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Abstract

Let H = (V,E) be a hypergraph with vertex set V and edge set E. A
dominating set in H is a subset of vertices D ⊆ V such that for every vertex
v ∈ V \D there exists an edge e ∈ E for which v ∈ e and e ∩D 6= ∅. The
domination number γ(H) is the minimum cardinality of a dominating set
in H. It is known [Cs. Bujtás, M.A. Henning and Zs. Tuza, Transversals
and domination in uniform hypergraphs, European J. Combin. 33 (2012)
62–71] that for k ≥ 5, if H is a hypergraph of order n and size m with
all edges of size at least k and with no isolated vertex, then γ(H) ≤ (n +
⌊(k − 3)/2⌋m)/(⌊3(k − 1)/2⌋). In this paper, we apply a recent result of
the authors on hypergraphs with large transversal number [M.A. Henning
and C. Löwenstein, A characterization of hypergraphs that achieve equality

in the Chvátal-McDiarmid Theorem, Discrete Math. 323 (2014) 69–75] to
characterize the hypergraphs achieving equality in this bound.
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1. Introduction

In this paper we continue the study of domination in hypergraphs. Hypergraphs
are systems of sets which are conceived as natural extensions of graphs. A hyper-

graph H = (V,E) is a finite set V = V (H) of elements, called vertices, together
with a finite multiset E = E(H) of subsets of V , called hyperedges or simply
edges.

We shall use the notation n
H

= |V | and m
H

= |E|, and sometimes simply
n and m without subscript if the actual H need not be emphasized, to denote
the order and size of H, respectively. A k-edge in H is an edge of size k. The
hypergraph H is said to be k-uniform if every edge of H is a k-edge. Every
(simple) graph is a 2-uniform hypergraph. Thus graphs are special hypergraphs.
Two vertices x and y of H are adjacent if there is an edge e of H such that
{x, y} ⊆ e.

The degree of a vertex v inH, denoted by dH(v) or simply by d(v) ifH is clear
from the context, is the number of edges of H which contain v. The minimum
degree among the vertices of H is denoted by δ(H). We define a hypergraph H to
be edge-minimal if every edge of H contains at least one vertex of degree 1 in H.

If H ′ is a hypergraph such that V (H ′) ⊆ V (H) and E(H ′) ⊆ E(H), then
H ′ is called a subhypergraph of H. Possibly, H ′ = H. Two vertices x and y of
H are connected if there is a sequence x = v0, v1, v2, . . . , vk = y of vertices of H
in which vi−1 is adjacent to vi for i = 1, 2, . . . , k. A connected hypergraph is a
hypergraph in which every pair of vertices are connected. A maximal connected
subhypergraph of H is a component of H. Thus, no edge in H contains vertices
from different components. A component of a hypergraph H that is isomorphic
to a hypergraph F we call an F -component of H.

A subset T of vertices in a hypergraph H is a transversal (also called vertex

cover or hitting set in many papers) if T has a nonempty intersection with every
edge ofH. The transversal number τ(H) ofH is the minimum size of a transversal
in H. A transversal of size τ(H) is called a τ(H)-set.

A dominating set in H is a subset of vertices D ⊆ V such that for every
vertex v ∈ V \ D there exists an edge e ∈ E for which v ∈ e and e ∩ D 6= ∅.
Equivalently, every vertex v ∈ V \D is adjacent to a vertex in D. The domination

number γ(H) is the minimum cardinality of a dominating set in H. A dominating
set of H of cardinality γ(H) is called a γ(H)-set.

If X,Y ⊆ V , then we say that Y dominates X if every vertex in X is in Y
or is adjacent to some vertex of Y . If X is a nonempty subset of vertices in H,
then we define an X-dominating set in H as a set Y that dominates X and we
define the X-domination number, denoted γ(X;H) as the minimum cardinality
of an X-dominating set in H. In particular, we note that γ(H) = γ(V ;H).

Domination in graphs is still a very active area inside graph theory; see, for
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example, the recent papers [6, 11, 14]. Domination in hypergraphs, however, was
introduced recently by Acharya [1] and studied further, for example, in [2, 3, 4,
8, 12].

Bujtás, Henning, Tuza [4] proved the following upper bounds on the domi-
nation number of a hypergraph.

Theorem A [4]. For k ≥ 3, if H is a hypergraph of order n and size m with all

edges of size at least k and with δ(H) ≥ 1, then

γ(H) ≤
n+

⌊

k−3
2

⌋

m
⌊

3(k−1)
2

⌋ .

Theorem B [4]. If H is a hypergraph of order n with all edges of size at least 5
and with δ(H) ≥ 1, then γ(H) ≤ 2n/9.

We have two immediate aims in this paper. Our first aim is to characterize
the extremal hypergraphs in Theorem A for each k ≥ 5. Our second aim is to
characterize the extremal hypergraphs in Theorem B. For this purpose, we define
three special families of hypergraphs.

1.1. Special families of hypergraphs

For k ≥ 4, let Ek denote the k-uniform hypergraph on k vertices with exactly
one edge. The hypergraph E4 is illustrated in Figure 1.

For k ≥ 4, we define the k-uniform hypergraph Tk as follows. Let A, B, C
and D be vertex-disjoint sets of vertices with |A| = ⌈k/2⌉, |B| = |C| = ⌊k/2⌋
and |D| = ⌈k/2⌉ − ⌊k/2⌋. In particular, if k is even, the set D = ∅, while if k
is odd, the set D consists of a singleton vertex. Let Tk denote the k-uniform
hypergraph with V (Tk) = A ∪ B ∪ C ∪ D and with E(Tk) = {e1, e2, e3}, where
V (e1) = A ∪ B, V (e2) = A ∪ C, and V (e3) = B ∪ C ∪ D. The hypergraphs T4

and T5 are illustrated in Figure 1.
For odd k ≥ 5, we define the hypergraph T ∗

k as follows. Let A, B and C be
vertex-disjoint sets of vertices with |A| = |B| = (k+1)/2 and |C| = (k−1)/2. Let
T ∗

k denote the hypergraph with V (T ∗

k ) = A∪B∪C and with E(T ∗

k ) = {e1, e2, e3},
where V (e1) = A ∪ B, V (e2) = A ∪ C, and V (e3) = B ∪ C. The hypergraph T ∗

5

is illustrated in Figure 1. Note that every edge in T ∗

k has size at least k.
Given a hypergraph H = (V,E), let H ′ be obtained from H by expanding

every edge in H by adding to it one new vertex, where all added vertices have
degree 1 in H ′. We call H ′ = (V ′, E′) the expanded hypergraph expa(H) of
H. That is for every edge e ∈ E, if ve denotes the new vertex added to e,
where ve 6= vf for edges e 6= f in H, then E′ = {V (e) ∪ {ve} | e ∈ E} and
V ′ = V ∪

⋃

e∈E{ve}.
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For k ≥ 5, let Dk = expa(Tk−1). The hypergraphs D5 and D6 are illustrated
in Figure 2. Note that Dk is k-uniform.

E4 T4 T5 T
∗

5

Figure 1. The hypergraphs E4, T4, T5 and T ∗

5
.

For even k ≥ 6, let D∗

k = expa(T ∗

k−1). The hypergraph D∗

6 is illustrated in
Figure 2. Note that D∗

k is of edge size at least k.

D5 D6 D
∗

6

Figure 2. The hypergraphs D5, D6 and D∗

6
.

We are now in a position to define our three special families of hypergraphs.

The Family Tk. For even k ≥ 4, we define Tk = {Ek, Tk} and for odd k ≥ 5, we
define Tk = {Ek, Tk, T

∗

k }.

The Family Dk. For odd k ≥ 5, we define Dk = {Ek, Dk} and for even k ≥ 6,
we define Dk = {Ek, Dk, D

∗

k}.

The Family H. Let D5 be the hypergraph shown in Figure 2. Let Hunder

be a hypergraph every component of which is isomorphic to D5. Let H be a
hypergraph obtained from Hunder by adding edges of size at least five, called link

edges, in such a way that every added edge contains only vertices of degree 2 in
Hunder. Possibly, H is disconnected orH = D5. We call the hypergraphHunder an
underlying hypergraph of H. Let H denote the family of all such hypergraphs H.
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2. Main Result

Our aim in this paper is to characterize the extremal hypergraphs in Theorem A
and Theorem B. We shall prove:

Theorem 1. For k ≥ 5, let H be a connected hypergraph on n vertices and m
edges with edge size at least k and with δ(H) ≥ 1. Then,

γ(H) ≤
n+

⌊

k−3
2

⌋

m
⌊

3(k−1)
2

⌋

with equality if and only if H ∈ Dk.

Theorem 2. Let H be a connected hypergraph on n vertices with edge size at

least 5 and with δ(H) ≥ 1. Then, γ(H) ≤ 2n/9, with equality if and only if

H ∈ H.

A proof of Theorem 1 is presented in Section 5, while a proof of Theorem 2
is given in Section 6.

3. Known Results on Transversals in Hypergraphs

Chvátal and McDiarmid [5] established the following upper bound on the transver-
sal number of a uniform hypergraphs in terms of its order and size.

Chvátal-McDiarmid Theorem. For k ≥ 2, if H is a k-uniform hypergraph

on n vertices with m edges, then τ(H) ≤ (n+
⌊

k
2

⌋

m)/(
⌊

3k
2

⌋

).

The extremal connected hypergraphs that achieve equality in the Chvátal-
McDiarmid Theorem when k = 3 were characterized by Henning and Yeo [7]. For
k = 2 and k ≥ 4, the extremal hypergraphs were characterized by the authors
in [10].

Theorem C [10]. For k = 2 and k ≥ 4, let H be a connected k-uniform hyper-

graph on n vertices and m edges. Then, τ(H) ≤ (n+
⌊

k
2

⌋

m)/(
⌊

3k
2

⌋

) with equality

if and only if H ∈ {Ek, Tk}.

In the special case when k = 4, Lai and Chang [13] established the following
upper bound on the transversal number of a k-uniform hypergraph.

Lai-Chang Theorem. If H is a 4-uniform hypergraph on n vertices and m
edges, then τ(H) ≤ 2(n+m)/9.
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The extremal hypergraphs achieving equality in the Lai-Chang Theorem were
characterized by the authors in [9].

Theorem D [9]. Let H be a connected hypergraph on n vertices and m edges

with edge size at least 4. If τ(H) = 2(n+m)/9, then H = T4.

4. Preliminary Results

In this section, we present some preliminary observations, lemmas and theorems
that we will need in proving our main results. Our first result is a generalization
of Theorem C where we relax the k-uniformity condition to edge sizes at least k.

Theorem 3. For k ≥ 4, let H be a connected hypergraph on n vertices and m
edges with edge size at least k and with δ(H) ≥ 1. Then,

τ(H) ≤
n+

⌊

k
2

⌋

m
⌊

3k
2

⌋

with equality if and only if H ∈ Tk.

Proof. For k ≥ 4, let H be a hypergraph of order n and size m with all edges
of size at least k. If H is a k-uniform hypergraph, then the result follows from
Theorem C. Hence, we may assume that H is not k-uniform, for otherwise the
desired result follows. Let H ′ be a k-uniform hypergraph obtained from H by
shrinking every edge of size at least k+1 to an edge of size k (by removing vertices
from a large edge until the edge size is reduced to size k) and deleting resulting
isolated vertices, if any. Let H ′ have order n′ and size m′. Then, n′ ≤ n and
m′ = m. Every transversal in H ′ is a transversal in H, and so τ(H) ≤ τ(H ′).
Thus, by the Chvátal-McDiarmid Theorem,

τ(H) ≤ τ(H ′) ≤
n′ +

⌊

k
2

⌋

m′

⌊

3k
2

⌋ ≤
n+

⌊

k
2

⌋

m
⌊

3k
2

⌋ .

This establishes the upper bound. To prove the necessity, suppose that τ(H)
= (n+

⌊

k
2

⌋

m)/
⌊

3k
2

⌋

. Then,

n+
⌊

k
2

⌋

m
⌊

3k
2

⌋ = τ(H) ≤ τ(H ′) ≤
n′ +

⌊

k
2

⌋

m′

⌊

3k
2

⌋ ≤
n+

⌊

k
2

⌋

m
⌊

3k
2

⌋ .

Consequently, we must have equality throughout the above inequality chain.
In particular, n′ = n and H ′ is a k-uniform hypergraph, possibly disconnected,
satisfying τ(H ′) = (n+

⌊

k
2

⌋

m)/
⌊

3k
2

⌋

. By Theorem C, τ(C) = (n
C
+
⌊

k
2

⌋

m
C
)/

⌊

3k
2

⌋
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for every component C of H ′ on n
C
vertices and m

C
edges. Applying Theorem C

to each component ofH ′, we note that every component ofH ′ is an Ek-component
or a Tk-component. Let T ′ be a τ(H ′)-set. Note that T ′ contains one vertex from
every Ek-component of H ′ and two vertices from every Tk-component of H ′.

Claim A. H ′ is connected.

Proof. Suppose, to the contrary, that there is an edge e ∈ E(H) whose vertex
set is not entirely contained in a component of H ′. Since n′ = n, we note that
the edge e has a nonempty intersection with at least two components of H ′.
Since e 6∈ E(H ′), let e′ ∈ E(H ′) be the edge that resulted from shrinking the
edge e. Let Fe denote the component of H ′ containing e′ and let Fv denote a
component of H ′ different from Fe that has a nonempty intersection with e. Let
v ∈ V (e) ∩ V (Fv). If Fv is a Tk-component, then let v′ be a vertex in Fv that is
contained in all edges of Fv that do not contain v. If Fe is a Tk-component, then
let u be a vertex in Fe that is contained in both edges of Fe different from e′.

Suppose that Fe is an Ek-component of H ′. If Fv is an Ek-component, let
T = (T ′ \ (V (Fv)∪V (Fe)))∪{v}. If Fv is a Tk-component, let T = (T ′ \ (V (Fv)∪
V (Fe)))∪ {v, v′}. In both cases, T is a transversal in H of size |T ′| − 1, implying
that τ(H) ≤ τ(H ′) − 1 < (n +

⌊

k
2

⌋

m)/
⌊

3k
2

⌋

, a contradiction. Hence, Fe is a
Tk-component. If Fv is an Ek-component, then (T ′ \ (V (Fv)∪ V (Fe)))∪ {u, v} is
a transversal in H of size |T ′| − 1. If Fv is a Tk-component, then (T ′ \ (V (Fv) ∪
V (Fe))) ∪ {u, v, v′} is a transversal in H of size |T ′| − 1. Both cases produce a
contradiction. Hence there is no edge e ∈ E(H) that has a nonempty intersection
with at least two components of H ′, which implies that H ′ is connected.

By Claim A, H ′ is connected and therefore, by Theorem C, H ′ ∈ {Ek, Tk}.
Hence we may assume that H 6= H ′, for otherwise H ∈ Tk, as desired. Therefore
there is an edge e of H that is of size at least k + 1, implying that H ′ = Tk. If
there is a vertex w of degree 3 in H, then {w} is a transversal in H of size |T ′|−1,
a contradiction. Hence every vertex in H has degree at most 2. This implies that
if k is even, then H = H ′, contradicting our earlier assumption that H 6= H ′.
Hence, k is odd, and so H has order n(Tk) = (3k + 1)/2. It follows that H
consists of two edges of size k and one edge, namely the edge e, of size k + 1.
Further every vertex of H is of degree 2. Hence, H = T ∗

k , and so H ∈ Tk. This
establishes the necessity. If H ∈ Tk, then it is straightforward to check that
τ(H) = (n +

⌊

k
2

⌋

m)/
⌊

3k
2

⌋

. This establishes the sufficiency and completes the
proof of the Theorem 3.

Since every transversal in a hypergraph with no isolated vertex is a dominat-
ing set in the hypergraph, we have the following observation.

Observation 4. If H is a hypergraph with δ(H) ≥ 1, then γ(H) ≤ τ(H).
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We shall need the following properties of the hypergraphs in the family Dk

and the hypergraph D5.

Observation 5. For k ≥ 5, let F ∈ Dk have order n
F
and size m

F
. Let H = D5

have order n
H

and size m
H
, and let X ⊆ V (H). Then the following holds.

(a) γ(F ) = (n
F
+
⌊

k−3
2

⌋

m
F
)/

⌊

3(k−1)
2

⌋

.

(b) γ(H) = 2 = 2n
H
/9.

(c) Every vertex in H belongs to some γ(H)-set.

(d) If some vertex of degree 1 in H is not in X, then γ(X;H) = 1 < 2n
H
/9.

Lemma 6. If H ∈ H has order n
H
, then γ(H) = 2n

H
/9.

Proof. Let Hunder be an underlying hypergraph of H and let C(Hunder) be the
set of all components of Hunder. Further, let F ∈ C(Hunder) and let XF be the
set of all vertices of degree 1 in F . Then, F is isomorphic to D5, and |XF | = 3.
By construction of H, every vertex in XF has degree 1 in H, and is adjacent in
H only to vertices in V (F ). Now let D be a minimum dominating set of H. In
order to dominate the vertices in XF , the dominating set D must contain at least
two vertices of V (F ). This is true for every component, F , in Hunder, implying
that

|D| ≥ 2|C(Hunder)| =
2

9
n

H
,

and so γ(H) ≥ 2
9nH

. By Theorem B, γ(H) ≤ 2n
H
/9. Consequently, γ(H) =

2n
H
/9.

Recall that a hypergraph is edge-minimal if every edge of the hypergraph
contains at least one vertex of degree 1.

Lemma 7. For k ≥ 5, let H be a connected edge-minimal hypergraph of order

n
H

and size m
H

with all edges of size at least k and with δ(H) ≥ 1. Then the

following holds.

(a) γ(H) = (n
H
+
⌊

k−3
2

⌋

m
H
)/

⌊

3(k−1)
2

⌋

if and only if H ∈ Dk.

(b) For k = 5, we have γ(H) = 2n
H
/9 if and only if H = D5.

Proof. By the edge minimality of H, every edge of H contains a vertex of de-
gree 1. Hence every dominating set of H is also a transversal in H, and so
τ(H) ≤ γ(H). Consequently by Observation 4, τ(H) = γ(H). Let H ′ be the
hypergraph obtained from H by deleting exactly one vertex of degree 1 from each
edge of H. Note that H = expa(H ′). Since H is connected, so too is H ′. We note
that all edges of H ′ have size at least k−1 and that H ′ may have multiple edges.
Let n′

H
and m′

H
denote the order and size of H ′, respectively. By construction,
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n′

H
= n

H
− m

H
and m′

H
= m

H
. The transversal number of H and H ′ remains

unchanged, and so τ(H) = τ(H ′). We now consider part (a) and part (b) in turn.

(a) The sufficiency follows from Observation 5(a). To prove the necessity, suppose

that γ(H) = (n
H
+
⌊

k−3
2

⌋

m
H
)/

⌊

3(k−1)
2

⌋

. Then,

n′

H
+

⌊

k−1
2

⌋

m′

H
⌊

3(k−1)
2

⌋ =
n

H
+
⌊

k−3
2

⌋

m
H

⌊

3(k−1)
2

⌋ = γ(H) = τ(H) = τ(H ′).

By Theorem 3, H ′ ∈ Tk−1, implying that H ∈ Dk.

(b) The sufficiency follows from Observation 5(b). To prove the necessity, suppose
that γ(H) = 2n

H
/9. Then, 2(n′

H
+ m′

H
)/9 = 2n

H
/9 = γ(H) = τ(H) = τ(H ′).

By Theorem D, H ′ = T4, implying that H = D5.

We remark that with the technique used in the proof of Lemma 7(a) and the
result of [7], we can characterize the connected edge-minimal hypergraphs H of
order n

H
with edge size at least 4 and with δ(H) ≥ 1 achieving γ(H) = n

H
/4.

These are exactly the expanded hypergraphs of the hypergraphs mentioned in [7]
that achieve equality in Theorem A for k = 3.

5. Proof of Theorem 1

Recall the statement of Theorem 1.

Theorem 1. For k ≥ 5, let H be a connected hypergraph on n vertices and m
edges with edge size at least k and with δ(H) ≥ 1. Then,

γ(H) ≤
n+

⌊

k−3
2

⌋

m
⌊

3(k−1)
2

⌋

with equality if and only if H ∈ Dk.

Proof. Let H be a hypergraph of order n and size m with all edges of size at
least k and with δ(H) ≥ 1. By Theorem A, γ(H) ≤ (n+

⌊

k−3
2

⌋

m)/ ⌊3(k − 1)/2⌋.

If H ∈ Dk, then, by Observation 5(a), γ(H) = (n+
⌊

k−3
2

⌋

m)/ ⌊3(k − 1)/2⌋. This
establishes the sufficiency.

To prove the necessity, suppose that γ(H) = (n +
⌊

k−3
2

⌋

m)/ ⌊3(k − 1)/2⌋.
Let H ′ be a hypergraph obtained from H by successively deleting edges of H
that do not contain any vertices of degree 1 in the resulting hypergraph at each
stage. We note that H ′ is a hypergraph with all edges of size at least k and with
V (H ′) = V (H) and E(H ′) ⊆ E(H). In particular, H ′ has n′ = n vertices and
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m′ ≤ m edges. When H is transformed to H ′, isolated vertices cannot arise and
the domination number cannot decrease. Therefore, γ(H) ≤ γ(H ′), and so, by
Theorem A applied to the hypergraph H ′, we see that

n+
⌊

k−3
2

⌋

m
⌊

3(k−1)
2

⌋ = γ(H) ≤ γ(H ′) ≤
n′ +

⌊

k−3
2

⌋

m′

⌊

3(k−1)
2

⌋ ≤
n+

⌊

k−3
2

⌋

m
⌊

3(k−1)
2

⌋ .

Consequently, we must have equality throughout this inequality chain. In
particular, γ(H ′) = (n′ +

⌊

k−3
2

⌋

m′)/ ⌊3(k − 1)/2⌋ and m′ = m, implying that
H ′ = H. However, every edge of H ′ contains at least one vertex of degree 1
and hence H ′ is an edge-minimal connected hypergraph with all edges of size at
least k. Therefore, H is an edge-minimal hypergraph with all edges of size at
least k, and so, by Lemma 7(a), H ∈ Dk. This proves the necessity.

6. Proof of Theorem 2

Recall the statement of Theorem 2.

Theorem 2. Let H be a connected hypergraph on n vertices with edge size at

least 5 and with δ(H) ≥ 1. Then, γ(H) ≤ 2n/9, with equality if and only if

H ∈ H.

Proof. By Theorem B, γ(H) ≤ 2n/9. If H ∈ H, then, by Lemma 6, γ(H) =
2n/9. This establishes the sufficiency.

To prove the necessity, suppose that γ(H) = 2n/9. Let H ′ be a hypergraph
obtained from H by successively deleting edges of H that do not contain any
vertices of degree 1 in the resulting hypergraph at each stage. We note that H ′

is a hypergraph with all edges of size at least 5 and with V (H ′) = V (H) and
E(H ′) ⊆ E(H). In particular, H ′ has n′ = n vertices and m′ ≤ m edges. When
H is transformed to H ′, isolated vertices cannot arise and the domination number
cannot decrease. Therefore, γ(H) ≤ γ(H ′), and so, by Theorem B applied to the
hypergraph H ′, we see that

2n

9
= γ(H) ≤ γ(H ′) ≤

2n′

9
=

2n

9
.

Consequently, γ(H ′) = 2n/9. Moreover, every edge of H ′ contains at least
one vertex of degree 1 and hence H ′ is an edge-minimal hypergraph with all edges
of size at least 5. By Theorem B, γ(C) = 2n

C
/9 for every component C of H ′ on

n
C
vertices. Applying Lemma 7(b) to each component of H ′, every component

of H ′ is isomorphic to D5. We proceed further with two claims.
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Claim I. Every vertex v of degree 1 in H ′ is not adjacent in H to any vertex

from a component of H ′ not containing v.

Proof. Let v be a vertex of degree 1 in H ′ and let Hv denote the component
of H ′ containing v. By Observation 5(d), there is a vertex v′ that dominates
V (Hv) \ {v}. Let F be a component of H ′ different from Hv. Suppose that v
is adjacent in H to a vertex w ∈ V (F ). By Observation 5(c), there exists a
γ(F )-set Sw that contains w. The set Sw ∪{v′} can be extended to a dominating
set S of H by adding to it a minimum dominating set from every component
of H ′ different from F and Hv. Since every component of H ′ has domination
number 2, we note that γ(H ′ − V (Fv)) = γ(H ′)− γ(Fv) = γ(H ′)− 2 = 2n/9− 2.
Hence, γ(H) ≤ |S| = γ(H ′ − V (Fv)) + 1 = 2n/9− 1 = γ(H)− 1, a contradiction.
Therefore, v and w are not adjacent in H. 2

Claim II. A vertex of degree 1 in H ′ is of degree 1 in H.

Proof. Let v1 be a vertex of degree 1 in H ′ and let F be the component of
v1 in H ′. Further, let V (F ) = {v1, v2, . . . , v9} and E(F ) = {e1, e2, e3}, where
e1 = {v1, v2, v3, v4, v5}, e2 = {v4, v5, v6, v7, v8} and e3 = {v7, v8, v9, v2, v3}. Let S
be a γ(H ′ − V (F ))-set. We note that γ(H ′ − V (F )) = γ(H ′)− γ(F ) = γ(H ′)− 2
= 2n/9 − 2. Suppose v1 is of degree at least 2 in H. Then there is an edge
e ∈ E(H) \ {e1} that contains v1 in H. By Claim I, V (e) ⊆ V (F ). If v′ ∈ V (e)
where v′ ∈ {v7, v8}, then S ∪ {v′} is a dominating set of H, and so γ(H) ≤
|S|+ 1 = (2n/9− 2) + 1 < 2n/9, a contradiction. Hence, {v7, v8} ∩ V (e) = ∅.

Since e 6= e1, we may therefore assume, renaming v6 and v9, if necessary, that
v6 ∈ V (e). If v′ ∈ V (e) where v′ ∈ {v2, v3}, then S ∪ {v′} is a dominating set of
H, and so γ(H) ≤ |S|+1 < 2n/9, a contradiction. Hence, e = {v1, v4, v5, v6, v9}.
But then S ∪ {v4} is a dominating set of H, and so γ(H) ≤ |S| + 1 < 2n/9, a
contradiction. Hence, dH(v1) = 1. 2

We now return to the proof of the necessity of Theorem 2. By Claim II, the
edges of E′ = E(H) \ E(H ′) contain only vertices of degree 2 in H ′. Therefore
since H can be obtained from H ′ by adding to it the edges in E′, we see that
H ∈ H where H ′ is an underlying hypergraph of H and where the edges of E′

are the link edges.
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[5] V. Chvátal and C. McDiarmid, Small transversals in hypergraphs, Combinatorica
12 (1992) 19–26.
doi:10.1007/BF01191201

[6] M.A. Henning, I. Schiermeyer and A. Yeo, A new bound on the domination number

of graphs with minimum degree two, Electron. J. Combin. 18 (2011) #P12.

[7] M.A. Henning and A. Yeo, Hypergraphs with large transversal number and with edge

sizes at least three, J. Graph Theory 59 (2008) 326–348.
doi:10.1002/jgt.20340
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