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Abstract

A polyomino graph P is a connected finite subgraph of the infinite plane
grid such that each finite face is surrounded by a regular square of side length
one and each edge belongs to at least one square. A dimer covering of P
corresponds to a perfect matching. Different dimer coverings can interact
via an alternating cycle (or square) with respect to them. A set of disjoint
squares of P is a resonant set if P has a perfect matching M so that each
one of those squares is M -alternating. In this paper, we show that if K is
a maximum resonant set of P , then P −K has a unique perfect matching.
We further prove that the maximum forcing number of a polyomino graph
is equal to the cardinality of a maximum resonant set. This confirms a
conjecture of Xu et al. [26]. We also show that if K is a maximal alternating
set of P , then P −K has a unique perfect matching.

Keywords: polyomino graph, dimer problem, perfect matching, resonant
set, forcing number, alternating set.
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1. Introduction

There are two families of interesting plane bipartite graphs, hexagonal systems
[22] and polyomino graphs [30], which often arise in some real-world problems.
A hexagonal system with a perfect matching is viewed as the carbon-skeleton of
a benzenoid hydrocarbon [4, 8]. The dimer problem in statistical mechanics is to
count perfect matchings of polyomino graphs [5, 11, 17, 23, 27].
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A dimer covering of a lattice coincides with a perfect matching of the cor-
responding graph. Kasteleyn [11] developed a so-called “Pfaffian method” and
derived the explicit expression of the number of dimer coverings of m× n chess-
board with even mn. Sachs and Zernitz [23] gave a solution for the dimer problem
of another sequence of “almost square shaped” polyominoes. Up to now, dimer
statistics on some lattices on other surfaces such as torus, Klein-bottom, Möbius
strip, cylinder and 3-dimensional space as well has been also considered; for ex-
ample, see [14, 16, 27].

In relating with dimer covering, perfect matching existence [30], elementary
components [12, 25], matching forcing number [19] and maximal resonance [15]
of polyomino graphs have been investigated. In addition, polyomino graphs are
also models of many interesting combinatorial subjects, such as hypergraphs [2],
domination problem [6, 7], rook polynomials [18], etc.

In space of dimer coverings, different dimer coverings (or dimer patterns) can
interact via an alternating cycle with respect to them [28, 29, 31]. Such cycles are
resonant cycles or conjugated cycles, which play an important role in Randić’s
conjugated circuits method [10, 20, 21]. The simple number of isolated alter-
nating squares of polyomino graphs can estimate the number of dimer coverings,
since each one of such squares can admit independently two selections for dimer
covering. For example, by using this method we know that 2n × 2n chessboard
has at least 2n

2

dimer coverings.

For convenience, we clearly describe some concepts and notations. Let G
be a plane bipartite graph with a perfect matching M (or Kekulé structure in
chemical literature, a set of edges of G such that each vertex of G is incident with
exactly one of those edges). A cycle of G is called an M -alternating cycle if its
edges appear alternately in M and off M . A face f is said to be M -resonant or
M -alternating if its boundary is an M -alternating cycle. Let Q be a set of finite
faces (the intersection is allowed) of G. Q is called anM -alternating set if all faces
in Q are M -resonant. Further, an M -alternating set Q is called an M -resonant
set of G if the faces in Q are mutually disjoint. Simply, Q is a resonant set and
alternating set of G if G has a perfect matching M such that Q is an M -resonant
set and M -alternating set respectively. The cardinality of a maximum resonant
set of G is called the resonant number of G, denoted by res(G).

A hexagonal system can be formed by a cycle of an infinite plane hexagonal
lattice and its interior. For a subgraph H of a graph G, G − H stands for
the subgraph obtained from G by deleting all vertices of H together with their
incident edges. In 1985, Zheng and Chen [32] gave an important property for a
maximum resonant set of a hexagonal system.

Theorem 1.1 [32]. Let H be a hexagonal system with a perfect matching and K
a maximum resonant set of H. Then H −K has a unique perfect matching.
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A forcing set of a perfect matching M of a graph G is a subset S ⊆ M such
that S is not contained in any other perfect matching of G. The forcing number

of a perfect matching M , denoted by f(G,M), is the cardinality of a minimum
forcing set of M . The maximum forcing number of G is the maximum value of
forcing numbers of all perfect matchings of G, denoted by F (G). The concept
of forcing number of graphs was originally introduced for benzenoid systems by
Harary et al. [9]. The same idea appeared in an earlier paper [13] of Klein and
Randić by the name “innate degree of freedom”. The most known results on
forcing number are referred to [3].

Pachter and Kim revealed a minimax result that connects the forcing number
of a perfect matching and its alternating cycles as follows.

Theorem 1.2 [19]. Let G be a plane bipartite graph with a perfect matching.

Then for any perfect matching M of G, f(G,M) = c(M), where c(M) denotes

the maximum number of disjoint M -alternating cycles in G.

By combining Theorems 1.1 and 1.2, Xu et al. [26] obtained a relation be-
tween the forcing number and resonant number of a hexagonal system as follows.

Theorem 1.3 [26]. Let H be a hexagonal system with a perfect matching. Then

F (H) = res(H).

An alternating set of a graph G is called maximal if it is not properly con-
tained in another alternating set of G. In 2006, Salem and Abeledo obtained the
following result.

Theorem 1.4 [24]. Let H be a hexagonal system and K a maximal alternating

set of H. Then H −K has a unique perfect matching.

Motivated by the above works, we will investigate polyomino graphs. This
paper is mainly concerned with a maximum resonant set of a polyomino graph.
By applying Zheng and Chen’s approach [32], we prove that if K is a maximum
resonant set of a polyomino graph G, then G−K has a unique perfect matching.
For a maximal alternating set of G, this property still holds. As a corollary,
we have that the maximum forcing number of a polyomino graph is equal to its
resonant number. Based on these results, it can be shown that the maximum
forcing number of a polyomino graph can be computed in a polynomial time, and
thus confirms the conjecture proposed by Xu et al. [26].

2. Maximum Resonant Set

A polyomino graph is a connected finite subgraph of the infinite plane grid such
that each interior face is surrounded by a regular square of side length one and
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Figure 1. A polyomino graph with a resonant set (gray squares).

each edge belongs to at least one square [30]. An example of polyomino graph
with a resonant set is shown in Figure 1.

For a polyomino graph P , the boundary of the infinite face of P is called
the boundary of P , denoted by ∂(P ), and each edge on the boundary is called a
boundary edge of P . It is well known that polyomino graphs are bipartite. For
convenience, we always place a polyomino graph considered on a plane so that one
of the two edge directions is horizontal and the other is vertical. Two squares are
adjacent if they have an edge in common. A vertex of P lying on the boundary of
P is called an external vertex, and a vertex not being external is called an internal

vertex. A square of P with external vertices is called an external square, and a
square with no external vertices is called an internal square. In what follows, we
always restrict our attention to polyomino graphs with perfect matchings.

Let G be a graph with a perfect matching M and an M -alternating cycle C.
Then M ⊕C(= M ⊕E(C)) is also a perfect matching of G and C is an (M ⊕C)-
alternating cycle of G [31]. Let M and N be two perfect matchings of a graph
G. The symmetric difference of M and N , denoted by M ⊕N , is the set of edges
contained in eitherM or N , but not in both, i.e., M⊕N = (M∪N)−(M∩N). An
(M,N)-alternating cycle of G is a cycle whose edges are in M and N alternately.
It is well known that the symmetric difference of two perfect matchings M and
N of G is a disjoint union of (M,N)-alternating cycles.

We now state our main result as follows.

Theorem 2.1. Let P be a polyomino graph with a perfect matching, and K be a

maximum resonant set of P . Then P −K has a unique perfect matching.

Before proving the main theorem, we will deduce the following crucial lemma.
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Let G be a plane bipartite graph, K a set of finite faces and H a subgraph
of G. By K ∩H we always mean the intersection of K and the set of faces of H.

Lemma 2.2. Let P be a 2-connected polyomino graph with a perfect matching,

K a resonant set consisting of internal squares of P . If P − K − ∂(P ) has a

perfect matching or is an empty graph, then K is not a maximum resonant set.

Figure 2. Squares S(i, j) and T (i, j), and edges e(i, j) and e′(i, j) with m = 6, n(1) = 4,
n(2) = 3, n(3) = 1, n(4) = 2, n(5) = 0, n(6) = 1 and A,B /∈ P .

Proof. Suppose that P −K − ∂(P ) admits a perfect matching M . Decompose
the edge set of ∂(P ) into two perfect matchings N1 and N2 of ∂(P ), since ∂(P )
is an even cycle. Then it is clear that M ∪ N1 and M ∪ N2 are two perfect
matchings of P − K. Let M ′ be a perfect matching of K such that each edge
of M ′ is vertical. Then M ∪ M ′ is a perfect matching of P − ∂(P ). Moreover,
M1 := N1 ∪ (M ∪M ′) and M2 := N2 ∪ (M ∪M ′) are two perfect matchings of P .

Suppose to the contrary that K is a maximum resonant set of P . Adopting
the notations of [32], we can take a series of external squares {S(i, j) : 1 ≤ i ≤
m, 1 ≤ j ≤ n(i)} which satisfy that neither square A nor square B is contained
in P as shown in Figure 2. We denote edges, if any, by e(i, j), e′(i, j), 1 ≤ i ≤ m
and 1 ≤ j ≤ n(i), and denote the square with edge e′(i, j) which is adjacent to
S(i, j), if any, by T (i, j), 1 ≤ i ≤ m and 1 ≤ j ≤ n(i), as shown in Figure 2. We
first prove the following claims.

Claim 1. For a pair of parallel edges e1 and e2 of a square s of P , they do not
lie simultaneously on the boundary of P .
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Proof. If e1 and e2 lie on the boundary of P , then {e1, e2} ⊆ N1 or N2, say
N1. So the square s is N1-alternating, and K ∪ {s} is a resonant set of P , which
contradicts that K is a maximum resonant set of P . Hence Claim 1 holds. �

Claim 2. n(1) ≥ 2 is even, n(m) = 0, the square C ∈ P , n(2) ≥ 1 and m ≥ 3.
If n(i) > 0, then T (i, j) ∈ P for all j, 1 ≤ j ≤ n(i).

Proof. Claim 1 implies that n(1) ≥ 2, n(m) = 0, and T (i, j) ∈ P for all
1 ≤ j ≤ n(i). It remains to show that n(1) is even, C ∈ P , n(2) ≥ 1 and m ≥ 3.

Since K is a maximum resonant set of P , e′(i, j) /∈ M for all 1 ≤ j ≤ n(i),
1 ≤ i ≤ m. Otherwise, K∪{S(i, j)} is a resonant set of P , since the square S(i, j)
is either M1-alternating or M2-alternating, a contradiction. So e(1, j) ∈ M ∪M ′

for all 2 ≤ j ≤ n(1).
First, we show that n(1) is even. Suppose to the contrary that n(1) is odd

with n(1) ≥ 3 (see Figure 3). We use P0 to denote the subgraph of P formed by
squares S(1, 1), S(1, 2), . . . , S(1, n(1)), T (1, 2), T (1, 3), . . . , T (1, n(1) − 1). Then
we can see that the restriction of M2 on P0 is a perfect matching of P0. Let M

′

2 =
M2⊕T (1, 2)⊕T (1, 4)⊕· · ·⊕T (1, n(1)−1)⊕S(1, 2)⊕S(1, 4)⊕· · ·⊕S(1, n(1)−1).
Then M ′

2 is a perfect matching of P such that each member in the set

S0 :=
(

K ∪ {S(1, 1), S(1, 3), . . . , S(1, n(1))}
)∖(

K ∩ P0

)

is an M ′

2-alternating square. Note that the set {S(1, 1), S(1, 3), . . . , S(1, n(1))} is

of cardinality n(1)+1
2 , whereas |K ∩ P0| ≤

n(1)−1
2 . Hence, S0 is a resonant set of

P larger than K. This contradicts that K is a maximum resonant set of P .

Figure 3. Illustration for Claim 2 in the proof of Lemma 2.2: n(1) is odd.

Next, we show that C ∈ P . Suppose to the contrary that C /∈ P . Then
e(1, 1) ∈ N1. We use P1 to denote the subgraph of P formed by squares
T (1, 1), T (1, 2), . . . , T (1, n(1)− 1). Then the restriction of M1 on P1 is a perfect
matching of P1. Note that T (1, 1), T (1, 3), . . . , T (1, n(1)− 1) are M1-alternating

squares and |K ∩ P1| ≤
n(1)
2 − 1. Hence, we can see that

(

K ∪ {T (1, 1), T (1, 3), . . . , T (1, n(1)− 1)}
)∖(

K ∩ P1

)
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is a resonant set of P larger than K, a contradiction. Similarly, S(2, 1) ∈ P and
n(2) > 0. Moreover, m ≥ 3. So we complete the proof of Claim 2. �

Let ℓ be an integer with 2 ≤ ℓ ≤ m such that n(ℓ) is even, and n(t) is odd
for all 2 ≤ t ≤ ℓ − 1. It follows from e(1, n(1)) ∈ M ∪ M ′, e′(i, j) /∈ M that
e(i, j) ∈ M ∪ M ′ for all i and j, 2 ≤ i ≤ ℓ − 1, 1 ≤ j ≤ n(i). We now need to
distinguish the following two cases.

Figure 4. Illustration for Subcase 1.1 in the proof of Lemma 2.2: ℓ = 2 and n(ℓ) = 4.

Figure 5. Illustration for Subcase 1.2 in the proof of Lemma 2.2: ℓ = 3, n(ℓ) = 2.

Case 1. n(ℓ) > 0. In this case we have e(ℓ, j) ∈ M ∪M ′ for all 1 ≤ j ≤ n(ℓ).

Subcase 1.1. ℓ = 2 (see Figure 4). Let P2 denote the subgraph of P formed
by squares in the set

{T (1, j) : 2 ≤ j ≤ n(1)} ∪ {S(2, j) : 1 ≤ j ≤ n(2)} ∪ {T (2, j) : 1 ≤ j ≤ n(2)− 1}.

Then the restriction of M2 on P2 is a perfect matching of P2. Let
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M ′′

2 = M2 ⊕ T (2, 1)⊕ T (2, 3)⊕ · · · ⊕ T (2, n(2)− 1)⊕ S(2, 1)⊕ S(2, 3)

⊕ · · · ⊕ S(2, n(2)− 1),

S1 := {T (1, 2), T (1, 4), . . . , T (1, n(1))} ∪ {S(2, 2), S(2, 4), . . . , S(2, n(2))}.

Then M ′′

2 is a perfect matching of P such that each member of (K∪S1)\(K∩P2)

is an M ′′

2 -alternating square. Note that |S1| =
n(1)+n(2)

2 , whereas

|K ∩ {T (1, j) : 2 ≤ j ≤ n(1)}| ≤
n(1)

2
− 1,

|K ∩ {T (2, j) : 1 ≤ j ≤ n(2)− 1}| ≤
n(2)

2
.

Hence, (K ∪ S1)\(K ∩ P2) is a resonant set of P larger than K, a contradiction.

Subcase 1.2. ℓ ≥ 3 (see Figure 5). Let P3 denote the subgraph of P formed
by squares in

{T (ℓ−1, j) : 1≤j≤ n(ℓ−1)}∪{S(ℓ, j) : 1 ≤ j ≤ n(ℓ)}∪{T (ℓ, j) : 1≤ j ≤ n(ℓ)−1}.

Then the restriction of M2 on P3 is a perfect matching of P3. Let

M ′′′

2 = M2 ⊕ T (ℓ, 1)⊕ T (ℓ, 3)⊕ · · · ⊕ T (ℓ, n(ℓ)− 1)⊕ S(ℓ, 1)⊕ S(ℓ, 3)

⊕ · · · ⊕ S(ℓ, n(ℓ)− 1),

S2 :={S(ℓ, 2), S(ℓ, 4), . . . , S(ℓ, n(ℓ))}∪{T (ℓ−1, 1), T (ℓ−1, 3), . . . , T (ℓ−1, n(ℓ−1))}.

Then M ′′′

2 is a perfect matching of P such that each member of (K∪S2)\(K∩P3)

is an M ′′′

2 -alternating square. Note that |S2| =
n(ℓ)+n(ℓ−1)+1

2 , whereas

|K ∩ {T (ℓ− 1, j) : 1 ≤ j ≤ n(ℓ− 1)}| ≤
n(ℓ− 1)− 1

2
,

|K ∩ {T (ℓ, j) : 1 ≤ j ≤ n(ℓ)− 1}| ≤
n(ℓ)

2
.

Hence, (K ∪ S2)\(K ∩ P3) is a resonant set of P larger than K, a contradiction.

Case 2. n(ℓ) = 0 (see Figure 6). Let P4 denote the subgraph of P formed by
squares T (ℓ− 1, 1), T (ℓ− 1, 2), . . . , T (ℓ− 1, n(ℓ− 1)). Note that the left vertical
edge of the square T (ℓ− 1, n(ℓ− 1)) belongs to N2, and moreover each square in
P4 is M2-alternating. Thus we can see that

(

K ∪ {T (ℓ− 1, 1), T (ℓ− 1, 3), . . . , T (ℓ− 1, n(ℓ− 1))}
)∖(

K ∩ P4

)

is a resonant set of P larger than K, a contradiction.
Now the entire proof of the lemma is complete.



A Maximum Resonant Set of Polyomino Graphs 331

Figure 6. Illustration for Case 2 in the proof of Lemma 2.2: ℓ = 4, n(ℓ) = 0.

Proof of Theorem 2.1. Suppose to the contrary that P − K has two perfect
matchingsM andM ′. ThenM⊕M ′ contains an (M,M ′)-alternating cycle C. Let
I[C] denote the subgraph of P consisting of C together with its interior. PutK∗ =
K ∩ I[C]. Then K∗ is not a maximum resonant set of I[C], since I[C] and K∗

satisfy the condition of Lemma 2.2. Moreover K is also not a maximum resonant
set of P , which contradicts the assumption that K is a maximum resonant set
of P .

3. Maximal Alternating Set

For a maximal alternating set of polyomino graphs, we can obtain the following
results.

Lemma 3.1. Let P be a 2-connected polyomino graph with a perfect matching,

K an alternating set consisting of internal squares and ∂(P ) the boundary of P .

If P −K − ∂(P ) has a perfect matching or is an empty graph, then K is not a

maximal alternating set.

Proof. We take the substructure and notations used in the proof of Lemma 2.2
(see Figure 2). Let M be a perfect matching of P − ∂(P ) such that all squares
in K are M -alternating, and let N1 and N2 be two perfect matchings of ∂(P ).
Then M1 := M ∪N1 and M2 := M ∪N2 are two perfect matchings of P .

Suppose to the contrary that K is a maximal alternating set of P . The
following Claim 1 and its proof are the same as Claim 1 of Lemma 2.2.

Claim 1. For a pair of parallel edges e1 and e2 of a square s of P , they do not
lie simultaneously on the boundary of P .
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Claim 2. n(1) ≥ 2, n(m) = 0, the square C ∈ P , n(2) ≥ 1 and m ≥ 3.
e′(i, j) /∈ M for all 1 ≤ j ≤ n(i), 1 ≤ i ≤ m. Moreover, e(1, j) ∈ M for all
2 ≤ j ≤ n(1).

Proof. Claim 1 implies that n(1) ≥ 2, n(m) = 0, and T (i, j) ∈ P for all
1 ≤ j ≤ n(i), 1 ≤ i ≤ m.

Since K is a maximal alternating set of P , e′(i, j) /∈ M for all 1 ≤ j ≤ n(i),
1 ≤ i ≤ m. Otherwise, K ∪ {S(i, j)} is an alternating set of P , since the square
S(i, j) is either M1-alternating or M2-alternating, a contradiction. So e(1, j) ∈ M
for all 2 ≤ j ≤ n(1).

Now we show that C ∈ P . Suppose to the contrary that C /∈ P . Then
e(1, 1) ∈ N1 and S(1, 1) is M1-alternating. So K ∪ {S(1, 1)} is an alternating
set of P , a contradiction. Symmetrically, S(2, 1) ∈ P and n(2) ≥ 1. So m ≥ 3.
Hence Claim 2 is proved. �

Let ℓ be an integer with 3 ≤ ℓ ≤ m such that n(ℓ) = 0, and n(t) > 0 for
all 2 ≤ t ≤ ℓ − 1. It follows from e(1, n(1)) ∈ M , e′(i, j) /∈ M that e(i, j) ∈ M
for all i and j, 2 ≤ i ≤ ℓ − 1, 1 ≤ j ≤ n(i). Note that the left vertical edge of
the square T (ℓ− 1, n(ℓ− 1)) belongs to N1 or N2, say N1. So T (ℓ− 1, n(ℓ− 1))
is M1-alternating and K ∪ {T (ℓ− 1, n(ℓ− 1))} is an alternating set of P , which
contradicts the assumption that K is a maximal alternating set of P . The lemma
is proved.

Theorem 3.2. Let P be a polyomino graph with a perfect matching, and K be a

maximal alternating set of P . Then P −K has a unique perfect matching.

Proof. Suppose to the contrary that P −K has two perfect matchings M and
M ′. Then M ⊕M ′ contains an (M,M ′)-alternating cycle C. Put K∗ = K ∩ I[C].
Then K∗ is not a maximal alternating set of I[C], since I[C] and K∗ satisfy the
condition of Lemma 3.1. So K is also not a maximal alternating set of P , a
contradiction.

4. Maximum Forcing Number

Motivated by Theorem 1.3, it is natural to ask the following question: when is
the maximum forcing number of a plane bipartite graph equal to its resonant
number? In the following, we shall give a sufficient condition.

Let G be a plane graph with a perfect matching. A cycle C of G is said to
be nice if G has a perfect matching M such that C is an M -alternating cycle.
Denote by I[C] the subgraph of G consisting of C together with its interior. A
cycle C of G is called a face cycle if it is the boundary of some finite face of G.
For convenience, we do not distinguish a face cycle with its finite face.
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Theorem 4.1. Let G be a connected plane bipartite graph with perfect matchings.

If for each nice cycle C of G and any maximum resonant set K of I[C], I[C]−K
has a unique perfect matching, then res(G) = F (G).

Proof. Let F (G) = n. By the definition of resonant number and Theorem 1.2,
we can see that res(G) ≤ n. In the following we show res(G) ≥ n. Define M(G)
as the set of perfect matchings of G whose forcing numbers equal n. By Theorem
1.2, for any M ∈ M(G), there exist n pairwise disjoint M -alternating cycles in G.
We choose a perfect matching M1 in M(G) such that n disjoint M1-alternating
cycles C1, C2, . . . , Cn of G have face cycles as many as possible.

Put C = {C1, C2, . . . , Cn}. It suffices to show that all cycles in C are face
cycles. Otherwise, C has a non-face cycle member and its interior contains only
face cycle members of C. Without loss of generality, let Ci denote such a non-face
cycle member of C and C1, C2, . . . , Ci−1 are all the face cycles in C contained in the
interior of Ci for some i, 1 ≤ i ≤ n. Then the restriction of M1 on I[Ci] is also a
perfect matching of I[Ci], denoted by Mc. By the assumption, {C1, C2, . . . , Ci−1}
is a non-maximum resonant set of I[Ci]. Let S be a maximum resonant set of
I[Ci]. Then |S| ≥ i. Let M0 be a perfect matching of I[Ci] such that all faces in
S are M0-resonant. Let M2 = (M1\Mc)∪M0 and C′ = S ∪ {Ci+1, Ci+2, . . . , Cn}.
Then M2 is a perfect matching of G and each member of C′ is an M2-alternating
cycle. Note that M2 ∈ M(G) and C′ contains more face cycles than C. This
contradicts the choices of M1 and {C1, C2, . . . , Cn}.

Combining Theorems 4.1 with 2.1 and 1.1, we immediately obtain the fol-
lowing results.

Corollary 4.2 [26]. Let P be a hexagonal system with a perfect matching. Then

F (P ) = res(P ).

Corollary 4.3. Let P be a polyomino graph with a perfect matching. Then

res(P ) = F (P ).

We now give a weakly elementary property of such graphs that satisfy the
conditions of Theorem 4.1. Let G be a connected plane bipartite graph with
a perfect matching. An edge of G is called allowed if it lies in some perfect
matching of G and forbidden otherwise. G is called elementary if each edge of
G is allowed. G is said to be weakly elementary if for each nice cycle C of G the
interior of C has at least one allowed edge of G that is incident with a vertex of
C whenever the interior of C contains an edge of G [31]. A face f of G is said to
be a boundary face if the boundaries of f and ∂(G) have a vertex in common.

Theorem 4.4. Let G be a connected plane bipartite graph with perfect matchings.

If for each nice cycle C of G and any maximum resonant set K of I[C], I[C]−K
has a unique perfect matching, then G is weakly elementary.
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Proof. Suppose to the contrary that G is not weakly elementary. Then there
exists a nice non-face cycle C of G such that the interior of C has no allowed
edges of G incident with vertices of C. It follows that the interior of C has no
allowed edges of I[C] that are incident with vertices of C. So, for every perfect
matching M of I[C], C is M -alternating and any maximum resonant set K of
I[C] contains no boundary faces of I[C]. So I[C] − K has at least two perfect
matchings, a contradiction.

Xu et al. ever gave a conjecture as follows, which can be now confirmed.

Conjecture 4.5 [26]. Let G be an elementary polyomino graph. Then the max-

imum forcing number of G can be computed in polynomial time.

Abeledo and Atkinson obtained the following result.

Theorem 4.6 [1]. Let G be a 2-connected plane bipartite graph. Then the reso-

nant number of G can be computed in polynomial time using linear programming

methods.

A polyomino graph P with forbidden edges can be decomposed into some
elementary components [25]. There exists a polynomial time algorithm to ac-
complish this decomposition. Such elementary components are elementary poly-
ominoes and thus 2-connected. Note that the forcing number of any perfect
matching M of P equals the sum of forcing numbers of the restrictions of M on
its elementary components. So Theorem 4.6 and Corollary 4.3 imply the following
result, which confirms Conjecture 4.5.

Theorem 4.7. Let G be a polyomino graph with a perfect matching. Then the

maximum forcing number of G can be computed in polynomial time.

5. Concluding Remarks

Theorem 2.1 does not hold for general plane bipartite graphs even for plane
elementary bipartite graphs. Let us see two elementary bipartite graphs G and
G′ as shown in Figure 7, where G′ is a subgraph of G bounded by a nice cycle of
G. Since there exist at most 12 (respectively 6) pairwise disjoint finite faces in G
(respectively in G′) and the faces with labels 1 (respectively 2) form a resonant
set of G (respectively in G′), we have that res(G) = 12 and res(G′) = 6. There
is a maximum resonant set S′ (the faces with labels 2) of G′ such that G′ − S′

has two perfect matchings. This shows that Theorem 2.1 does not hold for a
graph G′.

For any maximum resonant set S of G, G − S is empty; the empty set can
be viewed as a unique perfect matching of an empty graph. This also shows that
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even if Theorem 2.1 holds for a graph G, but it does not necessarily hold for a
subgraph formed by a nice cycle and its interior.

In addition, since G′ has a perfect matching M such that the faces with labels
2 and the infinite face of G′ are M -resonant, by Theorem 1.2 we have F (G′) ≥ 7.
Since there exist no 8 pairwise disjoint cycles in G′, we have F (G′) ≤ 7. So
F (G′) = 7 and F (G′) 6= res(G′). But F (G) = res(G) = 12. This shows that the
converse of Theorem 4.4 does not hold.

Figure 7. (a) An elementary graph G. (b) A subgraph G′ of G.
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