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1. Introduction

1.1. Basic notation and terminology

All graphs considered here are simple and finite. For standard graph-theoretic
terminology not explained in this paper, we refer the reader to [2]. Let G be
a graph. For a vertex v ∈ V (G) and a subgraph H of G, we use NH(v) and
dH(v) to denote the set and the number of neighbors of v in H, respectively. We
call NH(v) the neighborhood of v in H and dH(v) the degree of v in H. We use
dH(u, v) to denote the distance between two vertices u, v ∈ V (H) in H. For two
subgraphs H and L of a graph G, we set NL(H) =

⋃

v∈V (H)NL(v). When no
confusion occurs, we will denote NG(v) and dG(v) by N(v) and d(v), respectively.
We set N [x] = N(x) ∪ {x}.

Throughout this paper, we denote the order, the connectivity and the inde-
pendent number of a graph G, by n(G), κ(G) and α(G), respectively.

1.2. Motivation and main results of this paper

By the definition every Hamilton cycle of a graph passes through every vertex
of the graph. Thus, in non-Hamiltonian graphs, a (longest) cycle through some
special vertices should be also interesting for the same topic. There are many
results on the problem whether a graph has a (longest) cycle through some special
vertices, for example, any given vertex set [8]; large degree vertices, see [1, 7, 9].
Unlike most research of the existence of some (longest) cycle passing through
special vertices in the literature, we put our attention to the problem to determine
the least integer d such that every longest cycle of a graph passes all vertices of
degree at least d, using some additional conditions of order, of connectivity or of
independence number.

The following known result gave a partly answer for the above problem.

Theorem 1 (Li and Zhang [6]). Let G be a 2-connected graph of order n ≥ 8.
Then every longest cycle of G contains all vertices of degree at least n− 4.

We firstly extend Theorem 1 to k-connected graphs for any k ≥ 2 and shall
give a complete answer for the above problem by using the order of a graph and
its connectivity.

Theorem 2. Let G be a graph of connectivity κ(G) ≥ k ≥ 2 and of order

n ≥ 6k − 4. Then every longest cycle of G contains all vertices of degree at least

n− 3k + 2.

The bound on the degree in Theorem 2 is sharp. We construct a graph
as follows. Let R = 2K2 ∪ (k − 2)P3, S = kK1 and T = (n − 4k + 1)K1 are
vertex-disjoint. Let R′ be the subset of V (R) each vertex of which is either
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a vertex of a K2 or a center of a P3 in R, and let s′ be a fixed vertex of S
and x a vertex not in R ∪ S ∪ T . Let L(k, n) be the graph with V (L(k, n)) =
{x} ∪ V (R) ∪ V (S) ∪ V (T ), and E(L(k, n)) = E(R) ∪ {r′s′, rs, s′x, sx, st, xt :
r′ ∈ R′, r ∈ V (R), s ∈ V (S)\{s′}, t ∈ V (T )}. One can check that L(k, n) is k-
connected and the degree of x is n − 3k + 1, but there is a longest cycle (in the
subgraph induced by V (R) ∪ V (S)) excluding x.

x

s′

Figure 1. Graph L(4, 21).

The bound n ≥ 6k−4 is also sharp. This can be seen from the complete bipar-
tite graph K3k−3,3k−2 of order 6k − 5. However, the longest cycles of K3k−3,3k−2

exclude some vertices of degree 3k − 3 = n− 3k + 2.

Now we define ϕ(k, n) to be the least integer such that every longest cycle of
a k-connected graph G of order n contains all vertices of degree at least ϕ(k, n)
in G.

To avoid the discussions of the petty cases, we put our considerations on
2-connected graphs, i.e., we always assume that k ≥ 2. Note that if n ≤ k, then
there are no k-connected graphs of order n. Hence ϕ(k, n) will be meaningless.
Is ϕ(k, n) well-defined for all pairs (k, n) with n ≥ k + 1? No. Under the condi-
tion that it holds “every k-connected graph on n vertices is Hamiltonian” (e.g.,
n = k + 1), ϕ(k, n) does not exist (or we may say ϕ(k, n) = −∞). So we should
take the pair (k, n) such that there exist some k-connected graphs of order n which
are not Hamiltonian. This implies that n ≥ 2k + 1 from the well-known Dirac’s
theorem [4]. On the other hand, there indeed exist such graphs when n ≥ 2k+1
(for example, complete bipartite graphs Kk,n−k). So ϕ(k, n) is well-defined if and
only if n ≥ 2k + 1.

From Theorem 2 and the construction of L(k, n), we have

ϕ(k, n) = n− 3k + 2, for n ≥ 6k − 4.
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How about the cases when 2k + 1 ≤ n ≤ 6k − 5? First we construct a graph
as follows: if n is odd, then let L(k, n) = K(n−1)/2,(n+1)/2; if n is even, then let
L(k, n) = Kn/2−1,n/2+1. Note that every longest cycle of L(k, n) excludes some
vertices of degree ⌈n/2⌉−1. This shows that ϕ(k, n) ≥ ⌈n/2⌉. On the other hand,
we have the following result (one may compare it with the results in [1] and
[9] where they replaced “every cycle” with “there exists some cycle” under the
condition that “G is 2-connected”).

Theorem 3. Let G be a k-connected graph on n ≤ 6k − 5 vertices. Then every

longest cycle of G contains all vertices of degree at least ⌈n/2⌉.

Instead of Theorems 2 and 3, we shall prove the following theorem in Sec-
tion 3.

Theorem 4. Let G be a graph of connectivity κ(G) ≥ k ≥ 2 and of order

n ≥ 2k + 1. Then every longest cycle of G contains all vertices of degree at least

d = max
{⌈n

2

⌉

, n− 3k + 2
}

.

Now we have a complete formula

ϕ(k, n) = max
{⌈n

2

⌉

, n− 3k + 2
}

, for all n ≥ 2k + 1.

In the following we consider the same problem by using an additional condi-
tion of independent number. We use ϕ(k, α, n) to denote the least integer such
that for every k-connected graphG of order n and of independent number α, every
longest cycle of G contains all vertices of degree at least ϕ(k, α, n). As the analy-
sis above, we should take the triple (k, α, n) such that there exists a k-connected
graph of order n and independent number α that is not Hamiltonian. This re-
quires α ≥ k+ 1 from Chvátal-Erdös’s theorem [3]; and α ≤ n− k, since every k
connected graph of order n has independent number at most n− k (note that an
independent set excludes the k neighbors of some vertex). On the other hand, for
triple (k, α, n) with k+1 ≤ α ≤ n−k, the graph kK1∨((α−1)K1∪Kn−k−α+1) is a
k-connected graph of order n and independent number α that is not Hamiltonian.
Thus ϕ(k, α, n) is well-defined if and only if k + 1 ≤ α ≤ n− k.

By the definition of ϕ(k, n), we can see that

ϕ(k, n) = max{ϕ(k, α, n) : k + 1 ≤ α ≤ n− k}, for all n ≥ 2k + 1.

Using a result in [10], we can prove the following result.

Theorem 5. Let G be a k-connected graph of order n and of independent num-

ber α. Then every longest cycle of G contains all vertices of degree more than

d0 =
(α− k)n− kα+ k2 + α2 − 2α

α
.
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Taking α = k + 1 in the above theorem, we can obtain the following corre-
spondence.

Theorem 6. Let G be a graph of connectivity κ(G) ≥ k ≥ 2, of order n ≥ 2k+1
and of independent number k + 1. Then every longest cycle of G contains all

vertices of degree at least

d =

⌊

n+ 1

k + 1

⌋

+ k − 1.

The bound on d in Theorem 6 is sharp. We construct a graph L(k, k + 1, n)
by joining each vertex of R = kK1 to all vertices of S = rKq+1 ∪ (k + 1− r)Kq,
where

n− k = q(k + 1) + r, 0 ≤ r ≤ k.

Note that L(k, k + 1, n) has a longest cycle excluding some vertices of degree

q + k − 1 =

⌊

n− k

k + 1

⌋

+ k − 1 =

⌊

n+ 1

k + 1

⌋

+ k − 2.

By Theorem 6, the above equality implies that

ϕ(k, k + 1, n) =

⌊

n+ 1

k + 1

⌋

+ k − 1, for all n ≥ 2k + 1.

Thus, in the following we will assume that α ≥ k+2. For the case k = 2, we
have the following result.

Theorem 7. Let G be a 2-connected graph of order n ≥ 8 and independent

number α ≥ 4. Then every longest cycle of G contains all vertices of degree at

least

d =

⌊

n− 5

α

⌋

(α− 2) + max

{

3, n− 4−

⌊

n− 5

α

⌋

α

}

i.e.,

d =

{

q(α− 2) + 3, 0 ≤ r ≤ 2,
q(α− 2) + r + 1, 3 ≤ r < α,

where

n− 5 = qα+ r, 0 ≤ r < α.

The bound on d in Theorem 7 is sharp when q ≥ 1 (i.e., when n ≥ α + 5).
We construct extremal graphs as follows. If 0 ≤ r ≤ 2, then let R = rKq+2 ∪
(2 − r)Kq+1 and T = (α − 2)Kq; if 3 ≤ r < α, then let R = 2Kq+2 and T =
(r− 2)Kq+1∪ (α− r)Kq. Let s

′, s, x be three vertices not in R∪T . Let L(2, α, n)
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be a graph with the vertex set V (L(2, α, n)) = {s′, s, x} ∪ V (R) ∪ V (T ) and the
edge set

E(L(2, α, n)) = E(R) ∪ E(T ) ∪ {s′r, sr, s′x, sx, st, xt : r ∈ V (R), t ∈ V (T )}.

One can check that L(2, α, n) is a 2-connected graph of order n and of in-
dependent number α, and x has degree d − 1. But there is a longest cycle of G
excluding x. By Theorem 7, this implies that for n ≥ α+ 5,

ϕ(2, α, n) =

{

q(α− 2) + 3, 0 ≤ r ≤ 2,
q(α− 2) + r + 1, 3 ≤ r < α,

where
n− 5 = qα+ r, 0 ≤ r < α.

For the case q = 0, the above construction does not give the exact value of
ϕ(2, α, n), since the independent number of the constructed graph is less than α.
What is its exact values for this case?

Note that n ≤ α+4 in this case. Also note that in our assumption n ≥ α+2.
We have three cases: n = α+ 2, n = α+ 3 and n = α+ 4.

Theorem 8. Let G be a 2-connected graph of independent number α ≥ 4 and of

order n such that α+ 2 ≤ n ≤ α+ 4. Then every longest cycle of G contains all

vertices of degree at least

d =

{

n− α+ 1, n− α = 2, 3,
α, n− α = 4.

Now we will show the sharpness of the bound in Theorem 8. For the case
n = α + 2, consider the graph L(2, α, α + 2) = K2,α. Note that every longest
cycle of L(2, α, α+ 2) excludes some vertices of degree 2.

For the case n = α+ 3, consider the graph L(2, α, α+ 3) = K3,α. Note that
every longest cycle of L(2, α, α+ 3) excludes some vertices of degree 3.

Now we consider the case n = α+ 4. We construct the graph L(2, α, α+ 4)
by combining a cycle C6 and a star K1,α−3 in such a way: choosing two vertices
u, v in C6 with distance 3, joining the center x of the star to u and v, and joining
all the end-vertices of the star to v. Note that one longest cycle of L(2, α, α+ 4)
excludes x of degree α− 1.

Therefore, we give formulas for α ≥ 4,

ϕ(2, α, α+ 2) = 3,

ϕ(2, α, α+ 3) = 4,

ϕ(2, α, α+ 4) = α.

The bound of d0 in Theorem 5 seems not sharp for α ≥ k + 2 (at least it is
not sharp when k = 2). We propose the following conjecture.
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Figure 2. Graph L(2, α, α+ 4).

Conjecture 9. Let G be a k-connected graph, k ≥ 3, of independent number

α ≥ k + 2 and of order n ≥ max{2α + 1, α + 3k + 1}. Then every longest cycle

of G contains all vertices of degree at least

d =







q(α− k) + k + 1, 0 ≤ r ≤ k,
q(α− k) + k + 2, k + 1 ≤ r ≤ 2k + 1,
q(α− k) + r − k + 1, 2k + 2 ≤ r < α+ k,

where

n− 2k − 1 = q(α+ k) + r, 0 ≤ r < α+ k.

We remark that if the conjecture is true, then the bound on d is sharp. We
construct a graph as follows. If 0 ≤ r ≤ k, then let R = rK2q+2∪(k−r)K2q+1 and
T = (α−k)Kq; if k+1 ≤ r ≤ 2k+1, then letR = (r−k−1)K2q+3∪(2k+1−r)K2q+2

and T = Kq+1 ∪ (α− k − 1)Kq; if 2k + 2 ≤ r < α+ k, then let R = kK2q+3 and
T = (r − 2k)Kq+1 ∪ (α + k − r)Kq, and let S = kK1. Let x be a vertex not in
R∪S∪T . Let L(k, α, n) be a graph with V (L(k, α, n)) = {x}∪V (R)∪V (S)∪V (T )
and

E(L(k, α, n)) = E(R) ∪ E(T ) ∪ {sr, sx, st, xt : r ∈ V (R), s ∈ V (S), t ∈ V (T )}.

One can check that L(k, α, n) is a 2-connected graph of order n and of in-
dependent number α, and x has degree d − 1. But there is a longest cycle of G
excluding x.

2. Preliminaries

Let G be a graph and x, y ∈ V (G). An x-path is a path with x as one of its end
vertices; an (x, y)-path is one connecting x and y. If Y is a subset of V (G), then
an (x, Y )-path is one connecting x and a vertex in Y with all internal vertices in
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V (G)\Y ; a Y -path is one connecting two vertices in Y with all internal vertices
in V (G)\Y . For a subgraph H of G, we use the notations (x,H)-path and H-
path instead of (x, V (H))-path and V (H)-path, respectively. It is convenient to
denote a path P with end-vertices x, y by P (x, y).

For a cycle C with a given orientation and a vertex x on C, we use x+ to
denote the successor, and x− the predecessor of x on C. In the following, we

always assume that C has an orientation,
−→
C . For two vertices x, y on C,

−→
C [x, y]

or
←−
C [y, x] denotes the path from x to y along

−→
C . Similarly, if x, y are two vertices

in a path P , P [x, y] denotes the subpath of P between x and y. For an arbitrary
path P or cycle C, we use l(P ) or l(C) to denote the length (the number of edges)
of it.

We first give some lemmas on longest cycles of graphs.

Lemma 10. Let C be a longest cycle of a graph G, and P = P (u, v) be a C-path.

Then l(
−→
C [u, v]) ≥ l(P ).

Proof. Otherwise,
−→
C [v, u]uPv is a cycle longer than C, a contradiction.

Lemma 10 can be extended to the following.

Lemma 11. Let C be a longest cycle of a graph G, H be a component of G−C
and P = P (u, v) be a C-path of length at least 2 with all internal vertices in H.

Then

l
(−→
C [u, v]

)

≥ l(P ) + 2
∣

∣

∣
NC(H) ∩ V

(−→
C [u+, v−]

)
∣

∣

∣
.

Proof. We use induction on |NC(H)∩V (
−→
C [u+, v−])|. If NC(H)∩V (

−→
C [u+, v−])

= ∅, then we are done by Lemma 10. Now we suppose thatNC(H)∩V (
−→
C [u+, v−])

6= ∅.

Let x be a vertex in NC(H) ∩ V (
−→
C [u+, v−]). Let P ′ = P ′(x, x′) be an

(x, P−{u, v})-path with all internal vertices inH−P . Then P1 = P [u, x′]x′P ′ and
P2 = P ′x′P [x′, v] are two C-paths with end-vertices u, x and x, v, respectively,
and with all internal vertices in H. Clearly, the length of P1 and P2 are at least 2.
By induction hypothesis,

l
(−→
C [u, x]

)

≥ l(P1) + 2
∣

∣

∣
NC(H) ∩ V

(−→
C [u+, x−]

)
∣

∣

∣
,

l
(−→
C [x, v]

)

≥ l(P2) + 2
∣

∣

∣
NC(H) ∩ V

(−→
C [x+, v−]

)∣

∣

∣
.

Note that l(P1) + l(P2) = l(P ) + 2l(P ′) ≥ l(P ) + 2, and
∣

∣

∣
NC(H) ∩ V

(−→
C [u+, x−]

)∣

∣

∣
+
∣

∣

∣
NC(H) ∩ V

(−→
C [x+, v−]

)∣

∣

∣

=
∣

∣

∣
NC(H) ∩ V

(−→
C [u+, v−]

)
∣

∣

∣
− 1.
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We have

l
(−→
C [u, v]

)

= l
(−→
C [u, x]

)

+ l
(−→
C [x, v]

)

≥ l(P ) + 2
∣

∣

∣
NC(H) ∩ V

(−→
C [u+, v−]

)∣

∣

∣
.

The assertion is proved.

Lemma 12. Let G be a graph, C be a longest cycle of G and H be a component

of G− C.

(1) If u ∈ NC(H), then u+, u− /∈ NC(H).

(2) If u, v ∈ NC(H), then u+v+, u−v− /∈ E(G).

Proof. The assertion (1) can be deduced from Lemma 10. Now we prove the
assertion (2).

Suppose that u, v ∈ NC(H). Then let P be a (u, v)-path of length at least 2
with all internal vertices in H. If u+v+ ∈ E(G), then

C ′ =
−→
C [u+, v]vPu

←−
C [u, v+]v+u+

is a cycle longer than C, a contradiction. Thus we conclude that u+v+ /∈ E(G),
and similarly, u−v− /∈ E(G).

Let G be a graph and yz ∈ E(G), we define the contraction of G at yz,
denoted by G · yz, as the graph with V (G · yz) = V (G)\{y}, and E(G · yz) =
E(G− y) ∪ {xz : xy ∈ E(G) and x 6= z}.

Lemma 13. Let G be a graph and yz ∈ E(G). If there is a cycle C in G·yz, then
there is a cycle C ′ in G with length at least l(C) such that V (C ′) ⊆ V (C) ∪ {y}.

Proof. If C does not contain z, then C is also a cycle of G and we are done.
So we assume that z ∈ V (C). By the definition of contraction, zz+ ∈ E(G) or
yz+ ∈ E(G), and zz− ∈ E(G) or yz− ∈ E(G). Let

C ′ =



















C, if zz+ ∈ E(G) and zz− ∈ E(G),
−→
C [z, z−]z−yz, if zz+ ∈ E(G) and zz− /∈ E(G),

zyz+
−→
C [z+, z], if zz+ /∈ E(G) and zz− ∈ E(G),

yz+
−→
C [z+, z−]z−y, if zz+ /∈ E(G) and zz− /∈ E(G).

Then C ′ is a required cycle.

We will use the following theorems from [3, 10].

Theorem 14 (Chvátal and Erdös [3]). If G is a graph of order n ≥ 3 with

α(G) ≤ κ(G), then G is Hamiltonian.
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Theorem 15 (O, West and Wu [10]). If G is a graph of order n with α(G) ≥
κ(G), then G has a cycle of length at least

κ(G)(n+ α(G)− κ(G))

α(G)
.

Theorem 16 (O, West and Wu [10]). If G is separable, then V (G) admits a

partition (V1, V2) such that α(G) = α(G[V1]) + α(G[V2]).

Now we prove some more lemmas.

Lemma 17. Let G be a nonseparable graph. Then for any two distinct vertices

u, v of G, G contains a (u, v)-path of order at least ⌈n(G)/α(G)⌉.

Proof. If G is complete, then the result is trivially true. Now we assume that
G is not complete, i.e., α(G) ≥ 2. So G is 2-connected. If α(G) ≤ κ(G), then

by Theorem 14, G has a Hamilton cycle C, and either
−→
C [u, v] or

←−
C [u, v] is a

required path. Now we assume that α(G) > κ(G).

Let C be a longest cycle of G. By Theorem 15, l(C) ≥ 2n(G)/α(G). Since
G is 2-connected, we may choose a (u,C)-path P1 and a (v, C)-path P2 such
that they are vertex-disjoint. Let u′ and v′ be the end-vertices of P1 and P2,

respectively, on C (possibly u = u′ or v = v′, or both). Then P1u
′
−→
C [u′, v′]v′P2

or P1u
′
←−
C [u′, v′]v′P2 is a required path.

Lemma 18. Let G be a 2-connected graph. Let C be a subgraph of G with at

least two vertices, and H be an induced subgraph of G − C. Then G contains a

C-path P such that

|V (P ) ∩ V (H)| ≥

⌈

n(H)

α(H)

⌉

.

Proof. We use induction on n(H). If H has only one vertex, say x, then n(H) =
α(H) = 1. Since G is 2-connected, there is a C-path passing through x, which is
a required path. Now we assume that H has at least two vertices.

Suppose first that H is nonseparable. Let P1(u, u
′) and P2(v, v

′) be two
vertex-disjoint paths between H and C with all internal vertices in G− (H ∪C),
where u, v ∈ V (H) and u′, v′ ∈ V (C). By Lemma 17, H contains a (u, v)-path
P ′ of order at least ⌈n(H)/α(H)⌉. Thus P = P1uP

′vP2 is a required path.

Now we suppose that H is separable. By Theorem 16, there is a partition
(V1, V2) of V (H) such that α(H) = α(G[V1]) + α(G[V2]). Let H1 = G[V1] and
H2 = G[V2]. Note that n(H) = n(H1) + n(H2). It is not hard to see that

n(H)

α(H)
≤ max

{

n(H1)

α(H1)
,
n(H2)

α(H2)

}

say
====

n(H1)

α(H1)
.
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By induction hypothesis, there is a C-path P such that

|V (P ) ∩ V (H)| ≥ |V (P ) ∩ V (H1)| ≥

⌈

n(H1)

α(H1)

⌉

≥

⌈

n(H)

α(H)

⌉

,

and P is a required path.

Let L1 be the graph obtained from C6 by adding a new vertex x, and by
adding three edges from x to three pairwise nonadjacent vertices of the C6, and
let L2 = K3 ∨ 4K1. Set

L = {G : L1 ⊆ G ⊆ L2}.

L1 L2

Figure 3. Graphs L1 and L2.

We prove the following lemma to complete this section.

Lemma 19. Let G be a 2-connected graph with n(G) ≤ 7 and x be a vertex of G
with d(x) ≥ 3. If there is a longest cycle of G excluding x, then G ∈ L.

Proof. Let C be a longest cycle of G excluding x and let H be the component
of G− C containing x.

We first suppose that H has at least two vertices. By the 2-connectedness of
G, there are two independent edges from H to C. Let yy′ and zz′ be such two
edges, where y, z ∈ V (H) and y′, z′ ∈ V (C). Let P be a (y, z)-path of H. Then

P ′ = y′yPzz′ is a path with length at least 3. By Lemma 10, l(
−→
C [y′, z′]) ≥ 3

and l(
←−
C [y′, z′]) ≥ 3. Thus l(C) ≥ 6. Note that n(H) ≥ 2, we have n(G) ≥ 8, a

contradiction.

Thus we conclude that H has the only one vertex x. By Lemma 12, x cannot
be adjacent to two successive vertices on C. Since d(x) ≥ 3, there will be at least
three vertices on C adjacent to x, and at least three vertices on C nonadjacent
to x. Thus l(C) ≥ 6. Since n(G) ≤ 7 and x /∈ V (C), we have l(C) ≤ 6. Thus C
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has exactly 6 vertices and x is adjacent to three pairwise nonadjacent vertices of
C. This implies that L1 ⊆ G.

Let C = y1z1y2z2y3z3y1 such that N(x) = {y1, y2, y3}. By Lemma 12,
{x, z1, z2, z3} is an independent set. This implies that G ⊆ L2.

3. Proofs of main results

In this section, we shall present the proof of main results.

Proof of Theorem 4. Let C, with an orientation
−→
C , be a longest cycle of G.

We assume on the contrary that there is a vertex x in V (G−C) with d(x) ≥ d =
max{⌈n/2⌉, n− 3k + 2}.

An (x,C)-fan is a collection of (x,C)-paths such that they have the only
vertex x in common. Since G is k-connected, there is an (x,C)-fan with s ≥ k
paths Pi = Pi(x, zi), 1 ≤ i ≤ s, where zi ∈ V (C). We choose the (x,C)-fan such
that s is as large as possible. We suppose that z1, z2, . . . , zs appear in this order

along
−→
C . Thus

(1) l(C) =
s

∑

i=1

l(
−→
C [zi, zi+1]),

where the subscripts are taken modulo s.
By Menger’s theorem, there is a vertex yi ∈ V (Pi − x) such that S = {yi :

1 ≤ i ≤ s} is a vertex-cut of G separating x and C − S. We choose yi in such a
way that dPi

(x, yi) is as small as possible (note that yi is possibly equal to zi).
Clearly

(2) NC(x) ⊆ S.

Let H be the component of G− S containing x. Then

Claim 20. For every vertex yi ∈ S, either NH(yi) = {x} or |NH(yi)| ≥ 2.

Proof. Suppose on the contrary that |NH(yi)| = 1 and y′i 6= x is the vertex in
NH(yi). Then y′i is the neighbor of yi on Pi[x, yi]. Let S

′ = (S\{yi})∪{y
′

i}. Then
S′ is a vertex-cut of G separating x and C − S′ such that dPi

(x, y′i) < dPi
(x, yi),

contradicting the choice of S.

If H has only one vertex x, then d(x) = |S| = s. By Lemma 12, l(
−→
C [zi, zi+1])

≥ 2 for all i ∈ {1, 2, . . . , s}. By (1), l(C) ≥ 2s = 2d(x) and

n ≥ l(C) + 1 ≥ 2d(x) + 1 ≥ n+ 1,

a contradiction.
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If H has exactly two vertices, then let x′ be the vertex in V (H)\{x}. By
Claim 20, every vertex yi in S is adjacent to x. Hence N(x) = S ∪ {x′} and s =
d(x)− 1. Note that d(x′) = dS(x

′)+ 1 and d(x′) ≥ k, since G is k-connected. We

have dS(x
′) ≥ k−1. By Lemma 12, l(

−→
C [zi, zi+1]) ≥ 2 for all i. Moreover, if x′yi ∈

E(G), then P = Pi[zi, yi]yix
′xyi+1Pi+1[yi+1, zi+1] is a C-path of length at least 3,

by Lemma 10, l(
−→
C [zi, zi+1]) ≥ 3. This implies that l(C) =

∑s
i=1 l(

−→
C [zi, zi+1]) ≥

3dS(x
′) + 2(s − dS(x

′)) ≥ 2s + dS(x
′) ≥ 2d(x) + k − 3 ≥ n + k − 3, and n ≥

l(C) + 2 ≥ n+ k − 1 ≥ n+ 1, a contradiction.

Now it remains to consider the case when H has at least three vertices.

By b(x) we denote the number of vertices in V (G)\N [x]. Then b(x) = n −
1− d(x) ≤ 3k − 3. Hence, by (2),

(3) l(C) ≤ s+ b(x) ≤ s+ 3k − 3.

Claim 21. Every vertex in V (H)\{x} is not a cut-vertex of H.

Proof. Suppose, otherwise, that x′ 6= x is a cut-vertex of H. Let H1 and H2 be
two components of H − x′ such that x ∈ V (H1).

We claim that for every vertex yi ∈ S, NH1
(yi) 6= ∅. Otherwise, every (x, yi)-

path with all internal vertices in H will pass through x′, so is Pi[x, yi]. Let
S′ = (S\{yi}) ∪ {x

′}. Then S′ is a vertex-cut of G separating x and C − S′ such
that dPi

(x, x′) < dPi
(x, yi), a contradiction. Thus as we claimed, NH1

(yi) 6= ∅.
For every yi ∈ S, let wi be a vertex in NH1

(yi). Now we claim that

l(
−→
C [zi, zi+1]) ≥ 4 for those i such that NH2

(yi) 6= ∅. Suppose NH2
(yi) 6= ∅.

Let w′

i be a neighbor of yi in H2. Then H has a (w′

i, wi+1)-path P of length at
least 2. Thus P ′ = Pi[zi, yi]yiw

′

iPwi+1yi+1Pi+1[yi+1, zi+1] is a path of length at

least 4 with all internal vertices in G− C. By Lemma 10, l(
−→
C [zi, zi+1]) ≥ 4.

Note that |NS(H2)| ≥ k − 1, since G is k-connected and NS(H2) ∪ {x
′} is a

vertex-cut. Therefore,

l(C) ≥ 4(k − 1) + 2(s− k + 1) = 2s+ 2k − 2 ≥ s+ 3k − 2,

contradicting (3).

Claim 22. H is a star with center x.

Proof. Suppose, otherwise, H has an x-path xx′x′′ (say) of length 2. Then
there is an (x′′, S)-fan with k internally disjoint paths Qi = Qi(x

′′, yji), 1 ≤ j1 <
j2 < · · · < jk ≤ s, such that they have the only vertex x′′ in common. We set
S′ = {yji : 1 ≤ i ≤ k}.

Note that at most one path of Qi passes through x. We will prove that

l(
−→
C [zji , zji+1]) ≥ 4 for those ji such that yji ∈ S′ and Qi does not pass through x.
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Suppose that yji ∈ S′ and Qi does not pass through x. Let wji be the
neighbor of yji on Qi. Then wji 6= x. If l(Qi) ≥ 2, then let vji be a neighbor
of wji on the path Qi[x

′′, wji ]; if l(Qi) = 1, then (wji = x′′ and) we let vji = x′.
Then vji 6= x. By Claim 20, yji+1 has a neighbor w′

ji+1 in H other that wji . We
claim that H has a (wji , w

′

ji+1)-path of length at least 2. Otherwise wjiw
′

ji+1 ∈
E(G) and wjiw

′

ji+1 is a cut-edge of H. By Claim 21, every vertex of V (H)\{x}
is not a cut-vertex of H. This implies that w′

ji+1 = x and wji has only one
neighbor x in H, contradicting the fact that vji ∈ NH(wji) and vji 6= x. Thus
as we claimed, H has a (wji , w

′

ji+1)-path P of length at least 2. Thus P ′ =
Pji [zji , yji ]yjiwjiPw′

ji+1yji+1Pji+1[yji+1, zji+1] is a path of length at least 4 with

all internal vertices in G− C. By Lemma 10, l(
−→
C [zji , zji+1]) ≥ 4.

Thus we conclude that there are at least k− 1 segments
−→
C [zi, zi+1] of length

at least 4. Hence

l(C) ≥ 4(k − 1) + 2(s− k + 1) = 2s+ 2k − 2 ≥ s+ 3k − 2,

a contradiction.

By Claim 22, H = K1,n(H)−1. Let

S0 = {yi ∈ S : NH(yi) = {x}}, S2 = S\(S0 ∪ S1),

S1 = {yi ∈ S : |NH(yi)\{x}| = 1}, si = |Si|, i ∈ {0, 1, 2}.

Thus s = s0 + s1 + s2.

Let yji , 1 ≤ j1 < j2 < · · · < js1+s2 ≤ s, be the vertices in S1 ∪ S2. Since G is
k-connected,

(4) s1 + s2 ≥ |NS(x
′)| ≥ k − 1

for any x′ ∈ V (H)\{x}, and

(5) s1 + (n(H)− 1)s2 ≥ |E(H − x, S)| ≥ (k − 1)(n(H)− 1).

If s1 + s2 = 1, then without loss of generality we assume that x′y1 ∈ E(G),
where x′ ∈ V (H)\{x} and y1 ∈ S1 ∪ S2. Note that {x, y1} is a vertex-cut of
G, implying that k = 2. Since z1P1[z1, y1]y1x

′xy2P2[y2, z2] is a path of length at

least 3, by Lemma 10, l(
−→
C [z1, z2]) ≥ 3 and by symmetry, l(

−→
C [z1, zs]) ≥ 3. Thus

l(C) ≥ 3 + 3 + 2(s− 2) = 2s+ 2 > s+ 3k − 3,

a contradiction. Now we conclude that s1 + s2 ≥ 2.
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Claim 23. For every vertex yji ∈ S1 ∪ S2,

l(
−→
C [zji , zji+1

]) ≥

{

3 + 2|NC(x) ∩ V (
−→
C [z+ji , z

−

ji+1
])|; yji ∈ S1,

4 + 2|NC(x) ∩ V (
−→
C [z+ji , z

−

ji+1
])|; yji ∈ S2,

where the subsubscripts are taken modulo s1 + s2.

Proof. For any yji ∈ S1∪S2, we let wji be a vertex in NH(yji)\ {x}. If yji ∈ S1,
then by Claim 20, yjix ∈ E(G). Thus

P = Pji [zji , yji ]yjixwji+1
yji+1

Pji+1
[yji+1

, zji+1
]

is a C-path of length at least 3. If yji ∈ S2, then let w′

ji
be a vertex in NH(yji)\

{x,wji+1
}. Thus P = Pji [zji , yji ]yjiw

′

ji
xwji+1

yji+1
Pji+1

[yji+1
, zji+1

] is a C-path of

length at least 4. Note that NC(H)∩V (
−→
C [z+ji , z

−

ji+1
]) = NC(x)∩V (

−→
C [z+ji , z

−

ji+1
]).

By Lemma 11, we have the assertion.

Note that
∑s1+s2

i=1 |NC(x) ∩ V (
−→
C [z+ji , z

−

ji+1
])| = s0. By Claim 23,

l(C) =

s1+s2
∑

i=1

l(
−→
C [zji , zji+1

]) ≥ 2s0 + 3s1 + 4s2 = 2s+ s1 + 2s2.

By (4) and (5), we have

l(C) ≥ 2s+ s1 + 2s2 = 2s+
n(H)− 3

n(H)− 2
(s1 + s2) +

1

n(H)− 2
(s1 + (n(H)− 1)s2)

≥ 2s+
n(H)− 3

n(H)− 2
(k − 1) +

n(H)− 1

n(H)− 2
(k − 1) = 2s+ 2k − 2 ≥ s+ 3k − 2,

a contradiction.

The proof is complete.

Proof of Theorem 5. If α ≤ κ(G), then G is Hamiltonian by Theorem 14 and
we are done. Now suppose that α > κ(G). Let C be a longest cycle of G with an

orientation,
−→
C . Assume for contradiction that there exists a vertex x of degree

more than d0 such that x 6∈ V (C). Let H be the component of G−C containing
x. Then |NC(H)| ≥ k, since G is k-connected. Let NC(H) = {z1, z2, . . . , zs},
where s = |NC(H)|. Hence

(6) d(x) ≤ |V (H − x)|+ |NC(H)| ≤ n+ s− l(C)− 1.
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By Lemma 12, {x, z+1 , z
+
2 , . . . , z

+
s } is an independent set of G. Thus, we

obtain that s+ 1 ≤ α. Therefore, by (6) and by the hypothesis of d(x) > d0 and
by Theorem 15,

d0 < d(x) ≤ n+ s− l(C)− 1 ≤ n+ α− 1−
κ(G)(n+ α− κ(G))

α
− 1

= n+ α− 2−
κ(G)(n+ α− κ(G))

α
= d0,

a contradiction. This completes the proof of Theorem 5.

In order to use the induction method, we prove the following stronger theorem
instead of Theorem 7.

Theorem 24. Suppose α ≥ 4 and n ≥ 3 are two integers and d is defined as

in Theorem 7. Let G be a 2-connected graph with n(G) ≤ n and α(G) ≤ α.
Then every longest cycle of G contains all the vertices of degree at least d, unless
G ∈ L.

Proof. We use induction on n(G). If G has only three or four vertices, then G is
Hamiltonian and the result is trivially true. Now we assume that G has at least
five vertices and assume that the assertion holds for all graphs with order less
than n(G). This implies that n ≥ 5 and q ≥ 0.

Suppose that q = 0. Then r = n − 5. If n ≤ 7, then r ≤ 2 and d = 3. By
Lemma 19, G ∈ L or every longest cycle contains all vertices of degree at least d.
If n ≥ 8, then r ≥ 3 and d = r + 1 = n − 4. By Theorem 1, every longest cycle
contains all vertices of degree at least d. Thus we are done. So in the following,
we assume that q ≥ 1 (i.e., n ≥ α+ 5).

Let C be a longest cycle of G. We suppose on the contrary that there is
a vertex x in V (G − C) with d(x) ≥ d. Let H be the component of G − C
containing x.

Let b = n− 1− d. Then

b =

{

2q + r + 1, 0 ≤ r ≤ 2,

2q + 3, 3 ≤ r < α.

By b(x) we denote the number of vertices in V (G)\N [x]. Then

(7) b(x) ≤ b ≤ 2q + 3.

Suppose first thatH has only one vertex x. By Lemma 12, x is nonadjacent to
every vertex of N+

C (x). Thus b ≥ b(x) ≥ d(x) ≥ d. By comparing the formulas of
b and d, we can see that r = 2 and α = 4. Since q ≥ 1, we have d ≥ α+1 ≥ 5. But
in this case N+

C (x) is an independent set with d(x) ≥ 5 vertices, a contradiction.
This implies that H has at least two vertices.
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Note that

d− α =

{

(q − 1)(α− 2) + 1, 0 ≤ r ≤ 2,
(q − 1)(α− 2) + r − 1, 3 ≤ r < α.

We have d− α ≥ (q − 1)(α− 2) + 1, and

(8)

⌈

d− α

α− 2

⌉

≥

⌈

(q − 1)(α− 2) + 1

α− 2

⌉

= q.

Suppose that there is some component of G − C other than H. Let G′ be
the graph obtained from G by removing all other components of G, i.e., G′ =
G[V (C) ∪ V (H)]. Then G′ is 2-connected, n(G′) < n(G), α(G′) ≤ α(G), and
dG′(x) = d(x). By induction hypothesis, every longest cycle ofG′ contains x. This
implies that there is a cycle in G′, and then in G, longer than C, a contradiction.
Hence we conclude that there is only one component H of G−C, i.e., G−C = H.

Claim 25. N(x) = (V (H) ∪NC(H))\{x}.

Proof. Suppose that there is a vertex y in H such that xy /∈ E(G). We choose
a vertex z ∈ N(y) in such a way that if G − y is 2-connected, then let z be an
arbitrary neighbor of y; if G−y is separable, then let z be a neighbor of y which is
an inner-vertex of some end-block of G−y. In any case, {y, z} is not a vertex-cut
and thus G′ = G · yz is 2-connected. Note that n(G′) < n(G), α(G′) ≤ α(G),
and dG′(x) = d(x). By induction hypothesis, every longest cycle of G′ contains x.
This implies that there is a cycle in G′ longer than C. But if G′ contains such a
cycle, then so is G by Lemma 13, a contradiction. This implies that x is adjacent
to all the vertices in V (H)\{x}.

Note that every vertex in V (H)\{x} is not a cut-vertex of H. Suppose that
there is a vertex z in NC(H) such that xz /∈ E(G). It is not difficult to see
that there is a neighbor y of z in H such that {y, z} is not a vertex-cut of G.
Thus G′ = G · yz is 2-connected. Note that n(G′) < n(G), α(G′) ≤ α(G), and
dG′(x) = d(x). By induction hypothesis, every longest cycle ofG′ contains x. This
implies that there is a cycle in G′, and then in G, longer than C, a contradiction.
Now we conclude that x is adjacent to all the vertices in (V (H)∪NC(H))\{x}.

By Claim 25, α(H) = α(H−x) and dH(x) = n(H−x). By Lemma 18, there
is a C-path P = P (u, v) such that

|V (P ) ∩ V (H − x)| ≥

⌈

n(H − x)

α(H − x)

⌉

=

⌈

dH(x)

α(H)

⌉

.

By Claim 25, we can choose P such that it satisfies the above inequality and
x ∈ V (P ). Thus

|V (P )| ≥ |V (P ) ∩ V (H − x)|+ |{u, v, x}| ≥

⌈

dH(x)

α(H)

⌉

+ 3.
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By Claim 25, dH(x) = d(x)− |NC(H)| ≥ d− |NC(H)|. Note that the union
of N+

C (H) and an independent set of H form an independent set of G. This
implies that α(H) ≤ α(G) − |NC(H)| ≤ α − |NC(H)|. Together with the above
inequality, we have

|V (P )| ≥

⌈

d− |NC(H)|

α− |NC(H)|

⌉

+ 3 =

⌈

d− α

α− |NC(H)|

⌉

+ 4 ≥

⌈

d− α

α− 2

⌉

+ 4.

By (8), l(P ) = |V (P )| − 1 ≥ q + 3. By Lemma 11,

l(C) = l(
−→
C [u, v]) + l(

−→
C [v, u]) ≥ 2l(P ) + 2(|NC(H)| − 2) ≥ 2q + 2|NC(H)|+ 2.

Thus

b(x) = |V (C)\NC(H)| ≥ 2q + 2|NC(H)|+ 2− |NC(H)| ≥ 2q + 4,

contradicting (7).
The proof is complete.

Proof of Theorem 8. The case n = α + 2 is trivial. The only 2-connected
graphs with independent number α and order α + 2 are K2,α and K1,1,α. Note
that every longest cycle of them contains all (the two) vertices with degree at
least 3. For the case n = α + 4, the bound on d in Theorems 7 and 8 are equal.
So the result can be deduced by Theorem 7 immediately.

Now we consider the case n = α + 3. Let G be a 2-connected graph with
independent number α and order α+3, let C be an arbitrary longest cycle of G,
and let x be a vertex of G of degree at least 4. If C contains x, then we have
nothing to prove. So we assume that x ∈ V (G−C). If x is an isolated vertex of
G− C, then dC(x) = d(x) ≥ 4. By Lemma 12, l(C) ≥ 8. Thus

α(G) ≤ α(G[V (C)]) + α(G− C) ≤ α(C) + |V (G− C)| =

⌊

l(C)

2

⌋

+ n− l(C)

= n−

⌈

l(C)

2

⌉

≤ n− 4,

a contradiction. Thus we conclude that x has a neighbor x′ in G − C. Since
G is 2-connected, G has a C-path P passing through the edge xx′. Note that
l(P ) ≥ 3, and by Lemma 10, l(C) ≥ 6. Thus

α(G) ≤ α(G[V (C)]) + α(G− C) ≤

⌊

l(C)

2

⌋

+ n− l(C)− 1

= n−

⌈

l(C)

2

⌉

− 1 ≤ n− 4,

a contradiction.
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