THE EXISTENCE OF QUASI REGULAR AND BI-REGULAR SELF-COMPLEMENTARY 3-UNIFORM HYPERGRAPHS

Lata N. Kamble
Department of Mathematics
Abasaheb Garware College, Karve Road, Pune-411004
e-mail: lata7429@gmail.com
Charusheela M. Deshpande
AND
Bhagyashree Y. Bam
Department of Mathematics
College of Engineering Pune
Pune-411006
e-mail: dcm.maths@coep.ac.in

Abstract

A k-uniform hypergraph $H=(V ; E)$ is called self-complementary if there is a permutation $\sigma: V \rightarrow V$, called a complementing permutation, such that for every k-subset e of $V, e \in E$ if and only if $\sigma(e) \notin E$. In other words, H is isomorphic with $H^{\prime}=\left(V ; V^{(k)}-E\right)$. In this paper we define a bi-regular hypergraph and prove that there exists a bi-regular self-complementary 3 uniform hypergraph on n vertices if and only if n is congruent to 0 or 2 modulo 4 . We also prove that there exists a quasi regular self-complementary 3 -uniform hypergraph on n vertices if and only if n is congruent to 0 modulo 4.

Keywords: self-complementary hypergraph, uniform hypergraph, regular hypergraph, quasi regular hypergraph, bi-regular hypergraph.
2010 Mathematics Subject Classification: 05C65.

1. Introduction

Sachs [8] and Ringel [7] proved that a graph of order n is self-complementary if and only if n is congruent to 0 or 1 modulo 4 . They also proved that a regular graph of order n is self-complementary if and only if n is congruent to 1 modulo 4 .

Szymański and Wojda [9] proved that "A self-complementary 3-uniform hypergraph of order n exists if and only if n is congruent to 0 or 1 or 2 modulo 4 ."

Potoc̆nik, and S̆ajana [6] raised the following question strengthening Hartman's conjecture [2,3] about the existence of large sets of (not necessarily isomorphic) designs.

Question [6]. Is it true that for every triple of integers $t<k<n$ such that $\binom{n-i}{k-i}$ is even for all $i=0, \ldots, t$, there exists a self-complementary t-subset-regular k uniform hypergraph of order n ?

The answer to the above question is affirmative for $k=2$ and $t=1$ (see [8]). The answer was proved affirmative also for the case $k=3$ and $t=1$ (see [6]). And in [4] it is shown that the answer to the question above is affirmative for the remaining case of 3-uniform hypergraphs, namely for the case $k=3, t=2$.

In this paper we digress a little from the case $k=3$ and $t=1$ to prove that a quasi-regular self-complementary 3-uniform hypergraph of order n exists if and only if $n \geq 4$ and n is congruent to 0 modulo 4 , and a bi-regular self-complementary 3 -uniform hypergraph of order n exists if and only if n is congruent to 0 or 2 modulo 4 .

2. Preliminary Definitions and Results

Definition (k-uniform hypergraph). Let V be a finite set with n vertices. By $V^{(k)}$ we denote the set of all k-subsets of V. A k-uniform hypergraph is a pair $H=(V ; E)$, where $E \subset V^{(k)} . V$ is called the vertex set, and E the edge set of H.

Definition (Degree of a vertex). The degree of a vertex v in a hypergraph H is the number of edges containing the vertex v and is denoted as $d_{H}(v)$.

Definition (Regular hypergraph). A hypergraph H is said to be regular if all vertices have the same degree.

Definition (Bi-regular hypergraph). A hypergraph H is said to be bi-regular if there exist two distinct positive integers d_{1} and d_{2} such that the degree of each vertex is either d_{1} or d_{2}.

Definition (Quasi regular hypergraph). A hypergraph H is said to be quasi regular if the degree of each vertex is either r or $r-1$ for some positive integer r.

It is clear that every quasi regular hypergraph is bi-regular.
Definition (Self-complementary k-uniform hypergraph). A k-uniform hypergraph $H=(V ; E)$ is called self-complementary if there exists a permutation $\sigma: V \rightarrow V$, called a complementing permutation, such that for every k-subset e of $V, e \in E$ if and only if $\sigma(e) \notin E$.

In other words, H is isomorphic to $H^{\prime}=\left(V ; V^{(k)}-E\right)$.
Definition (Tournament). A tournament is a directed graph (V, A) with the property that for all pairs of distinct vertices $u, v \in V$, either $(u, v) \in A$ or $(v, u) \in A$.

Further, a tournament is said to be self-converse if there exists a bijection $\varphi: V \rightarrow V$ such that for all distinct $u, v \in V$, we have $(u, v) \in A$ if and only if $(\varphi(u), \varphi(v)) \notin A$.

Kocay [5] proved the following result on complementing permutations of selfcomplementary 3 -uniform hypergraphs.

Proposition 1 [5]. A permutation σ is a complementing permutation of a selfcomplementary 3-uniform hypergraph if and only if
(i) every cycle of σ has even length, or
(ii) σ has 1 or 2 fixed points, and the length of all other cycles is a multiple of 4 .

Szymański and Wojda [9] proved the following result on the order of a selfcomplementary uniform hypergraph.

Proposition 2 [9]. Let k and n be positive integers, $k \leq n$. A k-uniform selfcomplementary hypergraph of order n exists if and only if $\binom{n}{k}$ is even.

Remark 3. For 3 -uniform self-complementary hypergraph the Proposition 2 can be stated as "A 3 -uniform self-complementary hypergraph of order n exists if and only if $n \equiv 0$ or 1 or $2(\bmod 4)$.

The following remark is obvious and hence is stated without proof.
Remark 4. If H is a self-complementary 3 -uniform hypergraph of order n with complementing permutation σ, then
(i) for any vertex v in $H, d_{H}(v)+d_{H}(\sigma(v))=\binom{n-1}{2}$,
(ii) for any vertex v in $H, d_{H}(v)=d_{H}\left(\sigma^{2}(v)\right)=d_{H}\left(\sigma^{4}(v)\right)=\cdots$ and

$$
d_{H}(\sigma(v))=d_{H}\left(\sigma^{3}(v)\right)=d_{H}\left(\sigma^{5}(v)\right)=\cdots
$$

Further, if x is a fixed point of σ, then $d_{H}(x)=\frac{1}{2}\binom{n-1}{2}$.
Lemma 5. If H is a self-complementary 3 -uniform hypergraph on n vertices, where n is congruent to 1 modulo 4 and $n \geq 5$, then H cannot be bi-regular.

Proof. Let H be a self-complementary 3 -uniform hypergraph on n vertices where n is congruent to 1 modulo 4, i.e., $n=4 m+1, m \in \mathbb{N}$. Let $\sigma: V(H) \rightarrow V(H)$ be its complementing permutation. By Proposition 1, σ necessarily has one fixed point, say x.

From Remark 4(ii) $d_{H}(x)=m(4 m-1)$. For H to be bi-regular either $d_{1}=m(4 m-1)$ or $d_{2}=m(4 m-1)$. Without loss of generality let $d_{1}=m(4 m-1)$. Since there are only two types of degrees d_{1} and d_{2}, for any other vertex v, $d_{v}(H)$ is d_{1} or d_{2}. By Remark 4(i) we have, $d_{1}+d_{2}=\frac{4 m(4 m-1)}{2}$ which gives $d_{2}=2 m(4 m-1)-m(4 m-1)=m(4 m-1)=d_{1}$. Hence H cannot be bi-regular.

3. Existence of a Quasi Regular and Bi-Regular Self-Complementary 3-Uniform Hypergraph

The following theorem gives a necessary and sufficient condition on the order n of a quasi regular self-complementary 3 -uniform hypergraph. This theorem actually gives a construction of a quasi regular self-complementary 3-uniform hypergraph of desirable order.

Theorem 6. There exists a quasi regular self-complementary 3-uniform hypergraph of order n if and only if $n \geq 4$ and $n \equiv 0(\bmod 4)$.

Proof. Let H be a quasi regular self-complementary 3-uniform hypergraph on n vertices such that degree of each vertex is either r or $r-1$ for some positive integer r.

Figure 1. The types of triples making up the edge set of a quasi regular self-complementary 3 -uniform hypergraph on $n=4 m$ vertices.

Let $\sigma: V(H) \rightarrow V(H)$ be a complementing permutation of H. By Proposition $1, \sigma$ has (i) every cycle of even length, or (ii) 1 or 2 fixed points and the
length of all the other cycles is a multiple of 4. By Remark 3, we know that a self-complementary 3 -uniform hypergraph exists if and only if $n \equiv 0(\bmod 4)$ or $n \equiv 1(\bmod 4)$, or $n \equiv 2(\bmod 4)$. Lemma 5 shows that n is not congruent to 1 modulo 4.

If $n \equiv 2(\bmod 4)$, i.e., $n=4 m+2, m \in \mathbb{N}$, then either σ has 2 fixed points and the length of all other cycles is a multiple of 4 or σ has all cycles of even length.

If σ has 2 fixed points, then both must have the same degree and for some other vertex $v, d_{H}(v) \neq d_{H}(\sigma(v))$ otherwise H will be regular. Since there are only two possible degrees r and $r-1$, from Remark 4 we get that $r+r-1=$ $\binom{n-1}{2}=\binom{4 m+1}{2}$, i.e., $2 r-1=2 m(4 m+1)$, a contradiction.

If σ has all cycles of even length, then again we get the same contradiction.
Hence, if there exists a quasi regular self-complementary 3 -uniform hypergraph on n vertices, then $n \equiv 0(\bmod 4)$.

For the converse, we construct a quasi regular self-complementary 3 -uniform hypergraph on n vertices where $n \equiv 0(\bmod 4)$.

Let m be a positive integer such that $n=4 m$ and $V=V_{0} \cup V_{1} \cup V_{2} \cup V_{3}$, where $V_{i}=\left\{v_{j}^{i}: j \in \mathbb{Z}_{m}\right\}, i \in \mathbb{Z}_{4}$.

For every pairwise distinct triple $i, i^{\prime}, i^{\prime \prime} \in \mathbb{Z}_{4}$ we define the following subsets of $V^{(3)}$:

$$
\begin{aligned}
E_{i} & =V_{i}^{(3)}, \\
E_{\left(i, i^{\prime}\right)} & =\left\{\left\{v_{j_{1}}^{i}, v_{j^{\prime}}^{i}, v_{j^{\prime}}^{i^{\prime}}\right\}: j_{1}, j_{2}, j^{\prime} \in \mathbb{Z}_{m}, j_{1} \neq j_{2}\right\}, \\
E_{\left(i, i^{\prime}, i^{\prime \prime}\right)} & =\left\{\left\{v_{j}^{i}, v_{j^{\prime}}^{i^{\prime}}, v_{j^{\prime \prime}}^{i^{\prime \prime}}\right\}: j, j^{\prime}, j^{\prime \prime} \in \mathbb{Z}_{m}\right\} .
\end{aligned}
$$

Let us denote

$$
E=E_{0} \cup E_{1} \cup E_{(2,1)} \cup E_{(2,3)} \cup E_{(3,0)} \cup E_{(3,2)} \cup E_{(1,3)} \cup E_{(0,2)} \cup E_{(0,1,3)} \cup E_{(0,1,2)} .
$$

Let H be the 3-uniform hypergraph with vertex set V and edge set E. Figure 1 explains the construction of the hypergraph H. We show that H is quasi regular. Take any vertex v_{j}^{i}.

Case (i) If $i \in\{0,1\}$, then the vertex v_{j}^{i} lies in $\binom{m-1}{2}$ triples of $E_{i},(m-1) m$ triples of $E_{\left(i, i^{\prime}\right)},\binom{m}{2}$ triples of $E_{\left(i^{\prime}, i\right)}$ and $2 m^{2}$ triples of $E_{\left(i, i^{\prime}, i^{\prime \prime}\right)}$. Hence, for every vertex v_{j}^{i} in H with $i \in\{0,1\}$, we have

$$
d_{H}\left(v_{j}^{i}\right)=\binom{m-1}{2}+\binom{m}{2}+m(m-1)+2 m^{2}=4 m^{2}-3 m+1 .
$$

Case (ii) If $i \in\{2,3\}$, then the vertex v_{j}^{i} lies in $2(m-1) m$ triples of $E_{\left(i, i^{\prime}\right)}$, $2\binom{m}{2}$ triples of $E_{\left(i^{\prime}, i\right)}$ and m^{2} triples of $E_{\left(i, i^{\prime}, i^{\prime \prime}\right)}$. Hence for every vertex v_{j}^{i} in H with $i \in\{2,3\}$, we obtain

$$
d_{H}\left(v_{j}^{i}\right)=2(m-1) m+2\binom{m}{2}+m^{2}=4 m^{2}-3 m
$$

Thus H is quasi regular with degrees $r=4 m^{2}-3 m+1$ and $r-1=4 m^{2}-3 m$. To prove that H is self-complementary, we define a permutation $\phi: V \rightarrow V$ by $\phi\left(v_{j}^{0}\right)=v_{j}^{3}, \phi\left(v_{j}^{1}\right)=v_{j}^{2}, \phi\left(v_{j}^{2}\right)=v_{j}^{1}$ and $\phi\left(v_{j}^{3}\right)=v_{j}^{0}$, for all $j \in \mathbb{Z}_{m}$. Then ϕ is a complementing permutation of H and H is self-complementary.

In the next theorem we give a necessary and sufficient condition on the order n of a bi-regular 3 -uniform hypergraph to be self-complementary. In this theorem we shall use the following result by Alspach [1] on existence of a regular selfconverse tournament.

Theorem 7 (Alspach [1]). There exists a regular self-converse tournament with n vertices for every odd integer n.

Theorem 8. There exists a bi-regular self-complementary 3-uniform hypergraph of order n if and only if either $n \equiv 0(\bmod 4)$ or $n \equiv 2(\bmod 4)$ and $n \geq 4$.

Proof. Necessity follows from Lemma 5 and Remark 3. Conversely, let $n \equiv 0$ $(\bmod 4)$. The self-complementary 3 -uniform hypergraph constructed in Theorem 6 is quasi regular and hence biregular.

Let $n \equiv 2(\bmod 4)$. Then $n=4 m+2=2 k$ where $k=2 m+1$ is odd. Let $V=V_{0} \cup V_{1}$, where $V_{i}=\left\{v_{j}^{i}: j \in \mathbb{Z}_{k}\right\}, i \in \mathbb{Z}_{2}$. By Theorem 7, there exists a regular self-converse tournament $T=\left(\mathbb{Z}_{k}, A\right)$.

For $i \in \mathbb{Z}_{2}$, we define the following subsets of $V^{(3)}$:

$$
\begin{aligned}
E_{i} & =V_{i}^{(3)}, \\
E_{(i, i+1)} & =\left\{\left\{v_{j_{j}}^{i}, v_{j_{2}}^{i}, v_{j}^{i+1}\right\}: j_{1}, j_{2}, j \in \mathbb{Z}_{k}, j_{1}, j_{2}, j \text { pairwise distinct }\right\}, \\
E_{A} & =\left\{\left\{v_{k_{1}}^{i}, v_{k_{2}}^{i}, v_{k_{1}}^{i+1}\right\}:\left(k_{1}, k_{2}\right) \in A, i \in \mathbb{Z}_{2}\right\} .
\end{aligned}
$$

Let

$$
E=E_{0} \cup E_{(0,1)} \cup E_{A} .
$$

Let H be the 3 -uniform hypergraph with vertex set V and edge set E. Figure 2 explains the construction of the hypergraph H. We show that H is bi-regular. Let v_{j}^{i} be an arbitrary vertex of H.

Case (i) If $i=0$, then the vertex v_{j}^{0} lies in $\binom{k-1}{2}$ triples of $E_{0},(k-1)(k-2)$ triples of $E_{(0,1)}$ and $\frac{3(k-1)}{2}$ triples of E_{A}. Hence

$$
d_{H}\left(v_{j}^{0}\right)=\binom{k-1}{2}+(k-1)(k-2)+\frac{3(k-1)}{2}=\frac{3(k-1)^{2}}{2} .
$$

Case (ii) If $i=1$, then the vertex v_{j}^{1} lies in $\binom{k-1}{2}$ triples of $E_{(0,1)}, \frac{3(k-1)}{2}$ triples of E_{A}. Therefore,

$$
d_{H}\left(v_{j}^{1}\right)=\binom{k-1}{2}+\frac{3(k-1)}{2}=\frac{k^{2}-1}{2}
$$

Figure 2. The types of triples making up the edge set of a bi-regular self-complementary 3 -uniform hypergraph on $n=4 m+2$ vertices.

This proves that H is bi-regular with degrees $d_{1}=\frac{3(k-1)^{2}}{2}$ and $d_{2}=\frac{k^{2}-1}{2}$.
Let $\varphi: \mathbb{Z}_{k} \rightarrow \mathbb{Z}_{k}$ be an arc-reversing mapping of the tournament T; that is, φ is a bijection on \mathbb{Z}_{k} such that $\varphi(a) \notin A$ for all $a \in A$.

To prove that H is self-complementary, we define a permutation $\phi: V \rightarrow V$ by $\phi\left(v_{j}^{i}\right)=v_{\varphi(j)}^{i+1}$ for $i \in \mathbb{Z}_{2}$ and $j \in \mathbb{Z}_{k} . \phi$ interchanges the sets E_{1} and E_{0}, and also the sets $E_{(0,1)}$ and $E_{(1,0)}$. Furthermore, for all $\left(k_{1}, k_{2}\right) \in A$ and $i \in \mathbb{Z}_{2}$, since φ is arc-reversing, ϕ maps the triple $\left\{v_{k_{1}}^{i}, v_{k_{2}}^{i}, v_{k_{1}}^{i+1}\right\} \in E_{A}$ to the triple $\left\{v_{\varphi\left(k_{1}\right)}^{i+1}, v_{\varphi\left(k_{2}\right)}^{i+1}, v_{\varphi\left(k_{1}\right)}^{i}\right\} \notin E_{A}$. It follows that ϕ is a complementing permutation of H and therefore H is self-complementary.

Acknowledgment

We are grateful to the referees for their helpful comments and Professor N.S. Bhave for many helpful discussions.

References

[1] B. Alspach, On point-symmetric tournaments, Canad. Math. Bull. 13 (1970) 317-323.
doi:10.4153/CMB-1970-061-7
[2] C.J. Colbourn and J.H. Dinitz, The CRC Handbook of Combinatorial Designs (CRC Press, Boca Raton, 1996).
[3] A. Hartman, Halving the complete design, Ann. Discrete Math. 34 (1987) 207-224. doi:10.1016/s0304-0208(08)72888-3
[4] M. Knor and P. Potočnik, A note on 2-subset-regular self-complementary 3-uniform hypergraphs, Ars Combin. 11 (2013) 33-36.
[5] W. Kocay, Reconstructing graphs as subsumed graphs of hypergraphs, and some selfcomplementary triple systems, Graphs Combin. 8 (1992) 259-276. doi:10.1007/BF02349963
[6] P. Potočnik and M. Šajana, The existence of regular self-complementary 3-uniform hypergraphs, Discrete Math. 309 (2009) 950-954. doi:10.1016/j.disc.2008.01.026
[7] G. Ringel, Selbstkomplementäre Graphen, Arch. Math. 14 (1963) 354-358. doi:10.1007/BF01234967
[8] H. Sachs, Über selbstkomplementäre Graphen, Publ. Math. Debrecen 9 (1962) 270-288.
[9] A. Szymański and A.P. Wojda, A note on k-uniform self-complementary hypergraphs of given order, Discuss. Math. Graph Theory 29 (2009) 199-202. doi:10.7151/dmgt. 1440

