$ there exists an edge $e \in E$ for which $v \in e$ and $e \cap D \neq \emptyset$. Equivalently, every vertex $v \in V \backslash D$ is adjacent to a vertex in D. The domination number $\gamma(H)$ is the minimum cardinality of a dominating set in H. A dominating set of H of cardinality $\gamma(H)$ is called a $\gamma(H)$-set.

If $X, Y \subseteq V$, then we say that Y dominates X if every vertex in X is in Y or is adjacent to some vertex of Y. If X is a nonempty subset of vertices in H, then we define an X-dominating set in H as a set Y that dominates X and we define the X-domination number, denoted $\gamma(X ; H)$ as the minimum cardinality of an X-dominating set in H. In particular, we note that $\gamma(H)=\gamma(V ; H)$.

Domination in graphs is still a very active area inside graph theory; see, for
example, the recent papers $[6,11,14]$. Domination in hypergraphs, however, was introduced recently by Acharya [1] and studied further, for example, in $[2,3,4$, $8,12]$.

Bujtás, Henning, Tuza [4] proved the following upper bounds on the domination number of a hypergraph.

Theorem A [4]. For $k \geq 3$, if H is a hypergraph of order n and size m with all edges of size at least k and with $\delta(H) \geq 1$, then

$$
\gamma(H) \leq \frac{n+\left\lfloor\frac{k-3}{2}\right\rfloor m}{\left\lfloor\frac{3(k-1)}{2}\right\rfloor}
$$

Theorem B [4]. If H is a hypergraph of order n with all edges of size at least 5 and with $\delta(H) \geq 1$, then $\gamma(H) \leq 2 n / 9$.

We have two immediate aims in this paper. Our first aim is to characterize the extremal hypergraphs in Theorem A for each $k \geq 5$. Our second aim is to characterize the extremal hypergraphs in Theorem B. For this purpose, we define three special families of hypergraphs.

1.1. Special families of hypergraphs

For $k \geq 4$, let E_{k} denote the k-uniform hypergraph on k vertices with exactly one edge. The hypergraph E_{4} is illustrated in Figure 1.

For $k \geq 4$, we define the k-uniform hypergraph T_{k} as follows. Let A, B, C and D be vertex-disjoint sets of vertices with $|A|=\lceil k / 2\rceil,|B|=|C|=\lfloor k / 2\rfloor$ and $|D|=\lceil k / 2\rceil-\lfloor k / 2\rfloor$. In particular, if k is even, the set $D=\emptyset$, while if k is odd, the set D consists of a singleton vertex. Let T_{k} denote the k-uniform hypergraph with $V\left(T_{k}\right)=A \cup B \cup C \cup D$ and with $E\left(T_{k}\right)=\left\{e_{1}, e_{2}, e_{3}\right\}$, where $V\left(e_{1}\right)=A \cup B, V\left(e_{2}\right)=A \cup C$, and $V\left(e_{3}\right)=B \cup C \cup D$. The hypergraphs T_{4} and T_{5} are illustrated in Figure 1.

For odd $k \geq 5$, we define the hypergraph T_{k}^{*} as follows. Let A, B and C be vertex-disjoint sets of vertices with $|A|=|B|=(k+1) / 2$ and $|C|=(k-1) / 2$. Let T_{k}^{*} denote the hypergraph with $V\left(T_{k}^{*}\right)=A \cup B \cup C$ and with $E\left(T_{k}^{*}\right)=\left\{e_{1}, e_{2}, e_{3}\right\}$, where $V\left(e_{1}\right)=A \cup B, V\left(e_{2}\right)=A \cup C$, and $V\left(e_{3}\right)=B \cup C$. The hypergraph T_{5}^{*} is illustrated in Figure 1. Note that every edge in T_{k}^{*} has size at least k.

Given a hypergraph $H=(V, E)$, let H^{\prime} be obtained from H by expanding every edge in H by adding to it one new vertex, where all added vertices have degree 1 in H^{\prime}. We call $H^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ the expanded hypergraph $\operatorname{expa}(H)$ of H. That is for every edge $e \in E$, if v_{e} denotes the new vertex added to e, where $v_{e} \neq v_{f}$ for edges $e \neq f$ in H, then $E^{\prime}=\left\{V(e) \cup\left\{v_{e}\right\} \mid e \in E\right\}$ and $V^{\prime}=V \cup \bigcup_{e \in E}\left\{v_{e}\right\}$.

For $k \geq 5$, let $D_{k}=\operatorname{expa}\left(T_{k-1}\right)$. The hypergraphs D_{5} and D_{6} are illustrated in Figure 2. Note that D_{k} is k-uniform.

Figure 1. The hypergraphs E_{4}, T_{4}, T_{5} and T_{5}^{*}.
For even $k \geq 6$, let $D_{k}^{*}=\operatorname{expa}\left(T_{k-1}^{*}\right)$. The hypergraph D_{6}^{*} is illustrated in Figure 2. Note that D_{k}^{*} is of edge size at least k.

Figure 2. The hypergraphs D_{5}, D_{6} and D_{6}^{*}.
We are now in a position to define our three special families of hypergraphs.

The Family $\mathcal{T}_{\boldsymbol{k}}$. For even $k \geq 4$, we define $\mathcal{T}_{k}=\left\{E_{k}, T_{k}\right\}$ and for odd $k \geq 5$, we define $\mathcal{T}_{k}=\left\{E_{k}, T_{k}, T_{k}^{*}\right\}$.

The Family $\mathcal{D}_{\boldsymbol{k}}$. For odd $k \geq 5$, we define $\mathcal{D}_{k}=\left\{E_{k}, D_{k}\right\}$ and for even $k \geq 6$, we define $\mathcal{D}_{k}=\left\{E_{k}, D_{k}, D_{k}^{*}\right\}$.

The Family \mathcal{H}. Let D_{5} be the hypergraph shown in Figure 2. Let $H_{\text {under }}$ be a hypergraph every component of which is isomorphic to D_{5}. Let H be a hypergraph obtained from $H_{\text {under }}$ by adding edges of size at least five, called link edges, in such a way that every added edge contains only vertices of degree 2 in $H_{\text {under }}$. Possibly, H is disconnected or $H=D_{5}$. We call the hypergraph $H_{\text {under }}$ an underlying hypergraph of H. Let \mathcal{H} denote the family of all such hypergraphs H.

2. Main Result

Our aim in this paper is to characterize the extremal hypergraphs in Theorem A and Theorem B. We shall prove:

Theorem 1. For $k \geq 5$, let H be a connected hypergraph on n vertices and m edges with edge size at least k and with $\delta(H) \geq 1$. Then,

$$
\gamma(H) \leq \frac{n+\left\lfloor\frac{k-3}{2}\right\rfloor m}{\left\lfloor\frac{3(k-1)}{2}\right\rfloor}
$$

with equality if and only if $H \in \mathcal{D}_{k}$.
Theorem 2. Let H be a connected hypergraph on n vertices with edge size at least 5 and with $\delta(H) \geq 1$. Then, $\gamma(H) \leq 2 n / 9$, with equality if and only if $H \in \mathcal{H}$.

A proof of Theorem 1 is presented in Section 5, while a proof of Theorem 2 is given in Section 6.

3. Known Results on Transversals in Hypergraphs

Chvátal and McDiarmid [5] established the following upper bound on the transversal number of a uniform hypergraphs in terms of its order and size.

Chvátal-McDiarmid Theorem. For $k \geq 2$, if H is a k-uniform hypergraph on n vertices with m edges, then $\tau(H) \leq\left(n+\left\lfloor\frac{k}{2}\right\rfloor m\right) /\left(\left\lfloor\frac{3 k}{2}\right\rfloor\right)$.

The extremal connected hypergraphs that achieve equality in the ChvátalMcDiarmid Theorem when $k=3$ were characterized by Henning and Yeo [7]. For $k=2$ and $k \geq 4$, the extremal hypergraphs were characterized by the authors in [10].

Theorem C [10]. For $k=2$ and $k \geq 4$, let H be a connected k-uniform hypergraph on n vertices and m edges. Then, $\tau(H) \leq\left(n+\left\lfloor\frac{k}{2}\right\rfloor m\right) /\left(\left\lfloor\frac{3 k}{2}\right\rfloor\right)$ with equality if and only if $H \in\left\{E_{k}, T_{k}\right\}$.

In the special case when $k=4$, Lai and Chang [13] established the following upper bound on the transversal number of a k-uniform hypergraph.

Lai-Chang Theorem. If H is a 4-uniform hypergraph on n vertices and m edges, then $\tau(H) \leq 2(n+m) / 9$.

The extremal hypergraphs achieving equality in the Lai-Chang Theorem were characterized by the authors in [9].

Theorem D [9]. Let H be a connected hypergraph on n vertices and m edges with edge size at least 4. If $\tau(H)=2(n+m) / 9$, then $H=T_{4}$.

4. Preliminary Results

In this section, we present some preliminary observations, lemmas and theorems that we will need in proving our main results. Our first result is a generalization of Theorem C where we relax the k-uniformity condition to edge sizes at least k.

Theorem 3. For $k \geq 4$, let H be a connected hypergraph on n vertices and m edges with edge size at least k and with $\delta(H) \geq 1$. Then,

$$
\tau(H) \leq \frac{n+\left\lfloor\frac{k}{2}\right\rfloor m}{\left\lfloor\frac{3 k}{2}\right\rfloor}
$$

with equality if and only if $H \in \mathcal{T}_{k}$.
Proof. For $k \geq 4$, let H be a hypergraph of order n and size m with all edges of size at least k. If H is a k-uniform hypergraph, then the result follows from Theorem C. Hence, we may assume that H is not k-uniform, for otherwise the desired result follows. Let H^{\prime} be a k-uniform hypergraph obtained from H by shrinking every edge of size at least $k+1$ to an edge of size k (by removing vertices from a large edge until the edge size is reduced to size k) and deleting resulting isolated vertices, if any. Let H^{\prime} have order n^{\prime} and size m^{\prime}. Then, $n^{\prime} \leq n$ and $m^{\prime}=m$. Every transversal in H^{\prime} is a transversal in H, and so $\tau(H) \leq \tau\left(H^{\prime}\right)$. Thus, by the Chvátal-McDiarmid Theorem,

$$
\tau(H) \leq \tau\left(H^{\prime}\right) \leq \frac{n^{\prime}+\left\lfloor\frac{k}{2}\right\rfloor m^{\prime}}{\left\lfloor\frac{3 k}{2}\right\rfloor} \leq \frac{n+\left\lfloor\frac{k}{2}\right\rfloor m}{\left\lfloor\frac{3 k}{2}\right\rfloor}
$$

This establishes the upper bound. To prove the necessity, suppose that $\tau(H)$ $=\left(n+\left\lfloor\frac{k}{2}\right\rfloor m\right) /\left\lfloor\frac{3 k}{2}\right\rfloor$. Then,

$$
\frac{n+\left\lfloor\frac{k}{2}\right\rfloor m}{\left\lfloor\frac{3 k}{2}\right\rfloor}=\tau(H) \leq \tau\left(H^{\prime}\right) \leq \frac{n^{\prime}+\left\lfloor\frac{k}{2}\right\rfloor m^{\prime}}{\left\lfloor\frac{3 k}{2}\right\rfloor} \leq \frac{n+\left\lfloor\frac{k}{2}\right\rfloor m}{\left\lfloor\frac{3 k}{2}\right\rfloor} .
$$

Consequently, we must have equality throughout the above inequality chain. In particular, $n^{\prime}=n$ and H^{\prime} is a k-uniform hypergraph, possibly disconnected, satisfying $\tau\left(H^{\prime}\right)=\left(n+\left\lfloor\frac{k}{2}\right\rfloor m\right) /\left\lfloor\frac{3 k}{2}\right\rfloor$. By Theorem C, $\tau(C)=\left(n_{C}+\left\lfloor\frac{k}{2}\right\rfloor m_{C}\right) /\left\lfloor\frac{3 k}{2}\right\rfloor$
for every component C of H^{\prime} on n_{C} vertices and m_{C} edges. Applying Theorem C to each component of H^{\prime}, we note that every component of H^{\prime} is an E_{k}-component or a T_{k}-component. Let T^{\prime} be a $\tau\left(H^{\prime}\right)$-set. Note that T^{\prime} contains one vertex from every E_{k}-component of H^{\prime} and two vertices from every T_{k}-component of H^{\prime}.

Claim A. H^{\prime} is connected.
Proof. Suppose, to the contrary, that there is an edge $e \in E(H)$ whose vertex set is not entirely contained in a component of H^{\prime}. Since $n^{\prime}=n$, we note that the edge e has a nonempty intersection with at least two components of H^{\prime}. Since $e \notin E\left(H^{\prime}\right)$, let $e^{\prime} \in E\left(H^{\prime}\right)$ be the edge that resulted from shrinking the edge e. Let F_{e} denote the component of H^{\prime} containing e^{\prime} and let F_{v} denote a component of H^{\prime} different from F_{e} that has a nonempty intersection with e. Let $v \in V(e) \cap V\left(F_{v}\right)$. If F_{v} is a T_{k}-component, then let v^{\prime} be a vertex in F_{v} that is contained in all edges of F_{v} that do not contain v. If F_{e} is a T_{k}-component, then let u be a vertex in F_{e} that is contained in both edges of F_{e} different from e^{\prime}.

Suppose that F_{e} is an E_{k}-component of H^{\prime}. If F_{v} is an E_{k}-component, let $T=\left(T^{\prime} \backslash\left(V\left(F_{v}\right) \cup V\left(F_{e}\right)\right)\right) \cup\{v\}$. If F_{v} is a T_{k}-component, let $T=\left(T^{\prime} \backslash\left(V\left(F_{v}\right) \cup\right.\right.$ $\left.\left.V\left(F_{e}\right)\right)\right) \cup\left\{v, v^{\prime}\right\}$. In both cases, T is a transversal in H of size $\left|T^{\prime}\right|-1$, implying that $\tau(H) \leq \tau\left(H^{\prime}\right)-1<\left(n+\left\lfloor\frac{k}{2}\right\rfloor m\right) /\left\lfloor\frac{3 k}{2}\right\rfloor$, a contradiction. Hence, F_{e} is a T_{k}-component. If F_{v} is an E_{k}-component, then $\left(T^{\prime} \backslash\left(V\left(F_{v}\right) \cup V\left(F_{e}\right)\right)\right) \cup\{u, v\}$ is a transversal in H of size $\left|T^{\prime}\right|-1$. If F_{v} is a T_{k}-component, then $\left(T^{\prime} \backslash\left(V\left(F_{v}\right) \cup\right.\right.$ $\left.\left.V\left(F_{e}\right)\right)\right) \cup\left\{u, v, v^{\prime}\right\}$ is a transversal in H of size $\left|T^{\prime}\right|-1$. Both cases produce a contradiction. Hence there is no edge $e \in E(H)$ that has a nonempty intersection with at least two components of H^{\prime}, which implies that H^{\prime} is connected.

By Claim A, H^{\prime} is connected and therefore, by Theorem C, $H^{\prime} \in\left\{E_{k}, T_{k}\right\}$. Hence we may assume that $H \neq H^{\prime}$, for otherwise $H \in \mathcal{T}_{k}$, as desired. Therefore there is an edge e of H that is of size at least $k+1$, implying that $H^{\prime}=T_{k}$. If there is a vertex w of degree 3 in H, then $\{w\}$ is a transversal in H of size $\left|T^{\prime}\right|-1$, a contradiction. Hence every vertex in H has degree at most 2 . This implies that if k is even, then $H=H^{\prime}$, contradicting our earlier assumption that $H \neq H^{\prime}$. Hence, k is odd, and so H has order $n\left(T_{k}\right)=(3 k+1) / 2$. It follows that H consists of two edges of size k and one edge, namely the edge e, of size $k+1$. Further every vertex of H is of degree 2. Hence, $H=T_{k}^{*}$, and so $H \in \mathcal{T}_{k}$. This establishes the necessity. If $H \in \mathcal{T}_{k}$, then it is straightforward to check that $\tau(H)=\left(n+\left\lfloor\frac{k}{2}\right\rfloor m\right) /\left\lfloor\frac{3 k}{2}\right\rfloor$. This establishes the sufficiency and completes the proof of the Theorem 3 .

Since every transversal in a hypergraph with no isolated vertex is a dominating set in the hypergraph, we have the following observation.

Observation 4. If H is a hypergraph with $\delta(H) \geq 1$, then $\gamma(H) \leq \tau(H)$.

We shall need the following properties of the hypergraphs in the family \mathcal{D}_{k} and the hypergraph D_{5}.

Observation 5. For $k \geq 5$, let $F \in \mathcal{D}_{k}$ have order n_{F} and size m_{F}. Let $H=D_{5}$ have order n_{H} and size m_{H}, and let $X \subseteq V(H)$. Then the following holds.
(a) $\gamma(F)=\left(n_{F}+\left\lfloor\frac{k-3}{2}\right\rfloor m_{F}\right) /\left\lfloor\frac{3(k-1)}{2}\right\rfloor$.
(b) $\gamma(H)=2=2 n_{H} / 9$.
(c) Every vertex in H belongs to some $\gamma(H)$-set.
(d) If some vertex of degree 1 in H is not in X, then $\gamma(X ; H)=1<2 n_{H} / 9$.

Lemma 6. If $H \in \mathcal{H}$ has order n_{H}, then $\gamma(H)=2 n_{H} / 9$.
Proof. Let $H_{\text {under }}$ be an underlying hypergraph of H and let $\mathcal{C}\left(H_{\text {under }}\right)$ be the set of all components of $H_{\text {under }}$. Further, let $F \in \mathcal{C}\left(H_{\text {under }}\right)$ and let X_{F} be the set of all vertices of degree 1 in F. Then, F is isomorphic to D_{5}, and $\left|X_{F}\right|=3$. By construction of H, every vertex in X_{F} has degree 1 in H, and is adjacent in H only to vertices in $V(F)$. Now let D be a minimum dominating set of H. In order to dominate the vertices in X_{F}, the dominating set D must contain at least two vertices of $V(F)$. This is true for every component, F, in $H_{\text {under }}$, implying that

$$
|D| \geq 2\left|\mathcal{C}\left(H_{\text {under }}\right)\right|=\frac{2}{9} n_{H}
$$

and so $\gamma(H) \geq \frac{2}{9} n_{H}$. By Theorem B, $\gamma(H) \leq 2 n_{H} / 9$. Consequently, $\gamma(H)=$ $2 n_{H} / 9$.

Recall that a hypergraph is edge-minimal if every edge of the hypergraph contains at least one vertex of degree 1 .

Lemma 7. For $k \geq 5$, let H be a connected edge-minimal hypergraph of order n_{H} and size m_{H} with all edges of size at least k and with $\delta(H) \geq 1$. Then the following holds.
(a) $\gamma(H)=\left(n_{H}+\left\lfloor\frac{k-3}{2}\right\rfloor m_{H}\right) /\left\lfloor\frac{3(k-1)}{2}\right\rfloor$ if and only if $H \in \mathcal{D}_{k}$.
(b) For $k=5$, we have $\gamma(H)=2 n_{H} / 9$ if and only if $H=D_{5}$.

Proof. By the edge minimality of H, every edge of H contains a vertex of degree 1. Hence every dominating set of H is also a transversal in H, and so $\tau(H) \leq \gamma(H)$. Consequently by Observation $4, \tau(H)=\gamma(H)$. Let H^{\prime} be the hypergraph obtained from H by deleting exactly one vertex of degree 1 from each edge of H. Note that $H=\operatorname{expa}\left(H^{\prime}\right)$. Since H is connected, so too is H^{\prime}. We note that all edges of H^{\prime} have size at least $k-1$ and that H^{\prime} may have multiple edges. Let n_{H}^{\prime} and m_{H}^{\prime} denote the order and size of H^{\prime}, respectively. By construction,
$n_{H}^{\prime}=n_{H}-m_{H}$ and $m_{H}^{\prime}=m_{H}$. The transversal number of H and H^{\prime} remains unchanged, and so $\tau(H)=\tau\left(H^{\prime}\right)$. We now consider part (a) and part (b) in turn.
(a) The sufficiency follows from Observation 5(a). To prove the necessity, suppose that $\gamma(H)=\left(n_{H}+\left\lfloor\frac{k-3}{2}\right\rfloor m_{H}\right) /\left\lfloor\frac{3(k-1)}{2}\right\rfloor$. Then,

$$
\frac{n_{H}^{\prime}+\left\lfloor\frac{k-1}{2}\right\rfloor m_{H}^{\prime}}{\left\lfloor\frac{3(k-1)}{2}\right\rfloor}=\frac{n_{H}+\left\lfloor\frac{k-3}{2}\right\rfloor m_{H}}{\left\lfloor\frac{3(k-1)}{2}\right\rfloor}=\gamma(H)=\tau(H)=\tau\left(H^{\prime}\right) .
$$

By Theorem 3, $H^{\prime} \in \mathcal{T}_{k-1}$, implying that $H \in \mathcal{D}_{k}$.
(b) The sufficiency follows from Observation 5(b). To prove the necessity, suppose that $\gamma(H)=2 n_{H} / 9$. Then, $2\left(n_{H}^{\prime}+m_{H}^{\prime}\right) / 9=2 n_{H} / 9=\gamma(H)=\tau(H)=\tau\left(H^{\prime}\right)$. By Theorem D, $H^{\prime}=T_{4}$, implying that $H=D_{5}$.

We remark that with the technique used in the proof of Lemma 7(a) and the result of [7], we can characterize the connected edge-minimal hypergraphs H of order n_{H} with edge size at least 4 and with $\delta(H) \geq 1$ achieving $\gamma(H)=n_{H} / 4$. These are exactly the expanded hypergraphs of the hypergraphs mentioned in [7] that achieve equality in Theorem A for $k=3$.

5. Proof of Theorem 1

Recall the statement of Theorem 1.
Theorem 1. For $k \geq 5$, let H be a connected hypergraph on n vertices and m edges with edge size at least k and with $\delta(H) \geq 1$. Then,

$$
\gamma(H) \leq \frac{n+\left\lfloor\frac{k-3}{2}\right\rfloor m}{\left\lfloor\frac{3(k-1)}{2}\right\rfloor}
$$

with equality if and only if $H \in \mathcal{D}_{k}$.
Proof. Let H be a hypergraph of order n and size m with all edges of size at least k and with $\delta(H) \geq 1$. By Theorem A, $\gamma(H) \leq\left(n+\left\lfloor\frac{k-3}{2}\right\rfloor m\right) /\lfloor 3(k-1) / 2\rfloor$. If $H \in \mathcal{D}_{k}$, then, by Observation $5(\mathrm{a}), \gamma(H)=\left(n+\left\lfloor\frac{k-3}{2}\right\rfloor m\right) /\lfloor 3(k-1) / 2\rfloor$. This establishes the sufficiency.

To prove the necessity, suppose that $\gamma(H)=\left(n+\left\lfloor\frac{k-3}{2}\right\rfloor m\right) /\lfloor 3(k-1) / 2\rfloor$. Let H^{\prime} be a hypergraph obtained from H by successively deleting edges of H that do not contain any vertices of degree 1 in the resulting hypergraph at each stage. We note that H^{\prime} is a hypergraph with all edges of size at least k and with $V\left(H^{\prime}\right)=V(H)$ and $E\left(H^{\prime}\right) \subseteq E(H)$. In particular, H^{\prime} has $n^{\prime}=n$ vertices and
$m^{\prime} \leq m$ edges. When H is transformed to H^{\prime}, isolated vertices cannot arise and the domination number cannot decrease. Therefore, $\gamma(H) \leq \gamma\left(H^{\prime}\right)$, and so, by Theorem A applied to the hypergraph H^{\prime}, we see that

$$
\frac{n+\left\lfloor\frac{k-3}{2}\right\rfloor m}{\left\lfloor\frac{3(k-1)}{2}\right\rfloor}=\gamma(H) \leq \gamma\left(H^{\prime}\right) \leq \frac{n^{\prime}+\left\lfloor\frac{k-3}{2}\right\rfloor m^{\prime}}{\left\lfloor\frac{3(k-1)}{2}\right\rfloor} \leq \frac{n+\left\lfloor\frac{k-3}{2}\right\rfloor m}{\left\lfloor\frac{3(k-1)}{2}\right\rfloor}
$$

Consequently, we must have equality throughout this inequality chain. In particular, $\gamma\left(H^{\prime}\right)=\left(n^{\prime}+\left\lfloor\frac{k-3}{2}\right\rfloor m^{\prime}\right) /\lfloor 3(k-1) / 2\rfloor$ and $m^{\prime}=m$, implying that $H^{\prime}=H$. However, every edge of H^{\prime} contains at least one vertex of degree 1 and hence H^{\prime} is an edge-minimal connected hypergraph with all edges of size at least k. Therefore, H is an edge-minimal hypergraph with all edges of size at least k, and so, by Lemma $7(\mathrm{a}), H \in \mathcal{D}_{k}$. This proves the necessity.

6. Proof of Theorem 2

Recall the statement of Theorem 2.
Theorem 2. Let H be a connected hypergraph on n vertices with edge size at least 5 and with $\delta(H) \geq 1$. Then, $\gamma(H) \leq 2 n / 9$, with equality if and only if $H \in \mathcal{H}$.

Proof. By Theorem B, $\gamma(H) \leq 2 n / 9$. If $H \in \mathcal{H}$, then, by Lemma 6, $\gamma(H)=$ $2 n / 9$. This establishes the sufficiency.

To prove the necessity, suppose that $\gamma(H)=2 n / 9$. Let H^{\prime} be a hypergraph obtained from H by successively deleting edges of H that do not contain any vertices of degree 1 in the resulting hypergraph at each stage. We note that H^{\prime} is a hypergraph with all edges of size at least 5 and with $V\left(H^{\prime}\right)=V(H)$ and $E\left(H^{\prime}\right) \subseteq E(H)$. In particular, H^{\prime} has $n^{\prime}=n$ vertices and $m^{\prime} \leq m$ edges. When H is transformed to H^{\prime}, isolated vertices cannot arise and the domination number cannot decrease. Therefore, $\gamma(H) \leq \gamma\left(H^{\prime}\right)$, and so, by Theorem B applied to the hypergraph H^{\prime}, we see that

$$
\frac{2 n}{9}=\gamma(H) \leq \gamma\left(H^{\prime}\right) \leq \frac{2 n^{\prime}}{9}=\frac{2 n}{9}
$$

Consequently, $\gamma\left(H^{\prime}\right)=2 n / 9$. Moreover, every edge of H^{\prime} contains at least one vertex of degree 1 and hence H^{\prime} is an edge-minimal hypergraph with all edges of size at least 5. By Theorem B, $\gamma(C)=2 n_{C} / 9$ for every component C of H^{\prime} on n_{C} vertices. Applying Lemma $7(\mathrm{~b})$ to each component of H^{\prime}, every component of H^{\prime} is isomorphic to D_{5}. We proceed further with two claims.

Claim I. Every vertex v of degree 1 in H^{\prime} is not adjacent in H to any vertex from a component of H^{\prime} not containing v.
Proof. Let v be a vertex of degree 1 in H^{\prime} and let H_{v} denote the component of H^{\prime} containing v. By Observation $5(\mathrm{~d})$, there is a vertex v^{\prime} that dominates $V\left(H_{v}\right) \backslash\{v\}$. Let F be a component of H^{\prime} different from H_{v}. Suppose that v is adjacent in H to a vertex $w \in V(F)$. By Observation 5(c), there exists a $\gamma(F)$-set S_{w} that contains w. The set $S_{w} \cup\left\{v^{\prime}\right\}$ can be extended to a dominating set S of H by adding to it a minimum dominating set from every component of H^{\prime} different from F and H_{v}. Since every component of H^{\prime} has domination number 2, we note that $\gamma\left(H^{\prime}-V\left(F_{v}\right)\right)=\gamma\left(H^{\prime}\right)-\gamma\left(F_{v}\right)=\gamma\left(H^{\prime}\right)-2=2 n / 9-2$. Hence, $\gamma(H) \leq|S|=\gamma\left(H^{\prime}-V\left(F_{v}\right)\right)+1=2 n / 9-1=\gamma(H)-1$, a contradiction. Therefore, v and w are not adjacent in H.

Claim II. A vertex of degree 1 in H^{\prime} is of degree 1 in H.
Proof. Let v_{1} be a vertex of degree 1 in H^{\prime} and let F be the component of v_{1} in H^{\prime}. Further, let $V(F)=\left\{v_{1}, v_{2}, \ldots, v_{9}\right\}$ and $E(F)=\left\{e_{1}, e_{2}, e_{3}\right\}$, where $e_{1}=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}, e_{2}=\left\{v_{4}, v_{5}, v_{6}, v_{7}, v_{8}\right\}$ and $e_{3}=\left\{v_{7}, v_{8}, v_{9}, v_{2}, v_{3}\right\}$. Let S be a $\gamma\left(H^{\prime}-V(F)\right)$-set. We note that $\gamma\left(H^{\prime}-V(F)\right)=\gamma\left(H^{\prime}\right)-\gamma(F)=\gamma\left(H^{\prime}\right)-2$ $=2 n / 9-2$. Suppose v_{1} is of degree at least 2 in H. Then there is an edge $e \in E(H) \backslash\left\{e_{1}\right\}$ that contains v_{1} in H. By Claim I, $V(e) \subseteq V(F)$. If $v^{\prime} \in V(e)$ where $v^{\prime} \in\left\{v_{7}, v_{8}\right\}$, then $S \cup\left\{v^{\prime}\right\}$ is a dominating set of H, and so $\gamma(H) \leq$ $|S|+1=(2 n / 9-2)+1<2 n / 9$, a contradiction. Hence, $\left\{v_{7}, v_{8}\right\} \cap V(e)=\emptyset$.

Since $e \neq e_{1}$, we may therefore assume, renaming v_{6} and v_{9}, if necessary, that $v_{6} \in V(e)$. If $v^{\prime} \in V(e)$ where $v^{\prime} \in\left\{v_{2}, v_{3}\right\}$, then $S \cup\left\{v^{\prime}\right\}$ is a dominating set of H, and so $\gamma(H) \leq|S|+1<2 n / 9$, a contradiction. Hence, $e=\left\{v_{1}, v_{4}, v_{5}, v_{6}, v_{9}\right\}$. But then $S \cup\left\{v_{4}\right\}$ is a dominating set of H, and so $\gamma(H) \leq|S|+1<2 n / 9$, a contradiction. Hence, $d_{H}\left(v_{1}\right)=1$.

We now return to the proof of the necessity of Theorem 2. By Claim II, the edges of $E^{\prime}=E(H) \backslash E\left(H^{\prime}\right)$ contain only vertices of degree 2 in H^{\prime}. Therefore since H can be obtained from H^{\prime} by adding to it the edges in E^{\prime}, we see that $H \in \mathcal{H}$ where H^{\prime} is an underlying hypergraph of H and where the edges of E^{\prime} are the link edges.

References

[1] B.D. Acharya, Domination in hypergraphs, AKCE Int. J. Graphs Comb. 4 (2007) 117-126.
[2] B.D. Acharya, Domination in hypergraphs II. New directions, in: Proc. Int. Conf. ICDM 2008, Mysore, India, 1-16.
[3] B.D. Acharya and P. Gupta, Weak edge-degree domination in hypergraphs, Czechoslovak Math. J. 56 (131) (2006) 99-108.
doi:10.1007/s10587-006-0008-6
[4] Cs. Bujtás, M.A. Henning and Zs. Tuza, Transversals and domination in uniform hypergraphs, European J. Combin. 33 (2012) 62-71. doi:10.1016/j.ejc.2011.08.002
[5] V. Chvátal and C. McDiarmid, Small transversals in hypergraphs, Combinatorica 12 (1992) 19-26. doi:10.1007/BF01191201
[6] M.A. Henning, I. Schiermeyer and A. Yeo, A new bound on the domination number of graphs with minimum degree two, Electron. J. Combin. 18 (2011) \#P12.
[7] M.A. Henning and A. Yeo, Hypergraphs with large transversal number and with edge sizes at least three, J. Graph Theory 59 (2008) 326-348. doi:10.1002/jgt. 20340
[8] M.A. Henning and C. Löwenstein, Hypergraphs with large domination number and edge sizes at least 3, Discrete Applied Math. 160 (2012) 1757-1765. doi:/10.1016/j.dam.2012.03.023
[9] M.A. Henning and C. Löwenstein, Hypergraphs with large transversal number and with edge sizes at least four, Cent. Eur. J. Math. 10 (2012) 1133-1140. doi:10.2478/s11533-012-0023-9
[10] M.A. Henning and C. Löwenstein, A characterization of hypergraphs that achieve equality in the Chvátal-McDiarmid Theorem, Discrete Math. 323 (2014) 69-75. doi:10.1016/j.disc.2014.01.014
[11] T. Honjo, K. Kawarabayashi and A. Nakamoto, Dominating sets in triangulations on surfaces, J. Graph Theory 63 (2010) 17-30. doi:10.1002/jgt. 20401
[12] B.K. Jose and Zs. Tuza, Hypergraph domination and strong independence, Appl. Anal. Discrete Math. 3 (2009) 237-358. doi:10.2298/AADM0902347J
[13] F.C. Lai and G.J. Chang, An upper bound for the transversal numbers of 4-uniform hypergraphs, J. Combin. Theory Ser. B 50 (1990) 129-133. doi:10.1016/0095-8956(90)90101-5
[14] C. Löwenstein and D. Rautenbach, Domination in graphs of minimum degree at least two and large girth, Graphs Combin. 24 (2008) 37-46. doi:10.1007/s00373-007-0770-8

[^0]: ${ }^{1}$ Research supported in part by the South African National Research Foundation and the University of Johannesburg.
 ${ }^{2}$ Research supported by the Deutsche Forschungsgemeinschaft (GZ: LO 1758/1-1).

