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Abstract

Let G be a graph on n vertices. A vertex of G with degree at least n/2 is
called a heavy vertex, and a cycle of G which contains all the heavy vertices
of G is called a heavy cycle. In this note, we characterize graphs which
contain no heavy cycles. For a given graph H, we say that G is H-heavy
if every induced subgraph of G isomorphic to H contains two nonadjacent
vertices with degree sum at least n. We find all the connected graphs S such
that a 2-connected graph G being S-heavy implies any longest cycle of G is
a heavy cycle.
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1. Introduction

We use Bondy and Murty [2] for terminology and notation not defined here and
consider finite simple graphs only.

Let G be a graph on n vertices. For a vertex v ∈ V (G) and a subgraph H
of G, we use NH(v) and dH(v) to denote the set and the number of neighbors
of v in H, respectively. We call dH(v) the degree of v in H. When no confusion
occurs, we will denote NG(v) and dG(v) by N(v) and d(v), respectively. A vertex
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v is called heavy if d(v) ≥ n/2, and a cycle C is called heavy if C contains all
heavy vertices of G.

The following theorem on the existence of heavy cycles in graphs is well
known.

Theorem 1 (Bollobás and Brightwell [1], Shi [4]). Every 2-connected graph has

a heavy cycle.

Let G be a graph, v be a vertex, and e be an edge of G. We use G − v to
denote the graph obtained from G by deleting v, and G − e the graph obtained
from G by deleting e.

A connected graph is called separable if it has at least one cut vertex. By
Theorem 1, if a graph G (of order at least 3) contains no heavy cycles, then it
is separable. We first characterize the separable graphs which contain no heavy
cycles.

Theorem 2. Let G be a connected graph on n vertices. If G contains no heavy

cycles, then G has at most two heavy vertices. Moreover,

(1) if G contains no heavy vertices, then G is a tree;

(2) if G contains only one heavy vertex, say x, then G− x contains at least n/2
components, and each component of G − x contains exactly one neighbor

of x;

(3) if G has exactly two heavy vertices, say x and y, then xy ∈ E(G) and xy is

a cut edge of G, n is even and both components of G−xy have n/2 vertices,

and x (and y, respectively) is adjacent to every vertex in the component

which contains x (y). Briefly stated, T1 ⊆ G ⊆ T2 (see Figure 1).

We postpone the proof of Theorem 2 to Section 3.
If x and y are two vertices of a graph G, then an (x, y)-path is a path connect-

ing the two vertices x and y. The distance between x and y, denote by d(x, y),
is the length of a shortest (x, y)-path in G.

Let H be a subgraph of a graph G. If H contains all edges xy ∈ E(G) with
x, y ∈ V (H), then H is called an induced subgraph of G. Let X be a subset of
V (G). The induced subgraph of G with vertex set X is called a subgraph induced

by X, and is denoted by G[X]. We use G −X to denote the subgraph induced
by V (G) \X, and use the notation G−H instead of G− V (H).

Let G be a graph on n vertices. For a given graph H, we say that G is
H-free if G does not contain an induced subgraph isomorphic to H. If H is an
induced subgraph of G, we say that H is heavy in G if there are two nonadjacent
vertices in V (H) with degree sum at least n. A graph G is called H-heavy if
every induced subgraph of G isomorphic to H is heavy. Note that an H-free
graph is also H-heavy, and if H1 is an induced subgraph of H2, then an H1-free
(H1-heavy) graph is also H2-free (H2-heavy).
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Figure 1. Extremal graphs with two heavy vertices and no heavy cycles.

In general, a longest cycle of a graph may not be a heavy cycle (see Figure 1).
In this note, we mainly consider heavy subgraph conditions for longest cycles to
be heavy. First, consider the following theorem.

Theorem 3 (Fan [3]). Let G be a 2-connected graph. If max{d(u), d(v)} ≥ n/2
for every pair of vertices u, v with distance 2 in G, then G is Hamiltonian.

This theorem implies that every 2-connected P3-heavy graph has a Hamilton
cycle, which is of course a heavy cycle. In fact we have the following theorem.

Theorem 4. If G is a 2-connected K1,4-heavy graph, and C is a longest cycle of

G, then C is a heavy cycle of G.

We postpone the proof of this theorem to Section 4.

Note that K1,3 is an induced subgraph of K1,4. So any longest cycle of a
K1,3-heavy graph is heavy. In fact we can get the following result.
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Theorem 5. Let S be a connected graph on at least 3 vertices and G be a 2-
connected graph. Then G being S-free (or S-heavy) implies that every longest

cycle of G is a heavy cycle, if and only if S = P3,K1,3 or K1,4.

The sufficiency of this theorem follows from Theorem 4 immediately. We will
prove its necessity in Section 5.

2. Preliminaries

We first give some additional terminology and notation.

Let s, t be two integers with s ≤ t, and xi be a vertex of a graph for s ≤ i ≤ t.
Then we use [xs, xt] to denote the set of vertices {xi : s ≤ i ≤ t}.

Let P be a path and x, y ∈ V (P ). We use P [x, y] to denote the subpath of
P from x to y. Let C be a cycle with a given orientation and x, y ∈ V (C). We

use
−→
C [x, y] to denote the path from x to y on

−→
C , and

←−
C [y, x] to denote the path

−→
C [x, y] with the opposite direction.

Let G be a graph on n vertices and k ≥ 3 be an integer. We call a circular
sequence of vertices C = v1v2 · · · vkv1 an ore-cycle (or shortly, o-cycle) of G, if for
all i with 1 ≤ i ≤ k, either vivi+1 ∈ E(G) or d(vi)+d(vi+1) ≥ n, where vk+1 = v1.
The deficit degree of the o-cycle C is defined by def(C) = |{i : vivi+1 /∈ E(G)
with 1 ≤ i ≤ k}|. Thus a cycle is an o-cycle with deficit degree 0. Similarly, we
can define o-paths of G.

Now, we prove the following lemma on o-cycles.

Lemma 6. Let G be a graph and C be an o-cycle of G. Then there exists a cycle

of G which contains all the vertices in V (C).

Proof. Assume the opposite. Let C ′ be an o-cycle which contains all the vertices
in V (C) such that def(C ′) is as small as possible. Then we have def(C ′) ≥ 1.
Without loss of generality, we suppose that C ′ = v1v2 · · · vkv1, where v1vk /∈ E(G)
and d(v1) + d(vk) ≥ n. We use P to denote the o-path P = v1v2 · · · vk.

If v1 and vk have a common neighbor in V (G)\V (P ), denote it by x, then
C ′′ = Pvkxv1 is an o-cycle which contains all the vertices in V (C) with deficit
degree smaller than def(C ′), a contradiction.

So we assume that NG−P (v1) ∩ NG−P (vk) = ∅. Then we have dP (v1) +
dP (vk) ≥ |V (P )| by d(v1)+d(vk) ≥ n. Thus, there exists i with 2 ≤ i ≤ k−1 such
that vi ∈ NP (v1) and vi−1 ∈ NP (vk), and then C ′′ = P [v1, vi−1]vi−1vkP [vk, vi]viv1
is an o-cycle which contains all the vertices in V (C) with deficit degree smaller
than def(C ′), a contradiction.

Note that Lemma 6 immediately implies Theorem 1.
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Let P be an (x, y)-path (or o-path) of G. If the number of vertices of P is
more than that of a longest cycle of G, then, by Lemma 6, we have xy /∈ E(G)
and d(x) + d(y) < |V (G)|.

In the following, we use E(G) to denote the set {uv : uv ∈ E(G) or d(u) +
d(v) ≥ |V (G)|}.

3. Proof of Theorem 2

If G contains at least three heavy vertices, then let X = {x1, x2, . . . , xk} be the
set of heavy vertices of G, where k ≥ 3. Thus C = x1x2 · · ·xkx1 is an o-cycle. By
Lemma 6, there exists a cycle containing all the vertices in X, which is a heavy
cycle, a contradiction. Thus we have that G contains at most two heavy vertices.

Case 1. G contains no heavy vertices.
If G contains a cycle C, then C is a heavy cycle of G, a contradiction. Since G
is connected, we have that G is a tree.

Case 2. G contains only one heavy vertex.
Let x be the heavy vertex and H be a component of G−x. Since G is connected,
we have that NH(x) 6= ∅. If |NH(x)| ≥ 2, then let x1 and x2 be two vertices in
NH(x), and P be an (x1, x2)-path in H. Then C = Px2xx1 is a cycle containing
x, which is a heavy cycle, a contradiction. Thus we have |NH(x)| = 1.

Since d(x) ≥ n/2, we have that G− x contains at least n/2 components.

Case 3. G contains exactly two heavy vertices.
Let x and y be the two heavy vertices and P be a longest (x, y)-path of G. If
|V (P )| ≥ 3, then C = Pyx is an o-cycle of G. By Lemma 6, there exists a cycle
containing all the vertices in V (C), which is a heavy cycle, a contradiction. Thus
we have that |V (P )| = 2, which implies that xy ∈ E(G) and xy is a cut edge
of G.

Let Hx and Hy be the two components of G − xy which contain x and y,
respectively. Since d(x) ≥ n/2 and xy′ /∈ E(G) for all y′ ∈ V (Hy)\{y}, we have
that |V (Hy)| ≤ n/2. Similarly we have that |V (Hx)| ≤ n/2. This implies that n
is even and |V (Hx)| = |V (Hy)| = n/2.

By d(x) ≥ n/2 and |V (Hx)| = n/2, we have that xx′ ∈ E(G) for every
x′ ∈ V (Hx)\{x}. Similarly, we have that yy′ ∈ E(G) for every y′ ∈ V (Hy)\{y}.

The proof is complete.

4. Proof of Theorem 4

We use n to denote the order of G, and c to denote the length of C. We give an
orientation to C. Let x be a vertex in V (G− C). We prove that d(x) < n/2.
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Let H be the component of G−C which contains x. Then all the neighbors
of x are in V (C)∪V (H). Let h = |V (H)|. Note that x is not a neighbor of itself.
Hence we have dH(x) < h.

Claim 1. If v1, v2 are two vertices in V (C) such that v1v2 ∈ E(C), then either

xv1 /∈ E(G) or xv2 /∈ E(G).

Proof. Otherwise, (C − v1v2) ∪ v1xv2 is a cycle longer than C, a contradiction.

By Claim 1, we have that if P is a subpath of C, then dP (x) ≤ ⌈|V (P )|/2⌉.
By the 2-connectedness of G, there exists a (u0, v0)-path (and then, a (u0, v0)-o-
path) passing through x which is internally disjoint with C, where u0, v0 ∈ V (C).
We choose an o-path Q = x−kx−k+1 · · ·x−1xx1 · · ·xl such that

(1) x±1 ∈ N(x),

(2) Q is internally disjoint with C, and

(3) |V (Q) ∩NH(x)| is as large as possible, where x−k ∈ V (C) and xl ∈ V (C).

Claim 2. Q contains at least half of the vertices in NH(x).

Proof. If dH(x) = 0, then the assertion is obvious. So we assume that dH(x) ≥ 1.
Suppose that |NH(x)∩V (Q)| < dH(x)/2. Then |NH(x)\V (Q)| ≥ ⌈dH(x)/2⌉ ≥ 1.

Claim 2.1. For every x′ ∈ NH(x)\V (Q), x′x1 /∈ E(G) and x′x−1 /∈ E(G).

Proof. If x′x1 ∈ E(G), then Q′ = Q[x−k, x]xx
′x1Q[x1, xl] is an o-path which

contains more vertices in NH(x) than Q, a contradiction. Thus we have x′x1 /∈
E(G). The second assertion is symmetric.

Claim 2.2. x−1x1 ∈ E(G).

Proof. Suppose that x−1x1 /∈ E(G). Let x′, x′′ be any pair of vertices in
NH(x)\V (Q). By Claim 2.1, we have that x′x±1 /∈ E(G) and x′′x±1 /∈ E(G).
Since G is a K1,4-heavy graph, we have that x′x′′ ∈ E(G).

By the 2-connectedness of G, there is a path from NH(x)\V (Q) to V (C) ∪
V (Q) not passing through x. Let R′ = y1y2 · · · yr be such a path, where y1 ∈
NH(x)\V (Q) and yr ∈ V (C) ∪ V (Q)\{x}. Let R be an o-path from x to y1
passing through all the vertices in NH(x)\V (Q) (recall that, for any x′, x′′ ∈
NH(x)\V (Q), we have x′x′′ ∈ E(G)).

If yr ∈ V (C)\{x−k, xl}, then Q′ = Q[x−k, x]RR′ is an o-path which contains
at least half of the vertices in NH(x), a contradiction.

If yr ∈ V (Q[x1, xl]), then Q′ = Q[x−k, x]RR′Q[yr, xl] is an o-path which
contains at least half of the vertices in NH(x), a contradiction.

The case yr ∈ V (Q[x−k, x−1]) follows by symmetry.
Thus the claim holds.
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Now, we choose an o-path R = xx′1x
′
2 · · ·x

′
r which is internally disjoint with

C ∪Q, where x′r ∈ V (C) ∪ V (Q)\{x} such that

(1) x′1 ∈ N(x), and

(2) |V (R) ∩ (NH(x)\V (Q))| is as large as possible.

Claim 2.3. R contains at least half of the vertices in NH(x)\V (Q).

Proof. Note that dH−Q(x) ≥ 1. It is easy to see that x′1 ∈ NH(x)\V (Q). By
Claim 2.1, we have that x′1x1 /∈ E(G).

Suppose that |V (R)∩(NH(x)\V (Q))| < dH−Q(x)/2. LetNH(x)\V (Q)\V (R)
= {x′′1, x

′′
2, . . . , x

′′
s}, where s ≥ ⌈dH−Q(x)/2⌉.

For every vertex x′′i ∈ NH(x)\V (Q)\V (R), by Claim 2.1, we have that x′′i x1 /∈
E(G). Symmetrically, we can prove that x′′i x

′
1 /∈ E(G).

For any pair of vertices x′′i , x
′′
j ∈ NH(x)\V (Q)\V (R), we have that x′′i x1 /∈

E(G), x′′i x
′
1 /∈ E(G), x′′jx1 /∈ E(G), x′′jx

′
1 /∈ E(G) and x′1x1 /∈ E(G). Since G is

K1,4-heavy, we have that x′′i x
′′
j ∈ E(G).

By the 2-connectedness of G, there is a path from NH(x)\V (Q)\V (R) to
V (C) ∪ V (Q) not passing through x. Let T ′ = y1y2 · · · yt be such a path, where
y1 ∈ NH(x)\V (Q)\V (R) and yt ∈ V (C)∪V (Q)\{x}. Let T be an o-path from x
to y1 passing through all the vertices in NH(x)\V (Q)\V (R). Then R′ = TT ′ is
an o-path from x to V (C)∪V (Q)\{x} which contains at least half of the vertices
in NH(x)\V (Q), a contradiction.

By Claim 2.3, we have that R contains at least one quarter of the vertices in
NH(x).

Claim 2.4. x′r ∈ V (C)\{x−k, xl}.

Proof. Assume the opposite. Without loss of generality, we assume that x′r ∈
[x1, xl].

If x′r = x1, then Q′ = Q[x−k, x]RQ[x1, xl] is an o-path which contains more
vertices in NH(x) than Q, a contradiction.

If x′r = xi, where 2 ≤ i ≤ l, then let xj be the last vertex in [x1, xi−1] such
that xj ∈ N(x). Then Q′ = Q[x−k, x−1]x−1x1Q[x1, xj ]xjxRQ[x′r, xl] is an o-path
which contains more vertices in NH(x) than Q, a contradiction.

Thus we have x′r ∈ V (C)\{x−k, xl}.

Now we finish the proof of Claim 2. If Q[x, xl] contains fewer than one quarter
of the vertices in NH(x), then Q′ = Q[x−k, x]R is an o-path which contains more
vertices in NH(x) than Q, a contradiction. This implies that Q[x, xl] contains
at least one quarter of the vertices in NH(x). Similarly, we have that Q[x−k, x]
contains at least one quarter of the vertices in NH(x). Thus Q contains at least
half of the vertices in NH(x), a contradiction.
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By Claim 2, we have that k + l − 2 ≥ dH(x)/2.

Let u0 = x−k ∈ V (C) and v0 = xl ∈ V (C). We assume that the length of
−→
C [v0, u0] is r1+1 and length of

−→
C [u0, v0] is r2+1, where r1+ r2+2 = c. We use

−→
C = v0v1v2 · · · vr1u0v−r2v−r2+1 · · · v−1v0 to denote C with the given orientation,

and
←−
C = u0u1u2 · · ·ur1v0u−r2u−r2+1 · · ·u−1u0 to denote C with the opposite

direction, where vi = ur1+1−i and v−j = u−r2−1+j .

Claim 3. r1 ≥ k + l − 1, and for every vertex vs ∈ [v1, vl], xvs /∈ E(G), and for

every vertex ut ∈ [u1, uk], xut /∈ E(G).

Proof. Note that Q contains k + l − 1 vertices in V (H). If r1 < k + l − 1,

then C ′ = Q
←−
C [v0, u0] is an o-cycle longer than C. By Lemma 6, there exists a

cycle which contains all the vertices in V (C ′), a contradiction. Thus, we have
r1 ≥ k + l − 1.

If xvs ∈ E(G), where vs ∈ [v1, vl], then C ′ =
−→
C [vs, v0]Q[v0, x]xvs is an o-

cycle which contains all the vertices in (V (C)\[v1, vs−1]) ∪ V (Q[x, xl−1]), and
|V (C ′)| > c, a contradiction.

If xut ∈ E(G), where ut ∈ [u1, uk], then we can prove the result similarly.

Similarly, we can prove the following claim.

Claim 4. r2 ≥ k+ l−1, and for every vertex v−s ∈ [v−l, v−1], xv−s /∈ E(G), and
for every vertex u−t ∈ [u−k, u−1], xu−t /∈ E(G).

Let d1 = d−→
C [v1,u1]

(x) and d2 = d←−
C [v

−1,u−1]
(x). Then dC(x) ≤ d1 + d2 + 2.

Claim 5. d1 ≤ (r1 − (k + l) + 1)/2, d2 ≤ (r2 − (k + l) + 1)/2.

Proof. If r1 = k + l − 1, then by Claim 3, we have d1 = 0. So we assume that
r1 ≥ k + l. By Claim 3, we have that d1 = d−→

C [vl+1,uk+1]
(x). By Claim 1, we have

that d1 ≤ ⌈(r1 − (k + l))/2⌉ ≤ (r1 − (k + l) + 1)/2.

The second assertion is symmetric.

By Claim 5, we have that

dC(x) ≤ d1 + d2 + 2 ≤ (r1 + r2 + 2− 2(k + l))/2 + 2 = c/2− (k + l − 2).

Note that k + l − 2 ≥ dH(x)/2, we have dC(x) ≤ (c − dH(x))/2. Thus
d(x) = dC(x) + dH(x) ≤ (c+ dH(x))/2 < (c+ h)/2 ≤ n/2.

The proof is complete.
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5. Proof of the necessity of Theorem 5

Note that an S-free graph is also S-heavy. Thus we only need to prove that a
longest cycle of a 2-connected S-free graph is not necessarily a heavy cycle for
S 6= P3,K1,3 and K1,4.

First consider the following fact: if a connected graph S on at least 3 vertices
is not P3,K1,3 or K1,4, then S must contain K3, P4, C4 or K1,5 as an induced
subgraph. Thus we only need to show that not every longest cycle in a K3, P4, C4

or K1,5-free graph is heavy.
We construct three graphs G1, G2 and G3 (see Figures 2, 3 and 4).

vu
v1

v
−1

vr

v
−r

v2

v
−2

x y

z1

z2

zk−1

zk

Figure 2. Graph G1 (r ≥ 4 and k ≥ 2r + 2).

x
z1

zk

z2

Kr

Kr

u v

Figure 3. Graph G2 (r ≥ 4 and k ≥ 2r − 1).

Remark 7. In the graph G2, the subgraph G2[{x} ∪ [z1, zk]] is a star K1,k, and
u and v are adjacent to all the vertices in the K1,k and the two Kr’s (note that
uv ∈ E(G2)). In the graph G3, x and y are adjacent to all the vertices in the
three Kk’s.

Note that G1 is K3-free, G2 is P4 and C4-free, and G3 is K1,5-free, and the
longest cycles of the three graphs are all not heavy. Thus the necessity of the
theorem holds.
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Figure 4. Graph G3 (r ≥ 11 and (2r + 2)/3 ≤ k ≤ r − 3).
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