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Abstract

An L(2, 1)-coloring (or labeling) of a graph G is a vertex coloring f :
V (G) → Z+ ∪ {0} such that |f(u) − f(v)| ≥ 2 for all edges uv of G, and
|f(u)−f(v)| ≥ 1 if d(u, v) = 2, where d(u, v) is the distance between vertices
u and v inG. The span of an L(2, 1)-coloring is the maximum color (or label)
assigned by it. The span of a graph G is the smallest integer λ such that
there exists an L(2, 1)-coloring of G with span λ. An L(2, 1)-coloring of a
graph with span equal to the span of the graph is called a span coloring.
For an L(2, 1)-coloring f of a graph G with span k, an integer h is a hole

in f if h ∈ (0, k) and there is no vertex v in G such that f(v) = h. A
no-hole coloring is an L(2, 1)-coloring with no hole in it. An L(2, 1)-coloring
is irreducible if color of none of the vertices in the graph can be decreased to
yield another L(2, 1)-coloring of the same graph. A graph G is inh-colorable
if there exists an irreducible no-hole coloring of G. Most of the results
obtained in this paper are answers to some problems asked by Laskar et al.
[5]. These problems are mainly about relationship between the span and
maximum no-hole span of a graph, lower inh-span and upper inh-span of a
graph, and the maximum number of holes and minimum number of holes in
a span coloring of a graph. We also give some sufficient conditions for a tree
and an unicyclic graph to have inh-span ∆ + 1.
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1. Introduction

The channel assignment problem is the problem of efficiently assigning frequen-
cies to radio transmitters at various places without interference. This problem
can be modeled as some kind of vertex coloring problem of the graph in which
transmitters are taken as vertices and based on the proximity of the transmitters
and the power of the transmissions, edges are placed between them to repre-
sent possible interference. The channel assignment problem that of prescribing
integer labels for vertices so that neighboring vertices receive labels that dif-
fer by at least two while vertices with a common neighbor have different labels
is called an L(2, 1)-coloring and has been studied extensively in the literature.
More precisely, an L(2, 1)-coloring of a graph G is a vertex coloring (or labeling)
f : V (G) → Z+ ∪ {0} such that |f(u) − f(v)| ≥ 2 for all edges uv of G, and
|f(u) − f(v)| ≥ 1 if d(u, v) = 2, where d(u, v) is the distance between vertices u
and v in G. The span of an L(2, 1)-coloring f of a graph G, denoted by span (f),
is equal to max{f(v) : v ∈ V (G)}. The span of a graph G, denoted by λ(G), is
equal to min{span (f) : f is an L(2, 1)-coloring of G}. An L(2, 1)-coloring whose
span is equal to the span of the graph is called a span coloring.

Throughout the paper we consider simple connected graphs and denote the
maximum degree of a graph by ∆. In the introductory paper, Griggs and Yeh [3]
studied L(2, 1)-coloring of a graph and gave the following results. For paths
Pn, λ(P2) = 2, λ(P3) = λ(P4) = 3 and λ(Pn) = 4 for n ≥ 5. For any cycle
Cn, λ(Cn) = 4. For the n dimensional hypercube Qn with n ≥ 5, n + 3 ≤
λ(Qn) ≤ 2n + 1. For any tree T , ∆ + 1 ≤ λ(T ) ≤ ∆ + 2 and for any graph G,
λ(G) ≤ ∆2 + 2∆. Further, if G has diameter 2, then λ(G) ≤ ∆2. Georges et

al. [2] studied the relationship between the L(2, 1)-span of a graph and the path
covering number of its complement. Wang [8] proved that if a tree T contains no
two vertices of maximum degree at distance 1, 2 or 4, then λ(T ) = ∆+1. Zhai et
al. [10] proved that if a tree T with ∆ ≥ 5 contains no two vertices of maximum
degree at distance 2 or 4, then λ(T ) = ∆ + 1.

If f is an L(2, 1)-coloring of a graph G with span k, then an integer h ∈ (0, k)
is called a hole in f if there is no vertex v in G such that f(v) = h. An L(2, 1)-
coloring f of a graph G with no hole is called a no-hole coloring of G. The no-hole
span of a graph G, denoted by µ(G), is ∞ if G does not have any no-hole coloring;
otherwise, it is the smallest integer k such that G has a no-hole coloring with span
k. The hole index of a graph G, denoted by ρ(G), is the minimum number of
colors less than λ(G) and not used in a span coloring of G. A no-hole coloring f is
called a full coloring if span (f) is equal to the span of the graph. The maximum

no hole span [5] of a graph G, denoted by Λ(G), is equal to max{span (f) : f
is a no-hole L(2, 1)-coloring of G}. Fishburn and Roberts [1] introduced no-hole
colorings and gave the following results. For each m ≥ 1, there is a graph G with
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ρ(G) = m and µ(G) = λ(G) +m. For every m ≥ 2, there is a connected graph
G on λ(G) + 2 vertices with λ(G) = 2m and ρ(G) = m.

An L(2, 1)-coloring of a graph G is reducible if there exists another L(2, 1)-
coloring g of G such that g(u) ≤ f(u) for all vertices u ∈ V (G) and there exists a
vertex v ∈ V (G) such that g(v) < f(v). Otherwise, f is said to be irreducible [7].
An irreducible no-hole coloring is referred to as an inh-coloring. A graph is inh-
colorable if there exists an inh-coloring of it. For an inh-colorable graph G the
lower inh-span or simply inh-span of G, denoted by λinh(G), and the upper inh-

span of G, denoted by Λinh(G), are defined as λinh(G) = min{span (f) : f is an
inh-coloring of G} and Λinh(G) = max{span (f) : f is an inh-coloring of G}. If
G is not inh-colorable then λinh(G) = Λinh(G) = ∞.

Laskar and Villalpando [7] gave the following results on inh-coloring. For any
graph G if λ(G) = ∆+1 and λinh(G) > ∆+1, then for any span coloring f of G
either f(u) = 0 for all maximum degree vertices u or f(u) = ∆ + 1 for the same
vertices u. For any connected unicyclic graph G except C4, G is inh-colorable
if and only if ∆ < n − 1, and the inh-span of an inh-colorable unicyclic graph
is ∆ + 1 or ∆ + 2. Any triangular lattice Hr,c, where r, c ≥ 5, is inh-colorable
and 8 ≤ λinh(Hr,c) ≤ 13. Laskar et al. [6] proved that all trees except stars are
inh-colorable and for such a tree T , λinh(T ) = λ(T ). Laskar and Eyabi [4] worked
on the maximum number of holes in a span coloring of paths, cycles, trees and
complete multipartite graphs.

In this paper we prove that for any no-hole colorable graph G, maximum
no-hole span is one less than the number of vertices of G. Then we answer the
following questions asked by Laskar et al. in [5].

Problem 1. Is it true that for all r ∈ Z
+, there exists an infinite family F of

graphs such that Λ(G)− λ(G) = r if G ∈ F?

Problem 2. Is it true that for all r ∈ Z
+, there exists an infinite family F of

graphs such that Λinh(G)− λinh(G) = r if G ∈ F?

Problem 3. Is it true that for all r ∈ Z
+ ∪ {0}, there exists an infinite family

F of graphs such that the difference between the minimum number of holes and
the maximum number of holes in a span coloring of G is r, if G ∈ F?

Finally, we give partial solutions to the following three problems asked in [5].

Problem 4. For which classes of graphs G, λ(G) = Λ(G)?

Problem 5. Characterize all trees with span ∆ + 1.

Problem 6. Characterize all unicyclic graphs with inh-span ∆ + 1.

2. Our Results

In this section, d(u, v) stands for the distance between the vertices u and v in a
graph and whenever vertices u and v are adjacent we denote u ∼ v.
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We first find the value of maximum no-hole span Λ(G) for a no-hole colorable
graph G, which will be used in the sequel.

Lemma 1. For a graph G on n vertices, λ(G) ≤ n−1 if and only if G is no-hole

colorable with Λ(G) = n− 1.

Proof. Let G be a graph on n vertices. The sufficient part is obviously true as
a no-hole coloring is also an L(2, 1)-coloring. Georges et al. [2] proved that G

contains a Hamiltonian path if and only if λ(G) ≤ n−1. Griggs and Yeh [3] proved
that there exists an injection f : V (G) → [0, n − 1] such that |f(x) − f(y)| ≥ 2
for all xy ∈ E(G), if and only if G contains a Hamiltonian path. In other words,
f is a no-hole L(2, 1)-coloring of G with span n− 1 if and only if λ(G) ≤ n− 1.
Therefore, whenever λ(G) ≤ n − 1, there is a no-hole coloring of G with span
n− 1 and so Λ(G) ≥ n− 1. Since G has n vertices, Λ(G) ≤ n− 1, and we prove
the necessary part.

Theorem 2. For all no-hole colorable graphs G on n vertices, Λ(G) = n− 1.

Proof. Let f be a no-hole coloring of a graph G on n vertices. Then f uses at
most n colors and f is also an L(2, 1)-coloring. Therefore, λ(G) ≤ n− 1 and the
result follows from Lemma 1.

Theorem 3 below gives a condition on graph G to have λ(G) = Λ(G). This
condition is also sufficient to obtain an irreducible no-hole coloring of a graph.
Thus we get a partial solution to Problem 4 stated in the Introduction.

Theorem 3. If G is a no-hole colorable diameter two graph on n vertices, then

G has an irreducible no-hole coloring and λ(G) = λinh(G) = Λinh(G) = Λ(G) =
n− 1.

Proof. By Theorem 2, Λ(G) = n − 1. Then by Lemma 1, λ(G) ≤ n − 1. Since
the graph has diameter two, distinct vertices get distinct colors in an L(2, 1)-
coloring of G. So λ(G) ≥ n − 1 and then λ(G) = n − 1. Consider a span
coloring f of G. Since f gives different colors to different vertices and span of f
is n− 1, f is an irreducible no-hole coloring of G. Now λ(G) = Λ(G) = n− 1 and
λ(G) ≤ λinh(G) ≤ Λinh(G) ≤ Λ(G). So we get the result.

The corollary below gives a condition for a diameter two graph to have a
no-hole coloring.

Corollary 4. If G is a diameter two graph on n vertices and 3 ≤ ∆ < n−1

2
, then

G is inh-colorable and λ(G) = λinh(G) = Λinh(G) = Λ(G) = n− 1.

Proof. Griggs and Yeh [3] proved that if 3 ≤ ∆ < n−1

2
, then G has an L(2, 1)-

coloring with span n − 1. So λ(G) ≤ n − 1 and, by Lemma 1, G is no-hole
colorable. Now since G has diameter two, by Theorem 3, λ(G) = λinh(G) =
Λinh(G) = Λ(G) = n− 1.
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Theorem 5 below gives a solution of Problem 1 stated in the Introduction.

Theorem 5. For any positive integer r there exists an infinite family F of no-

hole colorable graphs such that Λ(G)− λ(G) = r if G ∈ F .

Proof. For any integer k ≥ 3, we construct a graph Gkr as follows. V (Gkr) =
{u1, u2, . . . , uk+1, v1, v2, . . . , vk+r}, ui ∼ uj for all i 6= j, uk+1 ∼ v1, vj ∼ vj+1

(1 ≤ j ≤ k + r − 1). In other words, {u1, u2, . . . , uk+1} induces the complete
graph Kk+1, {v1, v2, . . . , vk+r} induces a path, and uk+1 is adjacent to v1.

Since Kk+1 is a subgraph of Gkr, λ(Gkr) ≥ 2k. We give an L(2, 1)-coloring
f to Gkr with span 2k as follows: f(ui) = 2i − 2 for 1 ≤ i ≤ k + 1, f(v1) = 1,
f(v3j) = 0 for j ≥ 1, f(v3j+1) = 2 for j ≥ 1, f(v3j+2) = 4 for j ≥ 0. The
difference between the labels of any two vertices inKk+1 is at least two. Whenever
two vertices in the path get the same label their distance is at least three from the
way of defining f . The difference between the labels of any two adjacent vertices
in the path is at least two. All ui, 1 ≤ i ≤ k, have distance at least 3 from all
vj , 2 ≤ j ≤ k + r. Moreover, d(ui, v1) = 2 for 1 ≤ i ≤ k. |f(ui) − f(v1)| ≥ 1
for 1 ≤ i ≤ k. |f(uk+1) − f(vj)| ≥ 2 for 1 ≤ j ≤ k + r, since k ≥ 3. So f is an
L(2, 1)-coloring with λ(Gkr) ≤ 2k, and finally we get λ(Gkr) = 2k.

Now since λ(Gkr) = 2k < 2k + r + 1 = |V (Gkr)|, by Lemma 1, Λ(Gkr) =
|V (Gkr)| − 1 = 2k + r = λ(Gkr) + r. So Λ(Gkr)− λ(Gkr) = r. Since k can take
any integer value greater than 2, we get an infinite family of graphs, F = {Gkr :
k > 2}, such that Λ(G)− λ(G) = r if G ∈ F .

Theorem 6 below gives a solution of Problem 2 stated in the Introduction.

Theorem 6. For any positive integer r there exists an infinite family F of irre-

ducible no-hole colorable graphs such that Λinh(G)− λinh(G) = r if G ∈ F .

Proof. For any integer k ≥ r + 4 we construct a graph Gkr as below. The
vertex set of Gkr, V (Gkr) = A ∪ B ∪ C, where A = {u1, u2, . . . , uk+1}, B =
{v1, v2, . . . , vk+1} and C = {w1, w2, . . . , wr}. Adjacency among the vertices in
Gkr are given as ui ∼ uj , vi ∼ vj for all 1 ≤ i 6= j ≤ k+ 1, and u1 ∼ wi, v1 ∼ wi

for all 1 ≤ i ≤ r.

We give an inh-coloring f to Gkr with span 2k+r+1 as follows: f(ui) = 2i−2,
f(vi) = 2i−1 for 1 ≤ i ≤ k+1 and f(wj) = 2k+j+1 for 1 ≤ j ≤ r, see Figure 1.

We first prove that f is an L(2, 1) coloring. Difference between the labels of
any two vertices in A (or in B) is at least two. Difference between the labels of
any two vertices, one in A and the other in B is at least one, and the distance
between them is at least two. For any wi the neighbors of wi are u1 and v1,
f(wi) ≥ 3, f(u1) = 0 and f(v1) = 1. For any wi, label of wi is different from
every other vertex. So the given coloring f is an L(2, 1)-coloring. One sees that
f is a no-hole coloring.
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Figure 1. inh-coloring of Gkr with span 2k + r + 1.

Next we prove that f is irreducible. Since f(A) = {0, 2, . . . , 2k}, for any color
p, 0 ≤ p ≤ 2k, either p−1 or p is used to color a vertex in A and since A induces a
complete graph, the color of no ui can be reduced. Because of the similar reason
the color of no vi, 2 ≤ i ≤ k + 1, can be reduced. Since v1 is at distance two
from a vertex colored 0, color of v1 cannot be reduced. Each wi, 1 ≤ i ≤ r, has
distance at most two from all the remaining vertices of the graph Gkr. So color
of each wi, 1 ≤ i ≤ r, have to be different from all the vertices in Gkr − {wi}.
Since f(A∪B) = {0, 1, 2, . . . , 2k+1} and f(C) = {2k+2, 2k+3, . . . , 2k+ r+1},
the color of no wi can be reduced. So f is irreducible and Λinh(Gkr) ≥ 2k+r+1.

Gkr has 2k + r + 2 vertices. According to Lemma 1, Λ(Gkr) = 2k + r + 1.
Λinh(Gkr) ≤ Λ(Gkr) ≤ 2k + r + 1, and so we get Λinh(Gkr) = 2k + r + 1.

We give an inh-coloring g to Gkr with span 2k+1: g(u1) = 2k, g(ui) = 2i−4
for 2 ≤ i ≤ k+1, g(vi) = 2r−1+2i for 1 ≤ i ≤ k+1− r, g(vk+1−j) = 2r−2−2j
for 0 ≤ j ≤ r − 1, g(wi) = 2i − 1 for 1 ≤ i ≤ r. Note that g(A) = {0, 2, . . . , 2k}
with g(u1) = 2k, g(B) = {0, 2, . . . , 2r− 4, 2r− 2, 2r+1, 2r+3, . . . , 2k− 1, 2k+1}
with g(v1) = 2r + 1, and g(C) = {1, 3, 5, . . . , 2r − 1}, see Figure 2.

We first prove that g is an L(2, 1)-coloring. Difference between labels of any
two vertices within A,B or C is at least two. Each wi is adjacent to both u1 and
v1, and obviously |g(wi) − g(u1)| ≥ 2 and |g(wi) − g(v1)| ≥ 2, 1 ≤ i ≤ r. The
distance between each wi and a vertex in (A− {u1}) ∪ (B − {v1}) is exactly two
and difference between their labels is at least one. d(u1, v1) = 2 and obviously
|g(u1) − g(v1)| ≥ 1. The distance between a vertex in A (respectively B) and a
vertex in B−{v1} (respectively A−{u1}) is at least three, and therefore no need of
calculating difference between their labels. Since g(V (Gkr)) = {0, 1, 2, . . . , 2k+1},
g is a no-hole coloring.

Next we prove that g is irreducible. A induces a complete graph and g(A) =
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Figure 2. inh-coloring of Gkr with span 2k + 1.

{0, 2, . . . , 2k}. So color of no vertex in A can be reduced. Every pair of vertices
in C are at distance two from each other and each wi ∈ C is having distance at
most two from all the vertices in A, so color of no vertex in C can be reduced.
B can be partitioned into two sets B1 and B2 where g(B1) = {0, 2, . . . , 2r − 2}
and g(B2) = {2r + 1, 2r + 3, . . . , 2k + 1}. For any x ∈ B2, color of x cannot be
reduced because for any i ∈ {0, 1, 2, . . . , 2r− 1} there exists a vertex y with color
i in Gkr such that d(x, y) ≤ 2, and for any j ∈ {2r, 2r + 1, . . . , g(x) − 1} there
exists a vertex z in Gkr with color j − 1, j or j +1 adjacent to x. Because of the
similar reason color of no vertex in B1 can be reduced.

Since A induces Kk+1, λinh(Gkr) ≥ 2k. If λinh(Gkr) = 2k, then there is
an inh-coloring h of Gkr with span (h) = λinh(Gkr) = 2k. Then h assigns
colors {0, 2, . . . , 2k} to vertices of both A and B, and the remaining vertices
{w1, w2, . . . , wr} use at most r colors. So there will be at least k− r (which is at
least 4) holes in h and this is a contradiction. Hence λinh(Gkr) ≥ 2k + 1 and we
have λinh(Gkr) = 2k + 1.

So Λinh(Gkr) − λinh(Gkr) = r. Since k can take any integer value greater
than r + 3, we get an infinite family of graphs, F = {Gkr : k > r + 3}, such that
Λinh(G)− λinh(G) = r if G ∈ F .

Theorem 7 below gives a solution of Problem 3 stated in the Introduction.

Theorem 7. For all non-negative integer r there exists an infinite family F of

graphs such that the difference between the minimum number of holes in a span

coloring and the maximum number of holes in a span coloring of G is r, if G ∈ F .

Proof. The result is true for the case r = 0 because the number of holes in any
span coloring of Kn (n ≥ 2) is n− 1.

Next let r = 1. For integers m,n ≥ 3, we construct a graph G1,m,n as below.
V (G1,m,n) = {u1, u2, . . . , um, v1, v2, . . . , vn, w} where ui ∼ vj for i = 1, 2, . . . ,m,
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j = 1, 2, . . . , n, and w ∼ vn. In other words, G1,m,n is the complete bipartite graph
Km,n with an extra vertex w, which is adjacent to only one vertex of the Km,n.
We first show that the span of G1,m,n is m+n. It is known that λ(Km,n) = m+n,
see [4]. Since G1,m,n contains Km,n as a subgraph, λ(G1,m,n) ≥ m+ n.

We give an L(2, 1)-coloring f toG1,m,n with spanm+n and no holes. Namely,
let f(ui) = i− 1 for 1 ≤ i ≤ m, f(vj) = m+ j for 1 ≤ j ≤ n, and f(w) = m.

We prove that f is an L(2, 1)-coloring. G1,m,n is a bipartite graph. If two
vertices are assigned consecutive colors by f , then they are in the same partite
set except the vertices w and v1. d(w, v1) = 3. So if for two vertices u and v,
|f(u)−f(v)| = 1 then d(u, v) ≥ 2. No color is repeated. Hence, the given coloring
is an L(2, 1)-coloring. So λ(G1,m,n) ≤ m+n. Notice that f is a no-hole coloring.

We give a span coloring g of G1,m,n with only one hole: g(ui) = i − 1 for
1 ≤ i ≤ m, g(vj) = m + j for 1 ≤ j ≤ n, and g(w) = m + 1. g assigns the
same color as f except for the color of w. The vertex w gets the color which is
the same as the color of v1. But d(v1, w) = 3. No vertex has the color g(w)− 1.
Only the vertex v2 has the color g(w) + 1, but d(v2, w) = 3. So one checks that
g is an L(2, 1)-coloring. Since G1,m,n contains Km,n as a subgraph and all the
vertices in Km,n have to get distinct colors (as Km,n has diameter two), and
λ(G1,m,n) = m+ n, a span coloring of G1,m,n can have at most one hole. Hence
the theorem is true for r = 1.

Let r ≥ 2. For any integer n ≥ r + 1, we construct a graph Gr,n as follows.
V (Gr,n) = {u1, u2, . . . , ur+2, v1, v2, . . . , vn} with ui ∼ uj for all i 6= j, ur+2 ∼ v1,
vi ∼ vi+1 (1 ≤ i ≤ n− 1). In other words, {u1, u2, . . . , ur+2} induces a complete
graph, {v1, v2, . . . , vn} induces a path, and ur+2 is adjacent to v1. Since Kr+2 is
a subgraph of Gr,n, λ(Gr,n) ≥ 2r + 2.

We show that λ(Gr,n) = 2r + 2, and for this we give an L(2, 1)-coloring f ′

of Gr,n with span 2r + 2 as follows: f ′(ui) = 2i − 2 for 1 ≤ i ≤ r + 2 and
f ′(vj) = 2k − 1 for 1 ≤ j ≤ n, where j ≡ k(mod r + 1), and 1 ≤ k ≤ r + 1.

The difference between the labels of any two vertices in Kr+2 is at least two.
Whenever two vertices in the path get the same label their distance is at least
r + 1 from the way of defining f ′. The difference between the labels of any two
adjacent vertices in the path is at least two. All ui, 1 ≤ i ≤ r + 1, have distance
at least 3 from all vj , 2 ≤ j ≤ n. Moreover, d(ui, v1) = 2 for 1 ≤ i ≤ r + 1.
|f ′(ui)− f ′(v1)| ≥ 1 for 1 ≤ i ≤ r+1. |f ′(ur+2)− f ′(vj)| ≥ 2 for 1 ≤ j ≤ 2, since
r ≥ 2. d(ur+2, vj) > 2 if j > 2. So f ′ is an L(2, 1)-coloring and λ(Gr,n) ≤ 2r+ 2.
So λ(Gr,n) = 2r+2 and f ′ is also a no-hole coloring, and therefore the minimum
number of holes in a span coloring of Gr,n is 0.

Every L(2, 1)-coloring of Gr,n has to use at least r+3 different colors because
the vertices u1, u2, . . . , ur+2, v1 get distinct colors. So the maximum number of
holes in a span coloring of Gr,n is at most r. We give a span coloring g′ of Gr,n

with r holes as follows: g′(ui) = 2i − 2 for 1 ≤ i ≤ r + 2, g′(v1) = 1, g′(v3j) = 0
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for j ≥ 1, g′(v3j+1) = 2 for j ≥ 1, and g′(v3j+2) = 4 for j ≥ 0.
The difference between the labels of any two vertices in Kr+2 is at least two.

Whenever two vertices in the path get the same label their distance is at least
three from the way of defining g′. The difference between the labels of any two
adjacent vertices in the path is at least two. All ui, 1 ≤ i ≤ r + 1, have distance
at least 3 from all vj , 2 ≤ j ≤ n. d(ui, v1) = 2 for 1 ≤ i ≤ r + 1. Moreover,
|g′(ui)− g′(v1)| ≥ 1 for 1 ≤ i ≤ r + 1. |g′(ur+2)− g′(vj)| ≥ 2 for 1 ≤ j ≤ n, since
r ≥ 2. So g′ is an L(2, 1)-coloring. In fact g′ is a span coloring of Gr,n with r

holes and therefore the result is true in this case.

Recall that for any tree T , ∆+ 1 ≤ λ(T ) ≤ ∆+ 2, see [3]. Also recall that if
a tree T contains no two vertices of maximum degree at distance 1, 2 or 4, then
λ(T ) = ∆+1 [8], and if a tree T with ∆ ≥ 5 contains no two vertices of maximum
degree at distance 2 or 4, then λ(T ) = ∆ + 1 [10]. Here we prove that for a tree
T with ∆ ≥ 5, if the distance between only one pair of maximum degree vertices
is 2 or 4, and the distance between every other pair of maximum degree vertices
is greater than or equal to 7, then λ(T ) = ∆ + 1. This gives a partial solution
to Problem 5 stated in the Introduction. In the rest of the paper we use greedy
L(2, 1)-coloring of a graph which is given below.

Algorithm 8 (Greedy coloring). Let G be a graph whose few vertices might
have been colored before.

1. Order the vertices of the given graph as u1, u2, . . . , un such that all colored
vertices (if any) appear at the beginning of the list.

2. Let ui be the first uncolored vertex that appears in the list.

3. Color ui with the smallest possible color k such that no lower indexed neighbor
of ui in the list is colored with k − 1, k or k + 1 and no lower indexed vertex
at distance two from ui is colored with k.

4. If all the vertices of the graph have received color then stop; otherwise set
i = i+ 1 and go to 3.

Theorem 9. Algorithm 8 gives an L(2, 1)-coloring of G if and only if the pre-

colored vertices of G satisfy constraints of an L(2, 1)-coloring in the graph G.

Definition. Here we define the distance between a vertex u and a subgraph G1

of a graph G as d(u,G1) = min{d(u, v) : v ∈ V (G1)}.

Notation 10. For any rooted tree and a vertex x in it, p(x) denotes the parent
of x in the tree.

Theorem 11. Let T be a tree with ∆ ≥ 5. If the distance between only one

pair of maximum degree vertices in T is 2 or 4, and the distance between every

other pair of maximum degree vertices in T is greater than or equal to 7, then
λ(T ) = ∆ + 1.
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Proof. Here we give an L(2, 1)-coloring f of T with span ∆ + 1 following the
steps of the algorithm below.

Algorithm: Step 1. We construct an induced subgraph T1 of T such that T1

consists of all the maximum degree vertices of T and the paths between them.

Step 2. Let u and v be the two maximum degree vertices in T at distance 2 or
4. We make T and T1 rooted trees with u as the root vertex. We assign f(u) = 0
and f(v) = ∆+ 1. If d(u, v) = 2, we color the vertex between u and v with color
2. If d(u, v) = 4, we color the vertices between u and v in order with colors 2, 4
and 0. We color all other vertices of T1 which are maximum degree vertices in T

with the color 0.

Step 3. We partition V (T1) into three sets S1, S2 and S3, where S1 consists of
all the vertices on the u − v path, S2 = {x : u − x path does not contain the
vertex v} − S1 and S3 = V (T1)− S1 − S2. Notice that all the vertices of S1 have
received colors.

Step 4. For every uncolored vertex x in S2 (or S3), let h(x) = min{d(x,w) : w
is a descendant of x and is a vertex of maximum degree in T}.

Step 5. The uncolored vertices of S2 (respectively S3) are listed in nondecreasing
order of their distances from u. When two vertices are at the same distance from
u we give priority to the vertex x with minimum value of h(x). When two vertices
have the same distance from u and have the same value of h(x), any vertex can be
given priority. We color the vertices in S2 (respectively S3) greedily (Algorithm
8) according to this ordering.

Step 6. We extend the coloring of T1 to T . We list the vertices of T which are
not in T1 in nondecreasing order of their distances from T1. We color T following
Algorithm 8.

We observe that the vertices on the u − v path and the other maximum
degree vertices satisfy the constraints of an L(2, 1)-coloring on T . Since all other
vertices of T1 are colored greedily, f is an L(2, 1)-coloring of T1 by Theorem 9.
Since vertices in V (T )− V (T1) are colored following greedy algorithm and since
the distance between two vertices in T1 is the same as the distance in T , the
coloring obtained for T is an L(2, 1)-coloring again by Theorem 9.

We prove that span (f) = ∆+1. We first prove that f(z) ≤ ∆+1 if z ∈ V (T1).
Since the distance between any two maximum degree vertices (except between u

and v) of T is greater than 6, and the vertices are colored in nondecreasing order
of their distances from the root vertex, when a vertex in S2 or S3 is colored at
most one of its children or grandchildren (which is a maximum degree vertex)
has already received color. Let x1 be a vertex of T1 such that when it is colored
no children or grandchildren of it is already colored. Then the parent p(x1) of



Solutions of Some L(2, 1)-Coloring Related Open Problems 289

x1 is a maximum degree vertex of T or not. If p(x1) is a vertex of maximum
degree then p(x1) is colored with 0 or ∆ + 1. p(x1) has at most ∆ − 1 numbers
of colored neighbors. If p(x1) gets the color 0 (respectively ∆ + 1) then there is
a color available for x1 in [2,∆ + 1] (respectively [0,∆ − 1]). If p(x1) is not a
vertex of maximum degree, then p(x1) can have at most ∆−2 colored neighbors,
so at least one color is available for x1 in [0,∆ + 1]. Let x2 be a vertex of T1

such that when it is colored only one of its children is already colored and no
grandchildren is colored. Therefore h(x2) = 1. If p(x2) ∈ S1 then p(x2) is at
distance less than 3 from u or v, and so we get a pair of maximum degree vertices
of T except the pair u, v at distance less than 7 from each other which is not
possible. So p(x2) 6∈ S1 and p(x2) ∈ S2 or S3 according as x2 ∈ S2 or S3. Let
y2 be any sibling of x2 if one exists. Since the distance between the colored child
of x2 and a maximum degree vertex in T which is a descendant of y2 is at least
7, h(y2) ≥ 4 > h(x2). So y2 is not colored before and the number of vertices
already colored at distance 2 from x2 is 1 (the grandparent of x2). Thus x2 is
adjacent to only two vertices already colored and one of which gets the color 0.
Since we are following greedy algorithm and x2 can use a color different from
0, 1, f(p(x2)), f(p(x2)) ± 1, f(p(p(x2))), there is at least one color less than 7 is
available for x2. Thus f(x2) ≤ ∆+ 1 since ∆ ≥ 5. Let x3 be a vertex of T1 such
that when it is colored only one of its grandchildren is already colored and no
children is colored. Then h(x3) = 2. p(x3) 6∈ S1 as in the earlier case. No sibling
y3 of x3 is colored before as h(y3) ≥ 3 > h(x3). So number of vertices already
colored at distance 2 from x3 is 2 (the grandparent and the maximum degree
grandchild of x3). Thus x3 is adjacent to only one vertex (parent of x3) colored
before. Since we are following greedy algorithm and x3 can use a color different
from 0, f(p(x3)), f(p(x3)) ± 1, f(p(p(x3))), there is at least one color less than 6
available for x3. Thus f(x3) ≤ ∆+ 1 since ∆ ≥ 5. So we get span (f) = ∆ + 1
for T1.

Now we prove that f(z) ≤ ∆ + 1 if z ∈ V (T ) − V (T1). When a vertex in
V (T )−V (T1) is colored greedily we only have to consider the color of its parent,
grandparent and siblings. When p(z) has degree ∆ then it is colored with 0 or
∆+ 1. z can use any color other than 0 (∆+ 1 respectively), 1 (∆ respectively),
color of grandparent of z and color of at most ∆− 2 siblings, which are total at
most ∆ + 1 in number. When p(z) has degree less than ∆, z can use any color
other than f(p(z)), f(p(z)) ± 1, color of grandparent of z and color of at most
∆− 2 siblings, which are total at most ∆+ 1 in number. So in any case, there is
at least one color less than or equal to ∆+1 available for z and so f(z) ≤ ∆+1.
So span (f) = ∆+ 1 for T and λ(T ) = ∆ + 1.

Example 12. We explain the algorithm given in the proof of Theorem 11 through
an example below. Here we consider a tree T (Figure 3) with ∆ = 5, the distance
between a pair of maximum degree vertices is 2 and the distance between every
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other pair of maximum degree vertices is greater than or equal to 7.
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Figure 3. A tree T with ∆ = 5 and λ(T ) = 6.

Step 1. Here V (T1) = {u, v, w, u′, v′, v′′, ui, vj : 1 ≤ i ≤ 6, 1 ≤ j ≤ 9}. T1 is the
induced subgraph on these vertices.

Step 2. Maximum degree vertices of T are u, v, u′, v′, v′′. We assign f(u) =
f(u′) = f(v′) = f(v′′) = 0, f(v) = 6, f(w) = 2.

Step 3. Here S1={u,w, v}, S2={u′, ui :1 ≤ i ≤ 6}, S3 = {v′, v′′, vj :1 ≤j ≤ 9}.

Step 4. h(ui) = 7 − i for 1 ≤ i ≤ 6. h(v1) = 6, h(v2) = 5, h(v3) = 4, h(v4) = 3,
h(v5) = 2, h(v6) = 3, h(v7) = 1, h(v8) = 2, h(v9) = 1.

Step 5. The uncolored vertices of S2 are ordered as u1, u2, u3, u4, u5, u6. These
vertices are colored greedily according to this ordering. The uncolored vertices
of S3 are ordered as v1, v2, v3, v4, v5, v6, v7, v8, v9. Here d(v, v5) = d(v, v6) but
h(v5) < h(v6) so v5 appears before v6. Similar reasoning is used for v7 and v8.
These vertices are colored greedily according to this ordering.

Step 6. We order the vertices of V (T ) − V (T1) as z1, z2, . . . , z24, z25. These
vertices are colored applying Algorithm 8. Thus one gets that λ(T ) = 6.

It is known, see [7], that every unicyclic graph on n vertices with ∆ < n−1 is
inh-colorable with inh-span ∆+1 or ∆+2. Now we give some sufficient conditions
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for unicyclic graphs to have inh-span ∆+ 1. This is a partial answer to Problem
6 stated in the Introduction.

Theorem 13. Let G be an unicyclic graph with 7 ≤ ∆ ≤ n − 2. If G has four

consecutive vertices u, v, w, x on the cycle such that deg(u) ≤ ∆ − 2, deg(v) =
deg(w) = 2 and deg(x) ≤ ∆ − 5, and the distance between any two maximum

degree vertices is not equal to 2 or 4, then λinh(G) = ∆ + 1.

Proof. Let G1 be the subgraph of G induced on the set V (G)−{v, w}. Then G1

is a tree with maximum degree ∆ and the distance between any two maximum
degree vertices is not equal to 2 or 4. Hence from [10], λ(G1) = ∆+ 1. Since G1

is a tree different from a star, by [6], λinh(G1) = λ(G1) = ∆ + 1. Let f be an
inh-span coloring of G1. We define an inh-coloring g of G as follows: g(x) = f(x)
for all x ∈ V (G1), and then g assigns colors greedily to v, and then to w. Next,
we check that g is an inh-coloring of G with span ∆+1. When v is colored there
is only one colored vertex (that is u) adjacent to it and there are at most ∆− 2
colored vertices (x and neighbors of u other than v) at distance two from it in
G. So there is at least one color in [0,∆ + 1] available for v. So f(v) ≤ ∆ + 1.
When w is colored there are two colored vertices (that is v and x) adjacent to
it and ∆ − 5 colored vertices (u and neighbors of x other than w) at distance
two from it in G. So there is at least one color in [0,∆+ 1] available for w. So
g(w) ≤ ∆ + 1. Since deg(v) = deg(w) = 2, if the distance between two vertices
in G1 is 2, then it remains so in G also. Further, one checks that if the distance
between any two vertices in G1 is greater than 2 or more, then their distance
will not be reduced to 2 or less in G. So constraints of an L(2, 1)-coloring are
satisfied and span (g) = ∆+1. Since f is an inh-coloring and v and w are colored
greedily, g is an irreducible coloring. Since f and g have the same span and f is
a no-hole coloring, so is g. Hence g is an inh-coloring and λinh(G) = ∆+ 1.

Theorem 14. If G is an unicyclic graph with 9 ≤ ∆ ≤ n− 2 having exactly one

maximum degree vertex, then λinh(G) = ∆+ 1.

Proof. We give an L(2, 1)-coloring f to G following the algorithm below.

Algorithm: Step 1. Let u be the maximum degree vertex and C be the cycle
in G. f assigns color 0 to u. Since ∆ ≤ n − 2, there is at least one vertex at
distance 2 from u, say v. Assign f(v) = 1. Then we color a vertex w between u

and v greedily, that is f(w) = 3.

Step 2. Let V (C) = {u1, u2, . . . , uk} and Ti be the largest subtree of G such
that V (Ti) ∩ V (C) = {ui}. Make each Ti a rooted tree with ui as the root.

Step 3. Order the uncolored vertices of C starting at a vertex nearest to u

and other vertices in any order. For each i order the uncolored vertices of Ti in
non-decreasing distances from the root vertex and breaking tie if the vertex is
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either adjacent or at distance two from u, v or w. Then order the vertices of the
graph G as u, v, w, ordered uncolored vertices of C, ordered uncolored vertices of
T1 − u1, . . . , ordered uncolored vertices of Tk − uk.

Step 4. Color graph G following Algorithm 8. Since vertices u, v and w satisfy
the constraints of the L(2, 1)-coloring in G, by Theorem 9 f is an L(2, 1)-coloring.
Now we prove that span (f) = ∆ + 1. When a vertex x in C is colored it has
at most two (this will not be equal to 3 as the starting vertex in the ordering of
vertices of C is nearest to u) colored neighbors, say x1, x2, and at most 4 colored
vertices at distance two from x, two of which, say x3 and x4, may lie on C and
the vertices u and v (when w lies on C). So x can use any color other than
f(x1), f(x2), f(x3), f(x4), f(x1) ± 1, f(x2) ± 1, f(u) and f(v). Therefore, x can
use a color less than or equal to 10. But 10 is less than or equal to ∆+ 1 and so
f(x) ≤ ∆ + 1. Now we consider vertices not on C ∪ {u, v, w}. Let y be such a
vertex. Suppose none of u, v, w is either a child or grandchild of y. If p(y) = u then
y can use any color other than 0, 1 and color of ∆− 1 neighbors of u. If p(y) 6= u

then y can use any color other than f(p(y)), f(p(y))±1, and colors of at most ∆−2
neighbors of p(y). Therefore, at least one color is available for y in [0,∆+1]. Next,
let vertices u, v, w be children or grandchildren of y. One checks easily that the
worst case is that w is a child and both u and v are grandchildren of y. Therefore,
y can use any color other than f(w), f(w)±1, f(u), f(v), f(p(y)), f(p(y))±1 and
colors of two neighbors of p(y) lying on C. Notice that in this case no sibling of y
is colored so far because priority has been given for vertices nearer to u (see Step
3). So there is at least one color less than or equal to 10 available for y. But 10
is less than or equal to ∆+1, and so f(y) ≤ ∆+1. Thus span (f) ≤ ∆+1. This
is an irreducible coloring since every vertex except u and v is colored greedily.
Since u is colored zero, neighbors of u are colored with 2, 3, . . . ,∆ + 1 and v is
colored with 1, this is a no hole coloring. Thus, λinh(G) = ∆+ 1.

Example 15. We give an example of a unicyclic graph G where ∆ = 9 and G

has only one maximum degree vertex, see Figure 4. This graph is given a coloring
f following the algorithm used in the proof of Theorem 14.

Step 1. We assign f(u) = 0, f(v) = 1 and f(w) = 3.

Step 2. Here V (C) = {u1, u2, u3, u4}. V (T1) = {u1, u, v, w, x1j : 1 ≤ j ≤ 13},
V (T2) = {u2}, V (T3) = {u3, x3j : 1 ≤ j ≤ 4} and V (T4) = {u4}.

Step 3. Vertices of C are ordered u1, u2, u3, u4. Uncolored vertices of T1 are
ordered x11, x12, . . . , x113. Uncolored vertices of T3 are ordered x31, x32, x33, x34.

Finally, all the vertices of V (G) are ordered u, v, w, u1, u2, u3, u4, x11, x12, . . . , x113,

x31, x32, x33, x34.

Step 4. Vertices of G are colored following Algorithm 8.
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Figure 4. An unicyclic graph G with ∆ = 9, one maximum degree vertex and λinh(G) =
10.

Theorem 16. Let G be an unicyclic graph with 9 ≤ ∆ ≤ n − 2 and suppose

G has at least two vertices of maximum degree. If the distance between any two

maximum degree vertices in G is at least 7, then λinh(G) = ∆ + 1.

Proof. Here we give an L(2, 1)-coloring f of G with span ∆ + 1 following the
steps of the algorithm below.

Algorithm: Step 1. Let C be the cycle of G. Let G1 be the connected subgraph
of G consisting of the cycle C, the maximum degree vertices of G and paths either
joining C and a maximum degree vertex or any two maximum degree vertices.

Step 2. We color an arbitrary maximum degree vertex u of G with color ∆ + 1
and all other maximum degree vertices of G with color 0.

Step 3. Let the vertices on the cycle be u1, u2, . . . , uk.

Step 4. For each i let Ti be the largest subtree of G1 such that V (Ti)∩C = {ui}
for 1 ≤ i ≤ k. We make Ti a rooted tree with ui as the root vertex.

Step 5. Let Si = V (Ti). Let for any vertex xi in Si, p(xi) denote the parent of
xi. For every uncolored vertex xi in Si, h(xi) = min{d(xi, wi) : wi is a descendant
of xi and is a vertex of maximum degree in G}.

Step 6. The uncolored vertices of Si are ordered according to their non-decreasing
distances from ui. When two vertices are at the same distance from ui we give
priority to the vertex xi with minimum value of h(xi). When two vertices have
the same distance from ui and have the same value of h(xi) any vertex can be
given priority.
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Step 7. Order the vertices of the graph G1 as the colored vertices of G1, uncol-
ored vertices of C, ordered uncolored vertices of T1 − u1, . . . , ordered uncolored
vertices of Tk − uk.

Step 8. Give a coloring, say f , to G1 according to this ordering following Algo-
rithm 8.

Step 9. We extend f to G. We order the vertices of G which are not in G1

according to their non-decreasing distances from the cycle and then apply Algo-
rithm 8 in that order.

Since the distance between any two maximum degree vertices of G is greater
than 6, these vertices satisfy the constraints of an L(2, 1)-coloring in G1. So by
Theorem 9, f is an L(2, 1)-coloring of G1. Since for x, y ∈ V (G1), the distance
between x and y is the same in both G1 and G, Theorem 9 implies that f is an
L(2, 1)-coloring of G.

Now we prove that span (f) = ∆+1. When a vertex ui on the cycle is colored
it has at most two colored neighbors, say y1, y2, on the cycle, at most two colored
vertices, say y3, y4, at distance 2 from it on the cycle and at most one maximum
degree vertex, say v, in G which does not lie on C and is at distance one or two
from ui. The vertex v is colored with 0 or ∆+1. Therefore, ui can use any color
other than f(y1), f(y1)± 1, f(y2), f(y2)± 1, f(y3), f(y4), 0 (respectively ∆+1), 1
(respectively ∆). Therefore, ui can use a color less than or equal to 10. But 10
is less than or equal to ∆+ 1, and so f(ui) ≤ ∆+ 1. Since the distance between
any two maximum degree vertices of G is greater than 6, when a vertex in Si is
colored at most one of its children or grandchildren is already colored. Let yi1 be
a vertex of Ti such that when it is colored no children or grandchildren of it is
already colored. Then p(yi1) is a maximum degree vertex of G or not. If p(yi1) is
a vertex of maximum degree, then p(yi1) is colored with 0 or ∆+1. Clearly, p(yi1)
has at most ∆−1 colored neighbors. If p(yi1) gets the color 0 (respectively ∆+1)
then there is a color available for yi1 in [2,∆+1] (respectively [0,∆−1]). If p(yi1)
is not a vertex of maximum degree, then p(yi1) can have at most ∆ − 2 colored
neighbors, so at least one color is available for yi1 in [0,∆ + 1]. Since we are
following a greedy algorithm, f(yi1) ≤ ∆+ 1. Let yi2 be a vertex of Ti such that
when it is colored only one of its children is already colored and no grandchildren
is colored before. Observe that h(yi2) = 1. Let zi2 be a sibling of yi2. Since the
distance between the colored child of yi2 and a descendant of zi2 having maximum
degree in G is at least 7, h(zi2) ≥ 4 > h(yi2). So zi2 is not colored before and the
number of vertices already colored at distance 2 from yi2 is at most 2 (if p(yi2)
lies on the cycle). Let t1, t2 be the two colored neighbors of p(yi2). Thus yi2 is
adjacent to only two vertices already colored, one of which is colored with 0 or
∆+1. So yi2 can use a color different from f(p(yi2)), f(p(yi2))±1, 0 (respectively
∆ + 1), 1 (respectively ∆), f(t1), f(t2). Since we are using a greedy algorithm,
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f(yi2) ≤ 7. Thus f(yi2) ≤ ∆ + 1 since ∆ ≥ 9. Let yi3 be a vertex of Ti such
that when it is colored only one of its grandchildren is already colored and no
children is colored before. Clearly, h(yi3) = 2. No sibling zi3 of yi3 is colored
before since h(zi3) ≥ 3 > h(yi3). So the number of vertices already colored at
distance 2 from yi3 is at most 3 (if p(yi3) lies on the cycle). Let t3, t4 be the two
colored neighbors of p(yi3) and t5 be the colored grandchild of yi3. Thus yi3 is
adjacent to only one vertex already colored. So yi3 can use a color different from
f(p(yi3)), f(p(yi3))± 1, f(t3), f(t4), f(t5). Since we are using a greedy algorithm,
f(yi3) ≤ 6. Thus f(yi3) ≤ ∆ + 1 since ∆ ≥ 9, and we get span (f) = ∆ + 1
for G1.

When a vertex x in V (G) − V (G1) is colored, we only have to consider one
vertex x′ adjacent to x and at most ∆−1 neighbors of x′. If x′ has degree ∆, then
it is colored 0 or ∆+1. Then there is a color other than 0 (∆+1 respectively), 1
(∆ respectively) and colors of at most ∆− 1 neighbors of x′ available for x. If x′

has degree less than ∆, then there is a color other than f(x′), f(x′)±1 and colors
of at most ∆ − 2 neighbors of x′, available for x. Since we are using a greedy
coloring, f(x) ≤ ∆+ 1. So span (f) = ∆+ 1 for G. There is a maximum degree
vertex colored with 0 and its neighbors are colored with 2, 3, . . . ,∆+1. There is
a maximum degree vertex colored with ∆+ 1 and one of its neighbors is colored
with 1. So f is a no-hole coloring. Since all the vertices other than the maximum
degree vertices are colored following a greedy algorithm and span (f) = ∆+1, f
is an irreducible coloring. Hence λinh(G) = ∆ + 1.

Example 17. We give below example of an unicyclic graph G where ∆ = 9 and
the distance between any two maximum degree vertices is greater than or equal
to seven, see Figure 5. This graph is given a coloring f following the algorithm
used in Theorem 16.

Step 1. Here V (G1) = {ui, v, v
′, v′′, xj : 1 ≤ i ≤ 6, 1 ≤ j ≤ 7}.

Step 2. Maximum degree vertices of G are v, v′ and v′′. f(v) = 10, f(v′) =
f(v′′) = 0.

Step 3. Vertices on the cycle are u1, u2, u3, u4, u5, u6.

Step 4. Here V (T1) = {u1, v}, V (T5) = {u5, v
′, v′′, xi : 1 ≤ i ≤ 7}.

Step 5. h(x1)= 3, h(x2)= 2, h(x3)= 1, h(x4)= 4, h(x5)= 3, h(x6)= 2, h(x7) =1.

Step 6. The uncolored vertices of S5 are ordered x1, x2, x3, x4, x5, x6, x7. Here
d(u5, x3) = d(u5, x4) but h(x3) < h(x4), so x3 appears before x4.

Step 7. The vertices of G1 are ordered v, v′, v′′, u1, u6, u5, u4, u3, u2, x1, x2, x3, x4,

x5, x6, x7.

Step 8. These vertices are colored following Algorithm 8 in this order.
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Figure 5. An unicyclic graph G with ∆ = 9, more than one maximum degree vertices
and λinh(G) = 10.

Step 9. We order the vertices of V (G) − V (G1) as y1, y2, . . . , y27, y28. These
vertices are colored following Algorithm 8 according to this order. Thus one gets
that λinh(G) = 10.
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