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Abstract

For a digraph D, V (D) and A(D) will denote the sets of vertices and
arcs of D respectively. In an arc-colored digraph, a subset K of V(D) is said
to be kernel by monochromatic paths (mp-kernel) if (1) for any two different
vertices x, y in N there is no monochromatic directed path between them
(N is mp-independent) and (2) for each vertex u in V (D) \ N there exists
v ∈ N such that there is a monochromatic directed path from u to v in D
(N is mp-absorbent). If every arc in D has a different color, then a kernel
by monochromatic paths is said to be a kernel. Two associated digraphs to
an arc-colored digraph are the closure and the color-class digraph CC(D).
In this paper we will approach an mp-kernel via the closure of induced
subdigraphs of D which have the property of having few colors in their arcs
with respect to D. We will introduce the concept of color-perfect digraph
and we are going to prove that if D is an arc-colored digraph such that
D is a quasi color-perfect digraph and CC(D) is not strong, then D has
an mp-kernel. Previous interesting results are generalized, as for example
Richardson’s Theorem.
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1. Introduction

For general concepts we refer the reader to [2] and [3]. Let D be a digraph with
the set of vertices V (D) and the set of arcs A(D). An arc of D of the form (x, x)
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is a loop. We say that two digraphs D1 and D2 are equal, denoted by D1 = D2,
if A(D1) = A(D2) and V (D1) = V (D2). A directed walk in a digraph D is
a sequence (v1, v2, . . . , vn) of vertices of D such that (vi, vi+1) ∈ A(D) for each
i ∈ {1, . . . , n−1}. If vi 6= vj for all i and j such that {i, j} ⊆ {1, . . . , n} and i 6= j,
it is called a directed path. A directed cycle is a directed walk (v1, v2, . . . , vn, v1)
such that vi 6= vj for all i and j such that {i, j} ⊆ {1, . . . , n} and i 6= j. If D
is an infinite digraph, an infinite outward path is an infinite sequence (v1, v2, . . .)
of distinct vertices of D such that (vi, vi+1) ∈ A(D) for each i ∈ N. In this
paper we are going to write walk, path, cycle instead of directed walk, directed
path, directed cycle, respectively. For S ⊆ V (D) we define the in-neighborhood

of S as Γ−

D(S) = {y ∈ V (D) | (y, v) ∈ A(D) for some v ∈ S}. We define
the out-neighborhood of S as Γ+

D(S) = {y ∈ V (D) | (v, y) ∈ A(D) for some
v ∈ S}. A digraph D is strong if for every pair of vertices x and y there is
an xy-path in D. A subdigraph G of D is called a strong component if it is
strong and it is maximal with respect to this property. A strong component G
of D is called initial (respectively terminal) if Γ−

D(V (G)) ⊆ V (G) (respectively
Γ+
D(V (G)) ⊆ V (G)). For S ⊆ V (D) the subdigraph of D induced by S, denoted

by D[S], has V (D[S]) = S and A(D[S]) = {(u, v) ∈ A(D) | {u, v} ⊆ S}. For
a nonempty subset B of A(D), the edge-induced by B subdigraph, denoted by
D[B], is the subdigraph of D such that V (D[B]) = {v ∈ V (D) | (v, w) ∈ B or
(w, v) ∈ B for some w ∈ V (D)} and A(D[B]) = B. We shall say that a subset
S ⊆ V (D) is independent if the only arcs in D[S] are loops. A digraph D is
a bipartite digraph if there is a partition (V1, V2) of V (D) such that D[Vi] is an
independent set for each i ∈ {1, 2}. The line digraph of D, denoted by L(D), is
the digraph such that V (L(D)) = A(D), and ((u, v), (w, z)) ∈ A(L(D)) if and
only if v = w. A tournament is a digraph T such that for any pair of distinct
vertices x, y in V (T ) exactly one of (x, y) and (y, x) is present. Let D be an
m-colored digraph. A digraph D is said to be an m-colored digraph if its arcs are
colored with the integers {1, . . . ,m}. A directed path is called monochromatic if
all of its arcs are colored alike. For an arc (z1,z2) of D we will denote by c(z1,z2)
its color.

In this work every concept defined for uncolored digraphs is also valid for
m-colored digraphs when we think of their uncolored version.

A set K ⊆ V (D) is said to be a kernel if it is both independent (a vertex in
K has no successor in K) and absorbing (a vertex not in K has a successor in K).
If every induced subdigraph of D has a kernel, D is said to be a kernel perfect

digraph. The concept of kernel was first introduced in [17] by von Neumann and
Morgenstern in the context of Game Theory as a solution for cooperative n-player
games. In [7] Chvátal showed that deciding if a graph possesses a kernel is an
NP-complete problem, and in [9] Fraenkel showed that it remains NP-complete
for planar directed graphs with indegrees less than or equal to 2, outdegrees less
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than or equal to 2 and degrees less than or equal to 3. The concept of kernel
is important to the theory of digraphs because it arises naturally in applications
such as Nim-type games, logic, and facility location, to name a few. Several
authors have been investigating sufficient conditions for the existence of kernels
in digraphs. For a comprehensive survey see for example [6] and [10].

Among the classical results on kernel theory we have the following theorem,
which was proved by Richardson in [19].

Theorem 1 [19]. A finite digraph without cycles of odd length has a kernel.

Several extensions of Richardson’s Theorem have been found in the last years.
In the present work we will deduce Richardson’s Theorem as a direct consequence
of our main result.

Since not every digraph has a kernel it is frequently of interest to examine
digraphs without kernels. An interesting class of digraphs without kernel are the
critical kernel imperfect digraphs which are defined as follows: A digraph D is
said to be critical kernel imperfect if D has no kernel but every proper induced
subdigraph of D has a kernel.

A structural property of critical kernel imperfect digraph, found by Berge
and Duchet, is represented in Theorem 2.

Theorem 2 (Berge and Duchet [5]). Let D be a finite digraph. If D is a critical

kernel imperfect digraph, then D is strong.

The following theorem is obvious, just take a minimal induced subdigraph
with no kernel.

Theorem 3. Let D be a finite digraph. If D has no kernel, then D contains an

induced subdigraph which is critical kernel imperfect.

Theorems 2 and 3 will be useful in the proof of Lemma 11 which shows when
a digraph is color-perfect; and Theorem 3 will be useful in the proof of Lemma
14 which characterizes the digraphs D such that every subdigraph of D has a
kernel.

In this paper our main study will be on m-colored digraphs and for this the
kernel theory will be a powerful tool.

A generalization of the concept of kernel is the concept of mp-kernel since a
digraph D has a kernel if and only if the m-colored digraph D, in which every
two different arcs have different colors, has an mp-kernel.

Notice that when we say “N is a kernel of an m-colored digraph D” we are
thinking of a kernel of the uncolored version of D. That is to say, although the
concept of kernel was defined for uncolored digraphs the same concept is valid
and can be consider in m-colored digraphs.
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The existence of mp-kernels in m-colored digraphs was studied primarily by
Sands, Sauer and Woodrow in [21], where their main result on infinite digraphs
was the following.

Theorem 4 (Sands, Sauer and Woodrow [21]). Let D be a 2-colored multidigraph

without monochromatic infinite outward paths. Then D has an mp-kernel.

In [13] Galeana-Sánchez established a relation between the concept of kernel
and the concept of mp-kernel as follows: the closure of D, denoted by C(D), is
the m-colored multidigraph such that V (C(D)) = V (D) and (u,v) is an arc of
C(D) with color i if and only if there exists a monochromatic path colored i from
u to v contained in D. From the definition of closure we have that:

1. C(C(D)) = C(D),

2. N is an mp-kernel of D if and only if N is a kernel of C(D).

On the other hand, it follows from Theorem 4 that if D is a 2-colored digraph
then C(D) is a kernel-perfect digraph.

Because we can use kernel theory in the closure, this notion is useful in the
study of mp-kernels.

Another associated digraph for an m-colored digraph D is the color-class

digraph CC(D) whose vertices are the colors represented in the arcs of D, and
(i, j) ∈ A(CC(D)) if and only if there exist two arcs (u,v) and (v,w) in D such
that (u,v) has color i and (v,w) has color j. From the definition of the color-class
digraph it follows that CC(D) can have loops.

Clearly, from the definition of closure and color-class digraph we have that
CC(D) = CC(C(D)).

In [14] Galeana-Sánchez introduced the concept of color-class digraph and
with this new associated digraph she showed more conditions which ensure the
existence of mp-kernels. In [14] her main result was the following.

Theorem 5 ([14]). Let D be an m-colored finite digraph and CC(D) its color-class
digraph. If CC(D) is a bipartite digraph, then D has an mp-kernel.

Due to the difficulty of finding mp-kernels in m-colored digraphs, sufficient
conditions for the existence of mp-kernels have been obtained mainly by adding
a condition on the monochromaticity or quasi-monochromaticity of small subdi-
graphs like cycles, paths, small sized subtournaments, vertex neighborhoods, and
so on. See for example [12, 13, 16, 21].

Theorem 4 ensures that every finite 1-colored or 2-colored digraph has an
mp-kernel but for m ≥ 3 we can find an m-colored digraph without an mp-kernel
if we consider the cycle of length 3 whose arcs have different colors. We are going
to work with the structure of the digraph CC(D) and with the closure of some
m′-colored subdigraphs of D (with m′<m) in order to guarantee the existence of
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at least an mp-kernel. That is to say, we work toward finding mp-kernels using
closures of subdigraphs induced by arcs on proper subsets of the colors.

In this work we introduce the following concepts for an m-colored digraph:
if B ⊂ {1, . . . ,m} (the symbol ⊂ denotes a proper subset), then let DB denote
the subdigraph of D induced by the arcs whose colors are in B. D is said to be
a quasi color-perfect digraph if for every B ⊂ V (CC(D)) we have that C(DB) is
a kernel-perfect digraph. If D has a kernel by monochromatic paths and it is a
quasi color-perfect digraph, then D is said to be a color-perfect digraph.

The main result is the following: Let D be a finite m-colored digraph and
CC(D) its color-class digraph such that CC(D) is not strong. If D is a quasi
color-perfect digraph, then D has an mp-kernel.

On the other hand, in [21], Sands et al. raised the following problem:

Problem 6. Let T be a 3-colored finite tournament such that no cycle of length
3 is colored with three different colors. Must T have an mp-kernel?

In [16] Minggang proved that if T is an m-colored tournament which does not
contain C3 or T3 (the cycle of order 3, whose arcs are colored with three different
colors and the transitive tournament of order 3, whose arcs are colored with three
different colors, respectively), then T has an mp-kernel. He also proved that his
theorem is the best possible for m ≥ 5; that is to say, for each m ≥ 5 he showed
an m-colored tournament without C3 which has no mp-kernel. For m = 4, [15]
Galeana-Sánchez and Rojas-Monroy proved that if T is a 4-colored tournament
without C3, then T may not have an mp-kernel. The question for m = 3 (the
problem raised by Sands et al.) is still open.

In this paper we will show that if, in Problem 6, the hypothesis on T is on
CC(T ); that is to say, CC(T ) does not contain cycles of length three, then T has
an mp-kernel.

The following results will be useful in this paper.

Theorem 7 [2]. Let D be a finite strong digraph. D is a bipartite digraph if and

only if each cycle of D has an even length.

Theorem 8 [18]. Let D be a finite digraph. If D is a bipartite digraph, then D
has a kernel.

Theorem 9 [14]. Let D be an m-colored finite digraph and CC(D) its color-class
digraph. If D is strong, then CC(D) is strong.

For the rest of the work D is a finite digraph without loops.
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2. Main Results

Recall that for B ⊂ {1, . . . ,m}, DB denotes the subdigraph of D induced by
the arcs whose colors are in B. Notice that DB is an arc-colored digraph whose
arc-coloring is the m-coloring of D restricted to the arcs of DB.

In the proofs we will use the following facts for an m-colored digraph.

1. C(C(D)) = C(D),

2. N is an mp-kernel of D if and only if N is a kernel of C(D),

3. CC(D) = CC(C(D)).

Theorem 10. Let D be an m-colored digraph and CC(D) its color-class digraph

such that CC(D) is not strong. If D is a quasi color-perfect digraph, then D has

an mp-kernel (and thus D is a color-perfect digraph).

Proof. Let H be a terminal strong component of CC(D) (notice that V (H) ⊂
V (CC(D)) because CC(D) is not strong). The digraph DV (H) will be denoted
by D′. Since D is a quasi color-perfect digraph and V (H) ⊂ V (CC(D)), it follows
that C(D′) has a kernel, say N1 (which is an mp-kernel of D′). Consider the set
N2 = (V (D) \ V (D′)).

If N1∪N2 is an mp-independent set in D, then N1∪N2 is an mp-kernel of D.
Therefore, suppose that N1 ∪N2 is not an mp-independent set in D.

We are going to use the following notation.

Let {u, v} ⊆ V (D) and S ⊆ V (D). We will write: u ;i v if there exists
a uv-monochromatic path with color i in D; u ;mono v if there exists a uv-
monochromatic path in D; u ;mono S if there exists a uS-monochromatic path
in D; u 9i v is the denial of u ;i v; u 9mono S is the denial of u ;mono S.

In order to prove Theorem 10 consider the following claims.

Claim 1. V (D′) \N1 6= ∅. Since V (H) 6= ∅, we have that A(D′) 6= ∅. So, V (D′)
is not an independent set in C(D′), which implies that V (D′) \N1 6= ∅.

Claim 2. If u and v are two different vertices in N1 ∪N2 such that u ;i v for
some i ∈ V (CC(D)), then i ∈ V (CC(D)) \ V (H).

Proof. Consider two cases on u and v.

Case 1. {u, v} ⊆ N1. Since N1 is an independent set in C(D′), from the
definition of D′ it follows that there exist no monochromatic paths with color k
from u to v in D′ for each k ∈ V (H). So, i ∈ V (CC(D)) \ V (H).

Case 2. {u, v} ∩ N2 6= ∅. If u ∈ N2, then it follows that there exists no
w ∈ V (D) such that (u,w) ∈ A(D) and c(u,w) ∈ V (H) (because u /∈ V (D′)). So,
i ∈ V (CC(D)) \ V (H). Analogously if v ∈ N2 we can prove that i ∈ V (CC(D)) \
V (H). 2
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Claim 3. If u and v are two different vertices in N1 ∪ N2 such that u ;i v
for some i ∈ V (CC(D)) \ V (H), then w 9j u for every j ∈ V (H) and for every
w ∈ V (D) \ (N1 ∪N2).

Proof. Proceeding by contradiction, suppose that there exist w ∈ V (D) \ (N1 ∪
N2) and j ∈ V (H) such that w ;j u. Then we have that there exists z1 ∈ V (D)
such that (z1, u) ∈ A(D) and c(z1, u) = j. On the other hand, since u ;i v, it
follows that there exists z2 ∈ V (D) such that (u, z2) ∈ A(D) and c(u, z2) = i.
Thus, from the definition of CC(D) we have that (j, i) ∈ A(CC(D)), contradicting
that H is a terminal strong component of CC(D). 2

Let T = {w ∈ (N1 ∪ N2) | w ;mono z for some z ∈ (N1 ∪ N2)} and N3 =
(N1 ∪N2) \T . Notice that T 6= ∅, because N1 ∪N2 is not an mp-independent set
in D.

Claim 4. N3 6= ∅.

Proof. Proceeding by contradiction, suppose that N3 = ∅. Then in particular,
let z be a vertex in V (D′) \ N1 (such vertex exists by Claim 1). Since N1 is an
mp-kernel of D′, it follows that there exists u ∈ N1 such that z ;i u for some
i ∈ V (H) (by the definition of D′). On the other hand, since T = (N1 ∪ N2)
(because we are supposing thatN3 = ∅), it follows from the definition of T that for
u ∈ N1 there exists v ∈ (N1∪N2) such that u ;j v for some j ∈ V (CC(D))\V (H)
(by Claim 2), which contradicts Claim 3. 2

Claim 5. N3 is an mp-independent set in D.

Proof. It follows from the definition of N3. 2

Claim 6. For each w ∈ V (D′) \N1 there exists z ∈ N3 such that w ;mono z.

Proof. Let w ∈ V (D′)\N1. Since N1 is an mp-kernel of D′, it follows that there
exists z ∈ N1 such that w ;i z for some i ∈ V (H). On the other hand, by the
definition of T and Claim 3 we have that z /∈ T . So, z ∈ N3. 2

Let T ′ = {z ∈ T | z ;mono N3}. If T \ T ′ = ∅, then it follows from Claims 5,
6 and the definition of T ′ that N3 is an mp-kernel of D. Therefore, suppose that
T \T ′ 6= ∅. The next claim follows from the construction of N3 and the definition
of T \ T ′.

Claim 7. There exist no monochromatic paths between N3 and T \ T ′ in D.
Consider the digraph C(D)[T \ T ′] (the subdigraph of C(D) induced by the set
T \T ′). Notice that C(D)[T \T ′] is an arc-colored subdigraph of C(D) whose arc
coloring is the m coloring of C(D) restricted to the arcs of C(D)[T \ T ′].

Consider the following claims on C(D)[T \ T ′].

Claim 8. cC(D)(u, v) ∈ V (CC(D)) \ V (H) for each (u, v) ∈ A(C(D)[T \ T ′])
(cC(D)(u, v) denotes the color of the arc (u, v) in C(D)).
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Proof. Let (u, v) be an arc of A(C(D)[T \ T ′]) and suppose that cC(D)(u, v) = j
for some j ∈ V (CC(D)). Then, it follows from the definition of C(D) that u ;j v,
which implies that j ∈ V (CC(D)) \ V (H) (by Claim 2). 2

Let B = V (CC(D)) \ V (H). The digraph C(DB) will be denoted by D′′.

Claim 9. C(D)[T \ T ′] is an induced subdigraph of D′′.

Proof. We will first prove that (T\T ′) ⊆ V (D′′). Let w ∈ (T\T ′). Then it follows
that there exists x ∈ N1∪N2 such that w ;i x for some i ∈ V (CC(D))\V (H) (by
definition of T and Claim 2). So, there exists y ∈ V (D) such that (w, y) ∈ A(D)
and c(w, y) = i, which implies that (w, y) ∈ {(u, v) ∈ A(D) | c(u, v) ∈ V (CC(D))\
V (H)}. Therefore w ∈ V (D′′).

We are now going to prove that (u, v) ∈ A(C(D)[T \ T ′]) if and only if
(u, v) ∈ A(D′′), with {u, v} ⊆ T \ T ′.

(necessity) Let (u, v) be an arc of A(C(D)[T \T ′]). Then it follows from Claim
8 that cC(D)(u, v) = j for some j ∈ V (CC(D)) \ V (H). This implies that there
exists a uv-monochromatic path with color j in D, say P . Since P is contained
in DB, it follows that (u, v) ∈ A(D′′).

(sufficiency) Let (u, v) be an arc of A(D′′). Since D′′ is a subdigraph of C(D),
it follows that (u, v) ∈ A(C(D)), which implies that (u, v) ∈ A(C(D)[T \ T ′]). 2

Since C(D)[T \T ′] is an induced subdigraph of D′′ and D′′ is a kernel perfect
digraph, it follows that C(D)[T \ T ′] has a kernel, say N4.

Claim 10. N4 is an mp-independent set in D.

Proof. Proceeding by contradiction, suppose that there exist x and y in N4,
with x 6= y, such that x ;j y for some j ∈ V (CC(D)) \ V (H) (by Claim 2).
Then, it follows that (x, y) ∈ A(C(D)). Since {x, y} ⊆ N4 ⊆ T \ T ′, it follows
that (x, y) ∈ A(C(D)[T \T ′]), which contradicts that N4 is an independent set in
C(D)[T \ T ′]. 2

Claim 11. N3 ∪N4 is an mp-kernel of D.

Proof. Since N3 ∪ N4 is an mp-independent set in D (by Claims 5, 7 and
10), it remains to prove that N3 ∪ N4 is an mp-absorbent set in D. Let x ∈
V (D) \ (N3 ∪N4).

We have the following cases: x ∈ V (D′) \ N1, x ∈ T ′ or x ∈ (T \ T ′) \ N4.
Then, it follows from Claim 6, the definition of T ′ and because N4 is a kernel of
C(D)[T \ T ′] that there exists w ∈ (N3 ∪N4) such that x ;mono w. 2

Therefore, D has an mp-kernel. So, D is a color-perfect digraph.

Lemma 11. Let D be an m-colored digraph and CC(D) its color-class digraph.

If every subdigraph of C(DV (H)) has a kernel for every strong component H of

CC(D), then D is a color-perfect digraph.
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Proof. Consider two cases on CC(D).

Case 1. CC(D) is strong. Notice that in this case it follows from the hypoth-
esis that every subdigraph of C(D) has a kernel. Therefore, in particular we have
that D has an mp-kernel. We will prove that D is a quasi color-perfect digraph.

Let B ⊂ V (CC(D)). We are going to prove that C(DB) is a kernel-perfect
digraph. The digraph C(DB) will be denoted by D′. Let G be an induced
subdigraph of D′. Since every subdigraph of C(D) has a kernel, it follows that G
has a kernel (because D′ is a subdigraph of C(D)). Thus, D′ is a kernel-perfect
digraph. Therefore, D is a quasi color-perfect digraph, which implies that D is a
color-perfect digraph.

Case 2. CC(D) is not strong. We will prove that D is a quasi color-perfect
digraph. Let B ⊂ V (CC(D)). We are going to prove that C(DB) is a kernel-
perfect digraph. The digraph C(DB) will be denoted by D′.

Proceeding by contradiction, suppose that D′ is not a kernel-perfect digraph.
ThenD′ contains a critical kernel imperfect digraph, say G (by Theorem 3). Since
G is strong (by Theorem 2), it follows that CC(G) is strong (by Theorem 9).
On the other hand, since CC(G) is a subdigraph of CC(D

′) and CC(D
′) is a

subdigraph of CC(C(D)) (because G is a subdigraph of D′ and D′ is a subdigraph
of C(D)), it follows that CC(G) is a subdigraph of CC(D), (recall that CC(D) =
CC(C(D))). So, we have that there exists a strong component H of CC(D) such
that CC(G) is a subdigraph of H.

Since every subdigraph of C(DV (H)) has a kernel and G is a subdigraph of
C(DV (H)), it follows that G has a kernel, which is not possible because G is a
critical kernel imperfect digraph. Thus, D′ is a kernel-perfect digraph. Therefore,
D is a quasi color-perfect digraph, which implies that D is a color-perfect digraph
(by Theorem 10).

Note 12. The assumption “CC(D) is not strong” in Theorem 10 is necessary. For
example, consider the cycle C3 of length three whose arcs have different colors.
Clearly, this digraph has no mp-kernel, its color-class digraph is strong and C3 is
a quasi color-perfect digraph.

Note 13. The assumption “every subdigraph of C(DV (H)) has a kernel for every
strong component H of CC(D)” in Lemma 11 is necessary as the example in
Figure 1 shows.

Lemma 14. Let D be a digraph. Every subdigraph of D has a kernel if and only

if every strong component of D is either a bipartite digraph or trivial.

Proof. (necessity) Let D′ be a strong component of D. Suppose that D′ is
not a trivial digraph. Since every odd cycle has no kernel, it follows from the
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Figure 1. H is a strong component of CC(D), K is a subdigraph of C(D{1,2,3}) which has
no kernel and D has no mp-kernel.

hypothesis that D′, in particular, has no odd cycles, which implies that D′ is a
bipartite digraph (by Theorem 7).

(sufficiency) Let H be a subdigraph of D. We are going to prove that H has
a kernel.

Proceeding by contradiction, suppose that H has no kernel. Then H contains
a critical kernel imperfect digraph (by Theorem 3), say G. Since G is a strong
digraph (by Theorem 2), it follows that there exists a strong component of D, say
G′, such that G is a subdigraph of G′. Since G′ is a bipartite digraph, it follows
that G is a bipartite digraph. Thus, G has a kernel (by Theorem 8), contradicting
that G is a critical kernel imperfect digraph. Therefore, H has a kernel.

Corollary 15. Let D be an m-colored digraph and CC(D) its color-class digraph.
If every strong component of C(DV (H)) is a bipartite digraph for every strong

component H of CC(D), then D is a color-perfect digraph.

Proof. It follows from Lemma 14 that every subdigraph of C(DV (H)) has a ker-
nel, which implies that D is a color-perfect digraph (by Lemma 11).

The following corollary will be useful in providing an alternative proof of
Richardson’s Theorem.

Corollary 16. Let D be an m-colored digraph and CC(D) its color-class digraph.
If every strong component of CC(D) is either a bipartite digraph or trivial, then

D is a color-perfect digraph.

Proof. Let H be a strong component of CC(D). We will prove that every sub-
digraph of C(DV (H)) has a kernel.

If H is trivial, then clearly every subdigraph of C(DV (H)) has a kernel (be-
cause DV (H) is a 1-colored digraph). Suppose that |V (H)| ≥ 2 and H is a bi-



Kernels by Monochromatic Paths and Color-Perfect Digraphs 319

partite digraph. The digraph C(DV (H)) will be denoted by D′. Let G be a
subdigraph of D′. We are going to prove that G has a kernel.

If G is 1-colored, then C(G) has a kernel. Since G is an induced subdigraph
of D′, it follows that C(G) = G. Thus, G has a kernel.

Suppose that G ism′-colored, withm′≥2. Since CC(C(DV (H)))= CC(DV(H))
and CC(DV (H)) = H, it follows that CC(G) is a bipartite digraph (because CC(G)
is a subdigraph of CC(D

′) = H and H is a bipartite digraph), which implies that
G has an mp-kernel (by Theorem 5). Thus, G has a kernel (because C(G) = G).

Therefore, it follows from Lemma 11 that D is a color-perfect digraph.

Theorem 17 (Richardson). Let D be a digraph. If D has no odd cycles, then D
has a kernel.

Proof. Let D′ be the edge-colored digraph obtained from D by assigning a dif-
ferent color to each arc of D, L(D′) the line digraph of D′ and C(D) the closure
of D. In this case, since CC(D

′) = L(D′) and L(D′) has no odd cycles (because
D′ has no odd cycles), it follows that every strong component of CC(D

′) is either
a bipartite digraph or trivial. So, it follows from Corollary 16 that, in particular,
D′ has an mp-kernel, which is a kernel of D.

Corollary 18. Let D be an m-colored digraph. If CC(D) has no odd cycles of

length at least 3, then D has an mp-kernel.

Proof. It follows from Corollary 16 that D has an mp-kernel.

Corollary 19. Let D be a 3-colored digraph and CC(D) its color-class digraph.

If CC(D) is not strong, then D has an mp-kernel.

Proof. Clearly, D is a quasi color-perfect digraph, which implies that D has an
mp-kernel (by Theorem 10).

The following Corollary shows that Sands, Sauer and Woodrow’s question is
true if CC(T ) has no cycles of length 3.

Corollary 20. Let T be a 3-colored tournament and CC(T ) its color-class di-

graph. If CC(T ) has no cycles of length 3, then T has an mp-kernel.

Proof. It follows from Corollary 19.
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