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Abstract

Let G be a graph on n vertices. A vertex of G with degree at least n/2 is
called a heavy vertex, and a cycle of G which contains all the heavy vertices
of G is called a heavy cycle. In this note, we characterize graphs which
contain no heavy cycles. For a given graph H, we say that G is H-heavy
if every induced subgraph of G isomorphic to H contains two nonadjacent
vertices with degree sum at least n. We find all the connected graphs S such
that a 2-connected graph G being S-heavy implies any longest cycle of G is
a heavy cycle.
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1. INTRODUCTION

We use Bondy and Murty [2] for terminology and notation not defined here and

consider finite simple graphs only.

Let G be a graph on n vertices. For a vertex v € V(G) and a subgraph H
of G, we use Ny (v) and dp(v) to denote the set and the number of neighbors
of v in H, respectively. We call dy(v) the degree of v in H. When no confusion
occurs, we will denote Ng(v) and dg(v) by N(v) and d(v), respectively. A vertex
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v is called heavy if d(v) > n/2, and a cycle C' is called heavy if C contains all
heavy vertices of G.

The following theorem on the existence of heavy cycles in graphs is well
known.

Theorem 1 (Bollobas and Brightwell [1], Shi [4]). Every 2-connected graph has
a heavy cycle.

Let G be a graph, v be a vertex, and e be an edge of G. We use G — v to
denote the graph obtained from G by deleting v, and G — e the graph obtained
from G by deleting e.

A connected graph is called separable if it has at least one cut vertex. By
Theorem 1, if a graph G (of order at least 3) contains no heavy cycles, then it
is separable. We first characterize the separable graphs which contain no heavy
cycles.

Theorem 2. Let G be a connected graph on n vertices. If G contains no heavy
cycles, then G has at most two heavy vertices. Moreover,

(1) if G contains no heavy vertices, then G is a tree;

(2) if G contains only one heavy vertex, say x, then G — x contains at least n/2
components, and each component of G — x contains exactly one neighbor
of x;

(3) if G has exactly two heavy vertices, say x and y, then xy € E(G) and xy is
a cut edge of G, n is even and both components of G — xy have n/2 vertices,
and = (and y, respectively) is adjacent to every vertex in the component
which contains x (y). Briefly stated, Ty C G C Ty (see Figure 1).

We postpone the proof of Theorem 2 to Section 3.

If z and y are two vertices of a graph G, then an (z,y)-path is a path connect-
ing the two vertices x and y. The distance between z and y, denote by d(z,y),
is the length of a shortest (z,y)-path in G.

Let H be a subgraph of a graph G. If H contains all edges zy € E(G) with
x,y € V(H), then H is called an induced subgraph of G. Let X be a subset of
V(G). The induced subgraph of G with vertex set X is called a subgraph induced
by X, and is denoted by G[X]. We use G — X to denote the subgraph induced
by V(G) \ X, and use the notation G — H instead of G — V(H).

Let G be a graph on n vertices. For a given graph H, we say that G is
H-free if G does not contain an induced subgraph isomorphic to H. If H is an
induced subgraph of G, we say that H is heavy in G if there are two nonadjacent
vertices in V(H) with degree sum at least n. A graph G is called H-heavy if
every induced subgraph of GG isomorphic to H is heavy. Note that an H-free
graph is also H-heavy, and if H; is an induced subgraph of Ho, then an H;-free
(Hi-heavy) graph is also Ha-free (Ha-heavy).
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Figure 1. Extremal graphs with two heavy vertices and no heavy cycles.

In general, a longest cycle of a graph may not be a heavy cycle (see Figure 1).
In this note, we mainly consider heavy subgraph conditions for longest cycles to
be heavy. First, consider the following theorem.

Theorem 3 (Fan [3]). Let G be a 2-connected graph. If max{d(u),d(v)} > n/2
for every pair of vertices u,v with distance 2 in G, then G is Hamiltonian.

This theorem implies that every 2-connected Ps-heavy graph has a Hamilton
cycle, which is of course a heavy cycle. In fact we have the following theorem.

Theorem 4. If G is a 2-connected K1 4-heavy graph, and C is a longest cycle of
G, then C is a heavy cycle of G.

We postpone the proof of this theorem to Section 4.
Note that K3 is an induced subgraph of Kj 4. So any longest cycle of a
K 3-heavy graph is heavy. In fact we can get the following result.
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Theorem 5. Let S be a connected graph on at least 3 vertices and G be a 2-
connected graph. Then G being S-free (or S-heavy) implies that every longest
cycle of G is a heavy cycle, if and only if S = P3, K13 or K1 4.

The sufficiency of this theorem follows from Theorem 4 immediately. We will
prove its necessity in Section 5.

2. PRELIMINARIES

We first give some additional terminology and notation.

Let s,t be two integers with s < t, and x; be a vertex of a graph for s < i < ¢.
Then we use [zs, z¢] to denote the set of vertices {z; : s <i < t}.

Let P be a path and z,y € V(P). We use P[z,y| to denote the subpath of
P from z to y. Let C be a cycle with a given orientation and z,y € V(C). We

c ¢, and O
use C'[z,y] to denote the path from x to y on C', and C'[y, x] to denote the path

[, y] with the opposite direction.

Let G be a graph on n vertices and k£ > 3 be an integer. We call a circular
sequence of vertices C' = v1vy - - - vgv1 an ore-cycle (or shortly, o-cycle) of G, if for
all ¢ with 1 < ¢ < k, either v;v;11 € E(G) or d(v;)+d(viy+1) > n, where vg41 = v;.
The deficit degree of the o-cycle C is defined by def(C) = |{i : vivit1 ¢ E(G)
with 1 <4 < k}|. Thus a cycle is an o-cycle with deficit degree 0. Similarly, we
can define o-paths of G.

Now, we prove the following lemma on o-cycles.

Lemma 6. Let G be a graph and C be an o-cycle of G. Then there exists a cycle
of G which contains all the vertices in V(C').

Proof. Assume the opposite. Let C’ be an o-cycle which contains all the vertices
in V(C) such that def(C") is as small as possible. Then we have def(C”") > 1.
Without loss of generality, we suppose that C’ = vjvg - - - viv1, where viv, ¢ E(G)
and d(v1) 4+ d(vg) > n. We use P to denote the o-path P = vjvg - - - vy.

If v; and vy have a common neighbor in V(G)\V(P), denote it by z, then
C" = Pugzv is an o-cycle which contains all the vertices in V(C) with deficit
degree smaller than def(C”), a contradiction.

So we assume that Ng_p(v1) N Ng_p(vkg) = 0. Then we have dp(vy) +
dp(vk) > |V (P)| by d(v1)+d(vg) > n. Thus, there exists ¢ with 2 < i < k—1 such
that v; € Np(v1) and v;—1 € Np(vg), and then C” = Plvy,v;—1]vi—10k P[vg, vi]vivg
is an o-cycle which contains all the vertices in V(C) with deficit degree smaller
than def(C"), a contradiction. ]

Note that Lemma 6 immediately implies Theorem 1.
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Let P be an (z,y)-path (or o-path) of G. If the number of vertices of P is
more than that of a longest cycle of G, then, by Lemma 6, we have xy ¢ E(QG)
and d(z) + d(y) < |[V(G)|.

In the following, we use F(G) to denote the set {uv : uwv € E(G) or d(u) +
i) > [V(G)[}.

3. PROOF OF THEOREM 2

If G contains at least three heavy vertices, then let X = {x1,zo,..., 21} be the
set of heavy vertices of G, where k > 3. Thus C' = x1x9 - - - xpx1 is an o-cycle. By
Lemma 6, there exists a cycle containing all the vertices in X, which is a heavy
cycle, a contradiction. Thus we have that G contains at most two heavy vertices.

Case 1. G contains no heavy vertices.
If G contains a cycle C, then C' is a heavy cycle of G, a contradiction. Since G
is connected, we have that G is a tree.

Case 2. G contains only one heavy vertex.
Let  be the heavy vertex and H be a component of G —z. Since G is connected,
we have that Ny (x) # (0. If [Ng(x)| > 2, then let 21 and x9 be two vertices in
Ny (z), and P be an (x1,x2)-path in H. Then C' = Pzoxx; is a cycle containing
x, which is a heavy cycle, a contradiction. Thus we have |Ng(z)| = 1.

Since d(x) > n/2, we have that G — x contains at least n/2 components.

Case 3. G contains exactly two heavy vertices.

Let  and y be the two heavy vertices and P be a longest (z,y)-path of G. If
|V(P)| > 3, then C' = Pyz is an o-cycle of G. By Lemma 6, there exists a cycle
containing all the vertices in V' (C'), which is a heavy cycle, a contradiction. Thus
we have that |V(P)| = 2, which implies that xy € F(G) and zy is a cut edge
of G.

Let H, and Hy be the two components of G — xy which contain = and y,
respectively. Since d(z) > n/2 and zy’ ¢ E(G) for all y € V(H,)\{y}, we have
that |V(H,)| < n/2. Similarly we have that |V (H;)| < n/2. This implies that n
is even and |V (H,)| = |[V(Hy)| = n/2.

By d(z) > n/2 and |V(H,)| = n/2, we have that zz’ € E(G) for every
z' € V(H,)\{z}. Similarly, we have that yy' € E(G) for every y' € V(H,)\{y}.

The proof is complete.

4. PROOF OF THEOREM 4

We use n to denote the order of G, and ¢ to denote the length of C'. We give an
orientation to C. Let x be a vertex in V(G — C). We prove that d(x) < n/2.
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Let H be the component of G — C' which contains z. Then all the neighbors
of z are in V(C)UV(H). Let h = |V(H)|. Note that z is not a neighbor of itself.
Hence we have dg(z) < h.

Claim 1. If v1,va are two vertices in V(C) such that vive € E(C), then either
zv1 ¢ E(G) or xve ¢ E(Q).

Proof. Otherwise, (C' — v1v2) Uvizvy is a cycle longer than C, a contradiction.
|

By Claim 1, we have that if P is a subpath of C, then dp(z) < [|V(P)|/2].

By the 2-connectedness of G, there exists a (ug, vo)-path (and then, a (ug, vp)-o-

path) passing through = which is internally disjoint with C', where ug,vg € V(C).

We choose an o-path Q = x_px_g11---x_1227 - - - 27 such that

(1) 41 € N(x),

(2) @ is internally disjoint with C, and

(3) |[V(Q) N Ng(x)| is as large as possible, where z_j € V(C) and z; € V(C).

Claim 2. Q contains at least half of the vertices in Ng(z).

Proof. 1f di(x) = 0, then the assertion is obvious. So we assume that dy(z) > 1.
Suppose that |[Ng(2)NV(Q)| < dg(z)/2. Then |[Ng(x)\V(Q)| > [du(z)/2] > 1.

Claim 2.1. For every ' € Ng(z)\V(Q), 2’21 ¢ E(G) and 2’z ¢ E(G).

Proof. If 2’x; € E(G), then Q' = Q[z_, z]z2’r1Q[x1, 7] is an o-path which
contains more vertices in Ny (z) than @, a contradiction. Thus we have 2’z ¢
E(G). The second assertion is symmetric. O

Claim 2.2. z_111 € E(G)

Proof. Suppose that x_121 ¢ E(G). Let 2/,2” be any pair of vertices in
Ng(z)\V(Q). By Claim 2.1, we have that 2’z+1 ¢ E(G) and 2”211 ¢ E(G).
Since G is a Kj 4-heavy graph, we have that z'z” € E(G).

By the 2-connectedness of G, there is a path from Ny (z)\V(Q) to V(C) U
V(Q) not passing through z. Let R’ = yjys---y, be such a path, where y; €
Ny (x)\V(Q) and y, € V(C)UV(Q)\{z}. Let R be an o-path from z to y;
passing through all the vertices in Ny (z)\V(Q) (recall that, for any z/,2" €
Ny (2)\V(Q), we have 2’2" € E(Q)).

If y. € V(C)\{x_g, 21}, then Q' = Q[x_g, ] RR is an o-path which contains
at least half of the vertices in Ny (x), a contradiction.

If y, € V(Q[z1,21]), then Q' = Q[z_k, 2]RR'Qly,, x| is an o-path which
contains at least half of the vertices in Ny (x), a contradiction.

The case y, € V(Q[r_i,r_1]) follows by symmetry.

Thus the claim holds. 0
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Now, we choose an o-path R = x|z}, --- 2. which is internally disjoint with
C'UQ, where 2, € V(C)UV(Q)\{x} such that

(1) 2} € N(x), and
(2) |[V(R) N (Ng(x)\V(Q))]| is as large as possible.

Claim 2.3. R contains at least half of the vertices in Ng(z)\V(Q).

Proof. Note that dy_g(x) > 1. It is easy to see that 2} € Ny(z)\V(Q). By
Claim 2.1, we have that 2}z; ¢ E(G).

Suppose that [V/(R)N(Nu (2)\V(Q))| < du-q(x)/2. Let Nu(x)\V(Q)\V(R)
={a,24,... 2}, where s > [dy_g(x)/2].

For every vertex z/ € Ny (z)\V(Q)\V (R), by Claim 2.1, we have that =z, ¢
E(G). Symmetrically, we can prove that 27z} ¢ E(G).

For any pair of vertices 7,27 € Nu(z)\V(Q)\V(R), we have that xz; ¢
E(G), x{ay ¢ E(G), #fx1 ¢ E(G), zjx) ¢ E(G) and 2\, ¢ E(G). Since G is
K 4-heavy, we have that z}z] € E(G).

By the 2-connectedness of G, there is a path from Ny (z)\V(Q)\V(R) to
V(C) UV (Q) not passing through z. Let T' = y1y2 - - -y be such a path, where
y1 € Ng(2)\V(Q)\V(R) and y, € V(C)UV(Q)\{z}. Let T be an o-path from =
to y1 passing through all the vertices in Ny (2)\V(Q)\V(R). Then R' =TT is
an o-path from z to V(C)UV(Q)\{z} which contains at least half of the vertices

in Ng(2z)\V(Q), a contradiction. 0

By Claim 2.3, we have that R contains at least one quarter of the vertices in

Claim 2.4. 2} € V(C)\{z_, x}.

Proof. Assume the opposite. Without loss of generality, we assume that z]. €
[33‘1, J}l] .

If ). = 1, then Q' = Q[x_g, x]RQ[x1, x| is an o-path which contains more
vertices in Ny (x) than @, a contradiction.

If z) = x;, where 2 < ¢ <, then let z; be the last vertex in [z1,2;-1] such
that ; € N(z). Then Q' = Q[z_p, z_1]r_121Q[21, z;]z;2 RQ|x), 27] is an o-path
which contains more vertices in Ny (z) than @, a contradiction.

Thus we have . € V(C)\{z_g, z;}. O

Now we finish the proof of Claim 2. If Q[x, ;] contains fewer than one quarter
of the vertices in Ny (z), then Q' = Q[z_g, z]R is an o-path which contains more
vertices in Ny (z) than @, a contradiction. This implies that Q[z,z;] contains
at least one quarter of the vertices in Ny (x). Similarly, we have that Q[z_g, z]
contains at least one quarter of the vertices in Ny (z). Thus @ contains at least
half of the vertices in Ny (x), a contradiction. 0
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By Claim 2, we have that k +1—2 > dy(z)/2.
Let ug = x_, € V(C) and vy = x; € V(C). We assume that the length of
[vo, up] is 1 + 1 and length of C'[ug, vo] is r2 + 1, where r1 + 72 +2 = ¢. We use
= VULV -+ * Up UQU—pyU—pyt1 - - - V—10g tO denote C' with the given orientation,
and 8 = UQUIU2 - * * Up  VOU—pyU_pyt1 - - - U_1Ug to denote C' with the opposite
direction, where v; = u; 11— and v_; = U_p,_14;.

Claim 3. r1 > k+1— 1, and for every vertex vs € [v1,v;], zvs ¢ E(G), and for
every verter uz € [uy, uk|, zur ¢ E(G).

Proof. Note that @ contains k + [ — 1 vertices in V(H). If ry < k41— 1,
then €’ = QC'[vg, ug)] is an o-cycle longer than C. By Lemma 6, there exists a
cycle which contains all the vertices in V(C’), a contradiction. Thus, we have
rm>k+1—1.

If zvs € E(G), where vg € [v1,v], then C" = B[US,UO]Q[’UQ,{L‘]I‘US is an o-
cycle which contains all the vertices in (V(C)\[v1, vs—1]) U V(Q[x, x;-1]), and
|[V(C")| > ¢, a contradiction.

If zuy € E(G), where u; € [u1,ug), then we can prove the result similarly.

Similarly, we can prove the following claim.

Claim 4. ro > k+1—1, and for every vertex v_s € [v_j,v_1], zv_s ¢ E(G), and
for every vertex u_y € [u_g,u—_1], ru_s ¢ E(G).

Let dy = dﬁ[vl ul](x) and dy = davil uil](a;). Then deo(x) < dy + da + 2.
Claim 5. d1 < (’I“l — (k-f-l) + 1)/2, d2 < (TQ — (k“l‘l) + 1)/2

Proof. If r1 = k+ 1 — 1, then by Claim 3, we have d; = 0. So we assume that
r1 > k+ 1. By Claim 3, we have that d; = dzz[vl L 1](30). By Claim 1, we have
+1,%k+

that dy < [(r1 — (k+1))/2] < (r1 — (k+1) +1)/2.
The second assertion is symmetric. 0

By Claim 5, we have that
dc(l‘) <di+do+2< (T1+7’2+2—2(l€+l))/2+2=c/2—(k+l—2).
Note that k& +1 — 2 > dg(z)/2, we have do(x) < (¢ — dg(x))/2. Thus

d(w) = de(@) + du(z) < (c+ du(@))/2 < (c+h)/2 < n/2.
The proof is complete.
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5. PROOF OF THE NECESSITY OF THEOREM 5

Note that an S-free graph is also S-heavy. Thus we only need to prove that a
longest cycle of a 2-connected S-free graph is not necessarily a heavy cycle for
S 75 Pg,Kl’g and K1’4.

First consider the following fact: if a connected graph S on at least 3 vertices
is not P53, K13 or Kig4, then S must contain K3, Py,Cy or K15 as an induced
subgraph. Thus we only need to show that not every longest cycle in a K3, Py, Cy
or K1 s-free graph is heavy.

We construct three graphs G1, Gy and G (see Figures 2, 3 and 4).

(%8 U1

v_q
v_y

S0

Figure 2. Graph G (r >4 and k > 2r + 2).

Figure 3. Graph G5 (r >4 and k > 2r — 1).

Remark 7. In the graph G, the subgraph Ga[{z} U [21, 2;]] is a star K, and
uw and v are adjacent to all the vertices in the K j and the two K,’s (note that
uwv € E(G2)). In the graph G3, = and y are adjacent to all the vertices in the
three K’s.

Note that G is K3-free, G2 is P4 and Cy-free, and G3 is K 5-free, and the
longest cycles of the three graphs are all not heavy. Thus the necessity of the
theorem holds.
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Figure 4. Graph G3 (r > 11 and (2r +2)/3 <k <r —3).
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