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Abstract

Let G be a graph of order n, and let a and b be two integers with 1 ≤ a ≤
b. Let h : E(G) → [0, 1] be a function. If a ≤

∑

e∋x
h(e) ≤ b holds for any

x ∈ V (G), then we call G[Fh] a fractional [a, b]-factor of G with indicator
function h, where Fh = {e ∈ E(G) : h(e) > 0}. A graph G is fractional
independent-set-deletable [a, b]-factor-critical (in short, fractional ID-[a, b]-
factor-critical) if G − I has a fractional [a, b]-factor for every independent

set I of G. In this paper, it is proved that if n ≥ (a+2b)(2a+2b−3)+1
b

, δ(G) ≥
bn

a+2b + a and |NG(x) ∪ NG(y)| ≥
(a+b)n
a+2b for any two nonadjacent vertices

x, y ∈ V (G), then G is fractional ID-[a, b]-factor-critical. Furthermore, it is
shown that this result is best possible in some sense.
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1. Introduction

The graphs considered here will be finite, undirected and without loops or mul-
tiple edges. Let G be a graph. We denote by V (G) and E(G) the set of vertices
and the set of edges of G, respectively. For any x ∈ V (G), we denote the degree
of x in G by dG(x). We write NG(x) for the set of vertices adjacent to x in G,
and NG[x] for NG(x) ∪ {x}. For S ⊆ V (G), we use G[S] to denote the subgraph
of G induced by S, and G−S = G[V (G)\S]. Let S and T be two disjoint vertex
subsets of G; we denote the number of edges from S to T by eG(S, T ). We denote
by δ(G) the minimum degree of G. For any nonempty subset S of V (G), let

NG(S) =
⋃

x∈S

NG(x).

If G and H are vertex-disjoint graphs, then their join and union are denoted
by G ∨H and G ∪H, respectively.

A factor of a graph G is a spanning subgraph of G. Let a and b be two positive
integers with 1 ≤ a ≤ b. Then a factor F is an [a, b]-factor if a ≤ dF (x) ≤ b for
each x ∈ V (G). Let h : E(G) → [0, 1] be a function. If a ≤

∑

e∋x
h(e) ≤ b holds

for any x ∈ V (G), then we call G[Fh] a fractional [a, b]-factor of G with indicator
function h, where Fh = {e ∈ E(G) : h(e) > 0}. If G − I admits a fractional
[a, b]-factor for every independent set I of G, then we say that G is fractional
ID-[a, b]-factor-critical [1]. A fractional ID-[k, k]-factor-critical graph is simply
called a fractional ID-k-factor-critical graph.

Many authors have investigated factors and fractional factors in graphs; see,
for instance, [2, 3, 4, 5, 6, 7, 8, 9]. Chang, Liu and Zhu [10] showed a minimum de-
gree condition for a graph to be a fractional ID-k-factor-critical graph. Zhou, Bian
and Wu [11] gave a degree condition for the existence of fractional ID-k-factor-
critical graphs. Zhou [12] obtained a binding number condition for graphs to be
fractional ID-k-factor-critical graphs. Zhou, Sun and Liu [1] obtained a minimum
degree condition for a graph to be a fractional ID-[a, b]-factor-critical graph. In
this paper, we proceed to study fractional ID-[a, b]-factor-critical graphs, and ob-
tain a neighborhood condition for a graph to be fractional ID-[a, b]-factor-critical.
The main result is the following theorem.

Theorem 1. Let 1 ≤ a ≤ b be two integers, and let G be a graph of order n with

n ≥ (a+2b)(2a+2b−3)+1
b

, and δ(G) ≥ bn

a+2b + a. If

|NG(x) ∪NG(y)| ≥
(a+ b)n

a+ 2b

for any two nonadjacent vertices x, y ∈ V (G), then G is fractional ID-[a, b]-
factor-critical.
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If a = b = k in Theorem 1, then we obtain the following result.

Theorem 2. Let k ≥ 1 be an integer, and let G be a graph of order n with

n ≥ 12k − 8, and δ(G) ≥ n

3 + k. If

|NG(x) ∪NG(y)| ≥
2n

3

for any two nonadjacent vertices x, y ∈ V (G), then G is fractional ID-k-factor-
critical.

If k = 1 in Theorem 2, then we get the following result.

Theorem 3. Let G be a graph of order n with n ≥ 4, and δ(G) ≥ n

3 + 1. If

|NG(x) ∪NG(y)| ≥
2n

3

for any two nonadjacent vertices x, y ∈ V (G), then G is fractional ID-factor-

critical.

2. The Proof of Theorem 1

In order to prove Theorem 1, we rely heavily on the following lemma.

Lemma 4 [13]. Let G be a graph. Then G has a fractional [a, b]-factor if and

only if for every subset S of V (G),

δG(S, T ) = b|S|+ dG−S(T )− a|T | ≥ 0,

where T = {x : x ∈ V (G) \ S, dG−S(x) ≤ a} and dG−S(T ) =
∑

x∈T
dG−S(x).

Proof of Theorem 1. Let X be an independent set of G and H = G − X.
In order to complete the proof of Theorem 1, we need only to prove that H
has a fractional [a, b]-factor. By contradiction, suppose that H has no fractional
[a, b]-factor. Then by Lemma 4, there exists some subset S ⊆ V (H) such that

(1) δH(S, T ) = b|S|+ dH−S(T )− a|T | ≤ −1,

where T = {x : x ∈ V (H) \S, dH−S(x) ≤ a}. We first prove the following claims.

Claim 1. |X| ≤ bn

a+2b .

Proof. Since n ≥ (a+2b)(2a+2b−3)+1
b

, the inequality holds for |X| = 1. In the
following we may assume |X| ≥ 2. In terms of the condition of Theorem 1, there
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exist x, y ∈ X such that |NG(x) ∪NG(y)| ≥
(a+b)n
a+2b . Since X is independent, we

obtain X ∩ (NG(x) ∪NG(y)) = ∅. Thus, we have

|X|+
(a+ b)n

a+ 2b
≤ |X|+ |NG(x) ∪NG(y)| ≤ n,

which implies

|X| ≤ n−
(a+ b)n

a+ 2b
=

bn

a+ 2b
.

�

Claim 2. δ(H) ≥ a.

Proof. Note that H = G−X. Combining this with Claim 1, we obtain

δ(H) ≥ δ(G)− |X| ≥

(

bn

a+ 2b
+ a

)

−
bn

a+ 2b
= a.

�

Claim 3. |T | ≥ b+ 1.

Proof. If |T | ≤ b, then from Claim 2 and since |S| + dH−S(x) ≥ dH(x) ≥ δ(H)
for each x ∈ T , we have

δH(S, T ) = b|S|+ dH−S(T )− a|T | ≥ |T ||S|+ dH−S(T )− a|T |

=
∑

x∈T
(|S|+ dH−S(x)− a) ≥

∑

x∈T
(δ(H)− a) ≥ 0,

which contradicts (1). �

Claim 4. a|T | > b|S|.

Proof. If a|T | ≤ b|S|, then from (1) we obtain

−1 ≥ δH(S, T ) = b|S|+ dH−S(T )− a|T | ≥ b|S| − a|T | ≥ 0,

which is a contradiction. �

Claim 5. |S|+ |X| < (a+b)n
a+2b .

Proof. According to Claim 1, Claim 4 and since |S|+ |T |+ |X| ≤ n, we have

an ≥ a|S|+ a|T |+ a|X| > a|S|+ b|S|+ a|X| = (a+ b)(|S|+ |X|)− b|X|

≥ (a+ b)(|S|+ |X|)−
b2n

a+ 2b
,

which implies

|S|+ |X| <
(a+ b)n

a+ 2b
.

�
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In view of Claim 3, T 6= ∅. Define

h1 = min{dH−S(x) : x ∈ T}

and
R = {x : x ∈ T, dH−S(x) = 0}.

We write r = |R| and choose x1 ∈ T such that dH−S(x1) = h1. If T \NT [x1]
6= ∅, let

h2 = min{dH−S(x) : x ∈ T \NT [x1]}.

Thus, we have 0 ≤ h1 ≤ h2 ≤ a by the definition of T .
We shall consider various cases by the value of r and derive a contradiction

in each case.

Case 1. r ≥ 2. Obviously, there exist x, y ∈ R such that dH−S(x) = dH−S(y)
= 0 and xy /∈ E(G). In terms of H = G − X, Claim 5 and the condition of
Theorem 1, we obtain

(a+ b)n

a+ 2b
≤ |NG(x) ∪NG(y)| ≤ |NH(x) ∪NH(y)|+ |X|

≤ dH−S(x) + dH−S(y) + |S|+ |X| = |S|+ |X| <
(a+ b)n

a+ 2b
,

which is a contradiction.

Case 2. r = 1. Clearly, h1 = 0 and |NT [x1]| = 1. According to Claim 3, r = 1
and |NT [x1]| = 1, we have T \NT [x1] 6= ∅ and 1 ≤ h2 ≤ a. Choose x2 ∈ T \NT [x1]
such that dH−S(x2) = h2. It is easy to see that x1x2 /∈ E(G). According to
H = G−X and the condition of Theorem 1, we have

(a+ b)n

a+ 2b
≤ |NG(x1) ∪NG(x2)| ≤ |NH(x1) ∪NH(x2)|+ |X|

≤ dH−S(x1) + dH−S(x2) + |S|+ |X| = h2 + |S|+ |X|,

which implies

(2) |S| ≥
(a+ b)n

a+ 2b
− h2 − |X|.

Note that |T \NT [x1]| = |T | − 1. Combining this with |S| + |T | + |X| ≤ n,

(2), Claim 1, b ≥ a ≥ 1, 1 ≤ h2 ≤ a and n ≥ (a+2b)(2a+2b−3)+1
b

> (a+2b)(2a+2b−3)
b

,
we obtain

δH(S, T ) = b|S|+ dH−S(T )− a|T |

= b|S|+ dH−S(NT [x1]) + dH−S(T \NT [x1])− a|T |
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= b|S|+ dH−S(T \NT [x1])− a|T | ≥ b|S|+ h2(|T | − 1)− a|T |

= b|S| − (a− h2)|T | − h2 ≥ b|S| − (a− h2)(n− |S| − |X|)− h2

= (a+ b− h2)|S| − (a− h2)n+ (a− h2)|X| − h2

≥ (a+ b− h2)

(

(a+ b)n

a+ 2b
− h2 − |X|

)

− (a− h2)n+ (a− h2)|X| − h2

= (a+ b− h2)

(

(a+ b)n

a+ 2b
− h2

)

− (a− h2)n− b|X| − h2

≥ (a+ b− h2)

(

(a+ b)n

a+ 2b
− h2

)

− (a− h2)n−
b2n

a+ 2b
− h2

= h22 +

(

bn

a+ 2b
− a− b− 1

)

h2

> h22 +

(

(a+ 2b)(2a+ 2b− 3)

a+ 2b
− a− b− 1

)

h2

= h22 + (a+ b− 4)h2 ≥ h22 − 2h2 = (h2 − 1)2 − 1 ≥ −1,

which contradicts (1).

Case 3. r = 0. If h1 = a, then by (1) we obtain −1 ≥ δH(S, T ) = b|S| +
dH−S(T )− a|T | ≥ b|S|+h1|T | − a|T | = b|S| ≥ 0, which is a contradiction. Thus,
we have

(3) 1 ≤ h1 ≤ a− 1.

We now prove the following claim.

Claim 6. T \NT [x1] 6= ∅.

Proof. Suppose that T = NT [x1]. Then from (3) we have

|T | = |NT [x1]| ≤ |NH−S [x1]| = dH−S(x1) + 1 = h1 + 1 ≤ a,

which contradicts Claim 3. �

In view of Claim 6, there exists x2 ∈ T \ NT [x1] such that dH−S(x2) = h2.
Obviously, x1x2 /∈ E(G). According to the condition of Theorem 1, we obtain

(a+ b)n

a+ 2b
≤ |NG(x1) ∪NG(x2)| ≤ |NH(x1) ∪NH(x2)|+ |X|

≤ dH−S(x1) + dH−S(x2) + |S|+ |X| = h1 + h2 + |S|+ |X|,

that is,

(4) |S| ≥
(a+ b)n

a+ 2b
− h1 − h2 − |X|.
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It is easy to see that

(5) |NT [x1]| ≤ |NH−S [x1]| = dH−S(x1) + 1 = h1 + 1.

Using 1 ≤ h1 ≤ h2 ≤ a, |S|+ |T |+ |X| ≤ n, (4), (5) and Claim 1, we have

δH(S, T ) = b|S|+ dH−S(T )− a|T |

= b|S|+ dH−S(NT [x1]) + dH−S(T \NT [x1])− a|T |

≥ b|S|+ h1|NT [x1]|+ h2(|T | − |NT [x1]|)− a|T |

= b|S| − (h2 − h1)|NT [x1]| − (a− h2)|T |

≥ b|S| − (h2 − h1)(h1 + 1)− (a− h2)(n− |S| − |X|)

= (a+ b− h2)|S| − (h2 − h1)(h1 + 1)− (a− h2)n+ (a− h2)|X|

≥ (a+ b− h2)

(

(a+ b)n

a+ 2b
− h1 − h2 − |X|

)

− (h2 − h1)(h1 + 1)

− (a− h2)n+ (a− h2)|X|

= (a+ b− h2)

(

(a+ b)n

a+ 2b
− h1 − h2

)

− (h2 − h1)(h1 + 1)

− (a− h2)n− b|X|

≥ (a+ b− h2)

(

(a+ b)n

a+ 2b
− h1 − h2

)

− (h2 − h1)(h1 + 1)

− (a− h2)n−
b2n

a+ 2b

=
bn

a+ 2b
h2 − (a+ b− h2)(h1 + h2)− (h2 − h1)(h1 + 1),

that is,

(6) δH(S, T ) ≥
bn

a+ 2b
h2 − (a+ b− h2)(h1 + h2)− (h2 − h1)(h1 + 1).

Let F (h1, h2) =
bn

a+2bh2 − (a+ b− h2)(h1 + h2)− (h2 − h1)(h1 +1). Thus, by
(3) we have

∂F (h1, h2)

∂h1
= −(a+ b− h2)− (−h1 − 1 + h2 − h1) = −(a+ b) + 2h1 + 1

≤ −(a+ b) + 2(a− 1) + 1 ≤ −1.

Combining this with 1 ≤ h1 ≤ h2 ≤ a, we obtain

(7) F (h1, h2) ≥ F (h2, h2).
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In terms of (6), (7), 1 ≤ h2 ≤ a and n ≥ (a+2b)(2a+2b−3)+1
b

> (a+2b)(2a+2b−3)
b

,
we have

δH(S, T ) ≥ F (h1, h2) ≥ F (h2, h2) =
bn

a+ 2b
h2 − 2(a+ b− h2)h2

>
(a+ 2b)(2a+ 2b− 3)

a+ 2b
h2 − 2(a+ b− h2)h2

= h2(2h2 − 3) ≥ −1,

which contradicts (1).
In all the cases above we obtained contradictions. Hence, H has a fractional

[a, b]-factor, that is, G is fractional ID-[a, b]-factor-critical. The proof of Theorem
1 is complete.

3. Remarks

Remark 5. In Theorem 1, the bound in the condition

|NG(x) ∪NG(y)| ≥
(a+ b)n

a+ 2b

is sharp. We can show this by constructing a graph G = (at)K1 ∨ (bt)K1 ∨
(bt + 1)K1, where t is a sufficiently large positive integer. It is easy to see that
|V (G)| = n = (a+ 2b)t+ 1 and

(a+ b)n

a+ 2b
> |NG(x) ∪NG(y)| = (a+ b)t = (a+ b) ·

n− 1

a+ 2b

=
(a+ b)n

a+ 2b
−

a+ b

a+ 2b
>

(a+ b)n

a+ 2b
− 1

for each pair of nonadjacent vertices x, y of (bt + 1)K1 ⊂ G. Set X = (bt)K1.
Clearly, X is an independent set of G. Put H = G −X = (at)K1 ∨ (bt + 1)K1,
S = (at)K1 and T = (bt+ 1)K1. Then |S| = at, |T | = bt+ 1 and dH−S(T ) = 0.
Thus, we have

δH(S, T ) = b|S|+ dH−S(T )− a|T |

= abt− a(bt+ 1) = −a < 0.

In terms of Lemma 4, H has no fractional [a, b]-factor. Hence, G is not
fractional ID-[a, b]-factor-critical.

Remark 6. We show that the bound on minimum degree δ(G) ≥ bn

a+2b + a in
Theorem 1 is also best possible. Consider a graph G constructed from btK1,
(at − 1)K1,

bt

2 K2 and K1 as follows: let {x1, x2, . . . , xa−1} ⊂ (at − 1)K1 and
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K1 = {u}, where t is a sufficiently large positive integer and bt is even. Set
V (G) = V (btK1∪(at−1)K1∪

bt

2 K2∪{u}) and E(G) = E(btK1∨(at−1)K1∨
bt

2 K2)
∪ E(btK1 ∨ {u}) ∪ {uxi : i = 1, 2, . . . , a − 1}. It is easily seen that |NG(x) ∪

NG(y)}| ≥
(a+b)n
a+2b for each pair of nonadjacent vertices x, y of G, n = (a + 2b)t

and δ(G) = bn

a+2b + a − 1. Let X = btK1. It is easy to see that X is an
independent set of G. Set H = G−X. Then δ(H) = dH(u) = a− 1. Clearly, H
has no fractional [a, b]-factor, that is, G is not fractional ID-[a, b]-factor-critical.
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