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Abstract

A total-colored path is total rainbow if both its edges and internal vertices
have distinct colors. The total rainbow connection number of a connected
graph G, denoted by trc(G), is the smallest number of colors that are needed
in a total-coloring of G in order to make G total rainbow connected, that
is, any two vertices of G are connected by a total rainbow path. In this
paper, we study the computational complexity of total rainbow connection
of graphs. We show that deciding whether a given total-coloring of a graph
G makes it total rainbow connected is NP-Complete. We also prove that
given a graph G, deciding whether trc(G) = 3 is NP-Complete.
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1. Introduction

All graphs considered in this paper are simple, finite and undirected. We follow
the notation and terminology of Bondy and Murty [1] for those not described
here.

An edge-coloring of a graph G is a mapping from the edges of G to some
finite set of colors, where adjacent edges may have the same color. An edge-
colored graph is rainbow connected if any two vertices are connected by a path
whose edges have distinct colors. This concept of rainbow connection in graphs
was introduced by Chartrand et al. in [4]. The rainbow connection number of a
connected graph G, denoted by rc(G), is the smallest number of colors that are
needed in an edge-coloring of G in order to make G rainbow connected. Observe
that diam(G) ≤ rc(G) ≤ n− 1, where diam(G) denotes the diameter of G and n

is the order of G. It is easy to verify that rc(G) = 1 if and only if G is a complete
graph, and that rc(G) = n− 1 if and only if G is a tree. For an overview of the
rainbow connection topic, we refer the reader to some new papers [7, 8, 13], and
the survey and the monograph [14, 15].

A vertex-coloring of a graph G is a mapping from the vertices of G to some
finite set of colors. If all pairs of adjacent vertices have distinct colors, we called
the vertex-coloring proper. In [9], Krivelevich and Yuster proposed the concept
of rainbow vertex-connection. A vertex-colored graph, not necessarily proper,
is rainbow vertex-connected if any two vertices are connected by a path whose
internal vertices have distinct colors. The rainbow vertex-connection number of a
connected graph G, denoted by rvc(G), is the smallest number of colors that are
needed in a vertex-coloring of G in order to make G rainbow vertex-connected.
An easy observation is that if G is of order n, then rvc(G) ≤ n−2 and rvc(G) = 0
if and only if G is a complete graph. Notice that rvc(G) ≥ diam(G) − 1 with
equality if the diameter is 1 or 2. There are some approaches to study the bounds
of rvc(G), we refer to [9, 12, 16].

Uchizawa et al. [18] and Liu et al. [16] introduced an analogous definition
using total-colorings. A total-coloring of a graph G is a mapping from the vertices
and edges of G to some finite set of colors. A total-colored graph is total rainbow
connected if any two vertices are connected by a path whose edges and internal
vertices have distinct colors. The total rainbow connection number of a connected
graph G, denoted by trc(G), is the smallest number of colors that are needed in
a total-coloring of G in order to make G total rainbow connected. Observe that
trc(G) = 1 if and only if G is a complete graph, and trc(G) ≥ 3 if and only if G
is not complete.

For the rainbow connection number and the rainbow vertex-connection num-
ber, some examples were given to show that there is no upper bound for one of
the parameters in terms of the other, see [9]. In [16], Liu et al. compared trc(G)
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with rc(G) and rvc(G). Notice that trc(G) ≥ max{rc(G), rvc(G)}. Liu et al.

showed that for every sufficiently large s, there exists an example of a graph G

with trc(G) = rvc(G) = s.

The computational complexity of rainbow connectivity and rainbow vertex
connectivity has been studied. In [2], Caro et al. conjectured that computing
rc(G) is an NP-Hard problem, as well as that even deciding whether a graph has
rc(G) = 2 is NP-Complete. In [3], Chakraborty et al. confirmed this conjecture
and obtained the following theorems.

Theorem 1. Given a graph G, deciding if rc(G) = 2 is NP-Complete. In par-

ticular, computing rc(G) is NP-Hard.

Given an edge-coloring of the graph, if the coloring is arbitrary, they showed
that checking whether the coloring makes the graph rainbow connected is NP-
Complete.

Theorem 2. The following problem is NP-Complete: Given an edge-colored

graph G, check whether the given coloring makes G rainbow connected.

In [10], Li et al. considered bipartite graphs, and obtained the computa-
tional complexity results for bipartite graphs. Chen et al. [5] investigated the
computational complexity of rainbow vertex-connection, and obtained the similar
results.

Since computing rc(G) and rvc(G) is NP-Hard, a natural conjecture is that
computing trc(G) is also NP-Hard. In this paper, we consider the computational
complexity of total rainbow connection of graphs and give some similar results.
In Section 2, we show that deciding whether a given total-coloring of a graph G

makes it total rainbow connected is NP-Complete. In Section 3, we prove that
given a graph G, deciding whether trc(G) = 3 is NP-Complete.

2. Total Rainbow Connection

Now, we give our first theorem.

Theorem 3. The following problem is NP-Complete: Given a total-colored graph

G, check whether the given coloring makes G total rainbow connected.

We define the problem in Theorem 3 as TOTAL RAINBOWCONNECTION,
and the problem in Theorem 2 as RAINBOW CONNECTION.

Problem 1. TOTAL RAINBOW CONNECTION.

Given: Total-colored graph G.

Decide: Whether G is total rainbow connected under the coloring?



358 L. Chen, B. Huo and Y. Ma

Problem 2. RAINBOW CONNECTION.

Given: Edge-colored graph G.

Decide: Whether the coloring makes G rainbow connected?

Clearly, the problem of TOTAL RAINBOW CONNECTION is in NP. By
Theorem 2, the problem of RAINBOW CONNECTION is NP-Complete. We
reduce Problem 2 to Problem 1, which shows that Problem 1 is NP-Complete,
concluding the proof of Theorem 3.

Lemma 4. Problem 2 � Problem 1.

Proof. Let G be a given graph with an edge-coloring c. We want to construct a
graph G′ with a total-coloring c′ such that G′ is total rainbow connected under
the coloring c′ if and only if G is rainbow connected under the coloring c.

Let V = {v1, v2, . . . , vn−1, vn} be the vertex set of G, and α1, α2, . . . , αn be
n new colors that are not used in c. Let G′ be a graph isomorphic to G. We
define the coloring c′ as follows: c′(e) = c(e), for e ∈ E(G) and c′(vi) = αi, for
1 ≤ i ≤ n.

Since α1, α2, . . . , αn are n new colors, one can easily check that G is rainbow
connected under the coloring c if and only if G′ is total rainbow connected under
the coloring c′.

3. Total Rainbow Connection Number 3

Notice that trc(G) = 1 if and only if G is a complete graph, and trc(G) ≥ 3 if
and only if G is not complete. By Theorem 1, the problem of deciding if rc(G) =
2 is NP-Complete. Correspondingly, we show that the problem of deciding if
trc(G) = 3 is NP-Complete.

Theorem 5. Given a graph G, deciding whether trc(G) = 3 is NP-Complete.

Thus, computing trc(G) is NP-Hard.

We define the problem above as TOTAL RAINBOW CONNECTION NUM-
BER 3.

Problem 3. TOTAL RAINBOW CONNECTION NUMBER 3.

Given: Graph G = (V,E).

Decide: Whether there is a total-coloring of G with three colors such that all
pairs {u, v} ∈ V (2) (V (2) means the unorder pairs from V ) are connected by a
total rainbow path?

Clearly, Problem 3 is in NP. To show that it is NP-Complete, we need to
define another two problems.

Problem 4. SUBSET TOTAL RAINBOW CONNECTION NUMBER 3.
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Given: Graph G = (V,E) and a set of pairs P ⊆ V (2).

Decide: Whether there is a total-coloring of G with three colors such that all
pairs {u, v} ∈ P are connected by a total rainbow path?

Problem 5. 3-COLORABILITY.
Given: Graph G = (V,E).
Decide: Whether there is a vertex-coloring of G with three colors such that all
pairs of adjacent vertices are assigned different colors?

In the following, we will reduce Problem 4 to Problem 3 and then reduce
Problem 5 to Problem 4. Since 3-COLORABILITY is NP-Complete [6], we have
that the problem of TOTAL RAINBOW CONNECTION NUMBER 3 is NP-
Complete, which proves Theorem 5.

Lemma 6. Problem 4 � Problem 3.

Proof. Given a graph G = (V,E) and a set of pairs P ⊆ V (2), we construct a
graph G′ = (V ′, E′) as follows.

For each vertex v ∈ V , we introduce a new vertex xv; for every pair {u, v} ∈
V (2) \ P , we introduce a new vertex x{u,v}. Set

V ′ = V ∪ {xv : v ∈ V } ∪ {x{u,v} : {u, v} ∈ V (2) \ P}
and

E′ = E∪{vxv : v ∈ V }∪{ux{u,v}, vx{u,v} : {u, v} ∈ V (2)\P}∪{xy : x, y ∈ V ′\V }.

In the following, we will prove that there exists a total-coloring of G′ with three
colors which makes G′ total rainbow connected if and only if there is a total-
coloring of G with three colors such that all pairs {u, v} ∈ P are connected by a
total rainbow path.

First suppose there is a total-coloring of G′ with three colors which makes
G′ total rainbow connected. Observe that G is a subgraph of G′. For each pair
{u, v} ∈ P , the paths of length not more than 2 that connect u and v have to be
in G. Thus, under the coloring, all pairs in P are connected by a total rainbow
path.

On the other hand, assume that c : V ∪ E → {1, 2, 3} is a total-coloring of
G such that all pairs {u, v} ∈ P are connected by a total rainbow path. We
extend the coloring c to a total-coloring c′ : V ′ ∪ E′ → {1, 2, 3} in the following
way: c′(vxv) = 1 for all v ∈ V , c′(ux{u,v}) = 1 and c′(vx{u,v}) = 2 for all

{u, v} ∈ V (2) \ P , c′(xv) = c′(x{u,v}) = 3, c′(xy) = 2 for all x, y ∈ V ′ \ V . Now
we show that G′ is indeed total rainbow connected under this coloring. For any
two vertices u and v, if {u, v} ∈ P , the total rainbow path connecting u and v

in G is also the total rainbow path in G′. If {u, v} ∈ V (2) \ P , then ux{u,v}v is a
total rainbow path connecting u and v. If u ∈ V , v ∈ V ′ \V , then uxuv is a total
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rainbow path connecting u and v. If u, v ∈ V ′ \ V , then uv is the total rainbow
path. Hence, G′ is total rainbow connected under the coloring c′.

This completes the proof of the lemma.

Lemma 7. Problem 5 � Problem 4.

Proof. Let G = (V,E) be an instance of the 3-COLORABILITY problem. We
construct an instance G′ = (V ′, E′) of the SUBSET TOTAL RAINBOW CON-
NECTION NUMBER 3 problem.

Let V = {v1, v2, . . . , vn−1, vn} be the vertex set of G. For each vi ∈ V , we
introduce three new vertices v1i , v

2
i , v

3
i . For each edge e = vivj ∈ E, we introduce

a new vertex vij . We set

V ′ = {v1i , v
2
i , v

3
i : 1 ≤ i ≤ n} ∪ {vij : vivj ∈ E}

and
E′ = {v1i v

2
i , v

2
i v

3
i : 1 ≤ i ≤ n} ∪ {v2i vij , vijv

2
j : vivj ∈ E}.

Now we define the set P ⊆ V ′(2) as follows.

P = {{v1i , v
3
i }, {v

3
i , vij}, {v

1
j , v

3
j }, {v

3
j , vij}, {v

2
i , v

2
j } : vivj ∈ E}.

If there is a vertex-coloring c : V (G) → {1, 2, 3} such that the adjacent
vertices are assigned different colors, then we define a total-coloring c′ of G′

as follows. For 1 ≤ i ≤ n, let c′(v1i v
2
i ) = c(vi), c′(v2i ) ∈ {1, 2, 3} \ {c(vi)},

c′(v2i v
3
i ) ∈ {1, 2, 3} \ {c(vi), c

′(v2i )}. For each vivj ∈ E, let c′(v2i vij) = c(vi),
c′(v2j vij) = c(vj), c′(vij) ∈ {1, 2, 3} \ {c(vi), c(vj)}. For all other vertices, we
assign them the colors arbitrarily. It is easy to check that all {u, v} ∈ P are
connected by a total rainbow path.

On the other hand, suppose there is a total-coloring c′ of G′ with three colors
such that all pairs {u, v} ∈ P are connected by a total rainbow path, we define
a vertex-coloring c of G as follows. For 1 ≤ i ≤ n, c(vi) = c′(v1i v

2
i ). We show

that this coloring is proper, that is, if vivj ∈ E, then c(vi) 6= c(vj). Indeed, for
vivj ∈ E, since {v2i , v

2
j } ∈ P , there is a total rainbow path connecting v2i and

v2j , this path must be v2i vijv
2
j , thus c′(v2i vij) 6= c′(v2j vij). Since {v1i , v

3
i } ∈ P ,

{v3i , vij} ∈ P , and the total rainbow paths connecting v1i and v3i , v3i and vij
are v1i v

2
i v

3
i , v

3
i v

2
i vij , we have c′(v1i v

2
i ) = c′(v2i vij) since only three colors are used.

Similarly, c′(v1j v
2
j ) = c′(v2j vij). Then c′(v1i v

2
i ) 6= c′(v1j v

2
j ). Therefore, c(vi) 6= c(vj),

thus c is a proper coloring of G, concluding the proof.
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