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Abstract

In their paper, Bounds on the number of edges in hypertrees, G.Y. Katona
and P.G.N. Szabó introduced a new, natural definition of hypertrees in k-
uniform hypergraphs and gave lower and upper bounds on the number of
edges. They also defined edge-minimal, edge-maximal and l-hypertrees and
proved an upper bound on the edge number of l-hypertrees.

In the present paper, we verify the asymptotic sharpness of the
(

n

k−1

)

upper bound on the number of edges of k-uniform hypertrees given in the
above mentioned paper. We also make an improvement on the upper bound
of the edge number of 2-hypertrees and give a general extension construction
with its consequences.

We give lower and upper bounds on the maximal number of edges of k-
uniform edge-minimal hypertrees and a lower bound on the number of edges
of k-uniform edge-maximal hypertrees. In the former case, the sharp upper
bound is conjectured to be asymptotically 1

k−1

(
n

2

)
.
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1. Introduction

The concept of chains was applied successfully in the generalisation of Hamil-
tonian-cycles to hypergraphs [5]. This definition seems to be useful for other
purposes, for example, if one looks for an extension of a definition that involves
paths to hypergraphs. Based on this idea, a new concept for trees in k-uniform
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hypergraphs was introduced in [6], and several different definitions were given for
various types of hypertrees.

The authors then proved upper and lower bounds for the number of edges
in such hypertrees. First, we recall necessary definitions and summarize relevant
theorems from [6]. In the present paper, the reader will find improvements of
some of the earlier results, as well as new results in other areas of the topic.

Let H = (V, E) be a k-uniform hypergraph (with no multiple edges). It is
called a

• cycle if there exists a cyclic sequence v1, v2, . . . , vl of its vertices such that
every vertex appears at least once (possibly more times) in it, and E consists
of l distinct edges of the form {vi, vi+1, . . . , vi+k−1}, 1 ≤ i ≤ l;

• semicycle if there exists a sequence v1, v2, . . . , vl of its vertices such that every
vertex appears at least once (possibly more times) in it, v1 = vl and E consists
of l− k+1 distinct edges of the form {vi, vi+1, . . . , vi+k−1}, 1 ≤ i ≤ l− k+1;

• chain if there exists a sequence v1, v2, . . . , vl of its vertices such that every
vertex appears at least once (possibly more times), v1 6= vl and E consists of
l − k + 1 distinct edges of the form {vi, vi+1, . . . , vi+k−1}, 1 ≤ i ≤ l − k + 1.

The length of a cycle/semicycle/chain is the number of its edges.

From the definition it follows that every semicycle has at least 3 edges. A
chain (semicycle) is non-self-intersecting if every vertex appears exactly once in
the defining sequence v1, v2, . . . , vl (except for v1 = vl). It can be easily seen
that if a k-uniform hypergraph H contains a semicycle, then it contains also
a non-self-intersecting one, and if H is semicycle-free, then every chain in it is
non-self-intersecting (for detailed proofs see Section 2 in [6]).

As we mentioned earlier, chains play the most important role in defining
hypertrees because we intend to require a natural chain-connectedness property.

A k-uniform hypergraph H is

• chain-connected if every pair of its vertices is connected by a chain, i.e., there
exists a subhypergraph of it, which is a chain and contains both vertices;

• semicycle-free if it contains no semicycle as a subhypergraph.

In [6], the authors defined hypertrees by comparing equivalent definitions of
trees. Some of these definitions are not compatible with the concept of chain,
while others may be too general. One has to take into consideration that the
original concept of cycle can be extended in two ways.

The k-uniform hypergraph F is a

• hypertree if it is chain-connected and semicycle-free;

• l-hypertree if it is a hypertree, and every chain in it has length at most l;

• edge-minimal hypertree if it is a hypertree, and deleting any edge e, F\{e} is
not a hypertree any more (i.e., chain-connectedness does not hold);
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• edge-maximal hypertree if it is a hypertree, and adding any new edge e, F∪{e}
is not a hypertree any more (i.e., semicycle-freeness does not hold).

In this way, the edge maximal/minimal hypertrees are also common hyper-
trees, but their edge-sets are extremely small/large. So, the last two defini-
tions describe the extreme cases among hypertrees. One motivation to use the
semicycle-free property is that every chain is non-self-intersecting in a hypertree,
as we have mentioned previously. Without this property one must face with
substantially more complicated case-analyses.

Being connected by chains is not a transitive property, thus it is not an
equivalence relation. This is a characteristic difference between hypertrees and
common trees, which is responsible for most of the additional complexity.

We also remark that edge-minimality means that one can assign two vertices
to every edge such that every chain connecting them contains the assigned edge,
i.e., it must be in all of the minimal chains that connect these two vertices. One
can rephrase that statement as follows: if for every two vertices of an edge-
minimal hypertree we mark a chain connecting them, then the marked chains
together cover the whole edge-set of the hypertree.

Every t-(n, k, 1) block design is a hypertree (called t-geometric hypertree) if
2 ≤ t ≤ k − 1. This shows that hypertrees can be considered as generalisations
of t-block designs.

Finally, we summarise the already known results on the number of edges of
hypertrees in the following theorems from [6]. Let F = (V, E) be a k-uniform
hypergraph, n = |V | and m = |E|.

Theorem 1 (Katona-Szabó [6]). If F is chain-connected and n ≥ (k− 1)2, then
m ≥ n− (k − 1), and this bound is tight.

The tightness of the above bound is obvious considering non-self intersecting
chains. The condition n ≥ (k − 1)2 cannot be omitted if k ≥ 6 because for such
a k there exists a k-uniform hypertree on k + 3 vertices with 3 edges.

Theorem 2 (Katona-Szabó [6]). If F is semicycle-free, then m ≤
(

n
k−1

)
, and

this bound is asymptotically sharp for k = 3.

Theorem 3 (Katona-Szabó [6]). If F is an l-hypertree and 1 ≤ l ≤ k, then

m ≤ 1
k−l+1

(
n

k−1

)
. This bound is asymptotically sharp in the case l = 2, k = 3.

In Section 2, we prove the asymptotic sharpness of Theorem 2 for every
k ≥ 2. Our recursive construction will be a k-hypertree, therefore it has some
consequences for Theorem 3. After that, we show some tools and results on 2-
hypertrees in Section 3. We also prove a refined upper bound in case of l = 2.
Finally, in Sections 4 and 5, we turn our attention to the edge number of edge-
minimal and edge-maximal hypertrees, respectively. We give lower and upper
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bounds for the edge number and show a construction for a sequence of edge-
minimal hypertrees with asymptotically as many edges as the conjectured sharp
upper bound.

2. Asymptotic Sharpness of the Upper Bound of Theorem 2

Theorem 4. For every k ≥ 2, there exists an infinite sequence of k-uniform
hypertrees Hk

i with ni vertices and ei edges such that {ni} is strictly increasing

and ei is asymptotically
(

ni

k−1

)
.

Theorem 4 implies that the bound of Theorem 2 is asymptotically sharp for
all k ≥ 2. We call a 1-uniform hypergraph with vertex set {x1, x2, . . . , xn−1},
n ≥ 3 and edge set {2 · {x1}, {x2}, . . . , {xn−1}} (the multiplicity of the first edge
is 2) a 1-uniform semicycle of length n.

Proof of Theorem 4. The proof is divided into two lemmata. Lemma 5 states
that one can partition the set of (k − 1)-subsets of n into a few number of par-
tition classes such that no class contains a short semicycle. The second lemma
constructs a suitable chain-connected hypergraph from that partition, which con-
tains neither short nor long semicycles.

Lemma 5. Let m ≥ 0, k ≥ 2 be positive integers and n = 2m be such that n ≥
k− 1. Then there exists a partition of the set

( [n]
k−1

)
to F (n, k− 1) ≤ (log n)k−2 =

mk−2 classes such that every class covers [n] and contains no semicycle of length

at most k (here and henceforth, log means log2).

Proof. We define the desired partition by a recursive construction. Let Qn,k−1 =

(Q1
n,k−1, Q

2
n,k−1, . . . , Q

F (n,k−1)
n,k−1 ) denote the partition corresponding to

( [n]
k−1

)
, where

Qi
n,k−1 ⊆

( [n]
k−1

)
are the partition classes of Qn,k−1.

If k = 2, then the partition has one class, Q1
n,1 =

(
[n]
1

)
. In this case F (n, 1) =

1 = (log n)0, Q1
n,1 covers [n] and contains no semicycle of length at most 2 (a

semicycle must have at least 3 edges even if the hypergraph is 1-uniform).
If k ≥ 3 and n = k−1, then the partition has also one class, Q1

k−1,k−1 = {[n]}.

The statement of the theorem holds: F (k−1, k−1) = 1 ≤ (log(k−1))k−2 because
k − 1 ≥ 2, Q1

k−1,k−1 covers [n] and contains no semicycle at all.
We define Qn,k−1 to be the empty set if 1 ≤ n < k− 1. In this case F (n, k−

1) = 0 ≤ (log n)k−2. In any other case (2 < k ≤ n = 2m), assume that Qn′,k′−1 is
defined for all k′ < k and n′ or k′ = k and n′ < n, where n′ is a power of 2.

We split [n] into two parts, V1 and V2, each of size n/2. By induction, for
every 1 ≤ λ ≤ k− 1, there exist the appropriate partitions Q1

n/2,λ =
{
Q1,1

n/2,λ, . . . ,

Q
1,F (n/2,λ)
n/2,λ

}
and Q2

n/2,λ =
{
Q2,1

n/2,λ, . . . , Q
2,F (n/2,λ)
n/2,λ

}
of V1 and V2, respectively.
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Let Q∗
n,k−1 =

{
Q1,1

n/2,k−1 ∪ Q2,1
n/2,k−1, Q

1,2
n/2,k−1 ∪ Q2,2

n/2,k−1, . . . , Q
1,F (n/2,k−1)
n/2,k−1 ∪

Q
2,F (n/2,k−1)
n/2,k−1

}
(if n/2 < k − 1, then Q∗

n,k−1 = ∅) and Qλ
n,k−1 =

{
Q1,i

n/2,λ ×

Q2,j
n/2,k−1−λ : 1 ≤ i ≤ F (n/2, λ), 1 ≤ j ≤ F (n/2, k − 1 − λ)

}
, where A × B

denotes {a ∪ b : a ∈ A, b ∈ B} for convenience.

We define Qn,k−1 = Q∗
n,k−1 ∪

(
⋃k−2

λ=1Q
λ
n,k−1

)

. We show that Qn,k−1 meets

the conditions of the theorem. First, we show that Qn,k−1 is a partition of
( [n]
k−1

)
.

The classes of Qn,k−1 are disjoint.

If Q1, Q2 are two partition classes, e ∈ Q1 ∩ Q2, |e ∩ V1| = λ and 0 < λ <
k − 1, then Q1, Q2 ∈ Qλ

n,k−1 and there exist i1, i2, j1, j2 such that Q1 = Q1,i1
n/2,λ ×

Q2,j1
n/2,k−1−λ, Q2 = Q1,i2

n/2,λ × Q2,j2
n/2,k−1−λ. It means that e ∩ V1 ∈ Q1,i1

n/2,λ, Q
1,i2
n/2,λ,

e ∩ V2 ∈ Q2,j1
n/2,k−1−λ, Q

2,j2
n/2,k−1−λ, hence i1 = i2 and j1 = j2 because Q1

n/2,λ and

Q2
n/2,k−1−λ were partitions by induction. Thus Q1 = Q2.

If |e ∩ V1| = k − 1, then Q1, Q2 ∈ Q∗
n,k−1 and there exist i, j such that Q1 =

Q1,i
n/2,k−1 ∪Q2,i

n/2,k−1, Q2 = Q1,j
n/2,k−1 ∪Q2,j

n/2,k−1. It implies e ∈ Q1,i
n/2,k−1, Q

1,j
n/2,k−1

and so i = j because Q1
n/2,k−1 was a partition. Thus Q1 = Q2. The case

|e ∩ V1| = 0 is similar.

Every edge e is contained in a partition class.

Let e1 = e ∩ V1, e2 = e ∩ V2. If |e1| = λ and 0 < λ < k − 1, then there
exist classes Q1,i

n/2,λ ∈ Q1
n/2,λ and Q2,j

n/2,k−1−λ ∈ Q2
n/2,k−1−λ such that e1 ∈ Q1,i

n/2,λ

and e2 ∈ Q2,j
n/2,k−1−λ because Q1

n/2,λ and Q2
n/2,k−1−λ were partitions. Therefore,

e ∈ Q1,i
n/2,λ ×Q2,j

n/2,k−1−λ ∈ Qλ
n,k−1.

If |e1| = k − 1, then e1 ∈ Q1,i
n/2,k−1 for some index i because Q1

n/2,k−1 was a

partition. Hence, e1 ∈ Q1,i
n/2,k−1∪Q2,i

n/2,k−1 ∈ Q∗
n,k−1. The case |e1| = 0 is similar.

Let us continue with F (n, k − 1) = |Qn,k−1| ≤ (log n)k−2.

|Qn,k−1| = |Q∗
n,k−1|+

∑k−2

λ=1
|Qλ

n,k−1|

= F (n/2, k − 1) +
∑k−2

λ=1
F (n/2, λ)F (n/2, k − 1− λ).

By induction, this is at most

(log n/2)k−2 +
∑k−2

λ=1
(log n/2)λ−1(log n/2)k−λ−2

= (log n/2)k−2 + (k − 2)(log n/2)k−3

≤
∑k−2

i=0

(
k − 2

i

)

(log n/2)i ≤ (log n/2 + 1)k−2 ≤ (log n)k−2.
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Every class of Q1
n/2,λ and Q2

n/2,λ covers V1 and V2 respectively, so every class

Q of Qn,k−1 covers [n] either Q ∈ Q∗
n,k−1 or Q ∈ Qλ

n,k−1.

Finally, we show that there is no class Q of Qn,k−1 containing a semicycle of
length at most k.

By the induction hypothesis, Q∗
n,k−1 does not contain such semicycle. Sup-

pose that there is a short semicycle C in some Q ∈ Qλ
n,k−1. We can assume that

C is non-self-intersecting (if there is a self-intersecting semicycle in a hypergraph,
then there is a shorter non-self-intersecting one) and the first vertex of C is in
V1. Project all of the edges of C to V1, delete the multiple edges, and denote the
λ-uniform hypergraph obtained in this way by C ′.

It is easy to see that C ′ would be a λ-uniform, non-self-intersecting semicycle.
Let v1, . . . , vl be the vertices of C in the natural order (i.e., every k−1 consecutive
vertices form an edge of C and v1 = vl) and let ui denote the ith vertex in this
sequence that comes from V1. Now, V (C ′) = {u1, u2, . . . , ul′}, where u1 = v1 =
vl = ul′ . It is enough to show that E(C ′) = {{ui, ui+1, . . . , ui+λ−1} : 1 ≤ i ≤
l′ − λ+1}. Obviously, e∩ V1 is of the form {ui, ui+1, . . . , ui+λ−1}, for every edge
e of C. Every two consecutive edges of C differ in only one vertex, hence this is
true for the edges of C ′. It proves our claim. C ′ is non-self intersecting, because
C is non-self-intersecting.

The union of the first and last edges of C covers all of its vertices because C
is a (k−1)-uniform semicycle of length at most k. This also holds for C ′, and due
to the non-self-intersecting property, the length of C ′ is at most λ + 1, which is
a contradiction because C ′ is a subhypergraph of Q1,i

n/2,λ for some i, and it could
not contain a semicycle of length at most λ+ 1.

Lemma 6. Let l = F (n, k − 1), n,m, k and Qn,k−1 = {Q1, Q2, . . . , Ql} be as in

Lemma 5, and let Fn,k = (Un,k,Dn,k) be a hypertree, where Un,k = {q1, q2, . . . , ql}

and [n] are disjoint sets. Furthermore, let Vn,k = [n] ∪ Un,k and En,k =
⋃l

i=1{e ∪
{qi} : e ∈ Qi} ∪ Dn,k. Then the hypergraph Hn,k = (Vn,k, En,k) is a k-uniform
hypertree.

The set Un,k can be understood as a set of labels for the partition classes. We
construct En,k by labeling the edges of Qn,k−1 with a label from Un,k, recording
the class the edge belongs to.

Proof. (1) Chain-connectedness.

Let u, v ∈ Un,k be distinct vertices. Then they are connected by a chain
because Fn,k is a hypertree.

If u, v ∈ [n] and k − 1 ≥ 2, then there exists a (k − 1)-set e ⊆ [n] containing
them. This set is in Qi for some i, so e ∪ {qi} is a chain of length 1 of Hn,k

between u and v.
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If u, v ∈ [n] and k − 1 = 1, then {u}, {v} ∈ Q1, so uq1v is a chain between
the two vertices.

In the case of u ∈ [n] and v = qi, there exists an edge e ∈ Qi such that u ∈ e
because Qi covers [n]. Hence, u and v are connected by the edge e ∪ {qi}.

(2) Semicycle-freeness.

Assume to the contrary that Hn,k contains a semicycle denoted by C. An
edge from Fn,k cannot be an edge of C because otherwise C would lie entirely in
Fn,k in contradiction with the hypertree property. Now, every edge of C contains
exactly one vertex from Un,k. Let qi denote such a vertex in the first edge. If the
second edge contains qj , where j 6= i, then the intersection with the first edge is of
size at most k− 2 (because these edges cannot be identical without qi, otherwise
they would correspond to the same partition class), which is a contradiction. By
induction, this implies that every edge of C contains qi. This means that the
length of C is at most k. The (k − 1)-uniform subhypergraph C ′ obtained from
C by removing qi is clearly a semicycle of length at most k in Qi (qi cannot be
the initial vertex of C), which is impossible according to Lemma 5.

Now, let Hk
i = H2i,k = (V2i,k, E2i,k), ni = |V2i,k| and ei = |E2i,k|. Then

ni = 2i+F (2i, k− 1) and ei =
(

2i

k−1

)
+ |Dn,k|. By Theorem 2, F (2i, k− 1) ≤ ik−2

and ei ≥
(

2i

k−1

)
implies that ei is asymptotically

(
ni

k−1

)
.

We remark that Hk
i is a k-hypertree: Hk

i contains no chain of length at least
k + 1, since the edges of any chain in Hk

i have a vertex in common. This proves
the asymptotic sharpness of Theorem 3 for l = k. It means that excluding long
chains (of length at least k+1) has no effect on the asymptotic behaviour of the
maximal edge number.

For k = 2, Hk
i is a star, while for k = 3, we get back B(F), the construction

of Theorem 31 from [6], where F = Fn,3 of our Lemma 6.

3. Results on 2-Hypertrees

Theorem 3 gives an upper bound for the number of edges of l-hypertrees which
is conjectured to be sharp in asymptotic sense. In the following, we discuss 2-
hypertrees and a corresponding equation called star-equation, which is based on
the star-decomposition of 2-hypertrees.

The k-uniform hypergraph Sn of order n is a (tight) star if n ≥ k, and all of
the edges contain k− 1 fixed vertices u1, u2, . . . , uk−1. We call {u1, u2, . . . , uk−1}
the kernel of the star. It is easy to see that every star is an edge-minimal 2-
hypertree with n− k + 1 edges.



266 P.G.N. Szabó

Lemma 7 (Star-decomposition). If H = (V, E) is a k-uniform 2-hypertree, then
any two distinct maximal stars of H are edge-disjoint.

Proof. Let C1 = (V1, E1) and C2 = (V2, E2) be two distinct maximal stars of H.
It means that C1 (and similarly C2) is a subhypergraph of H, which is a star, and
any star which contains C1 as a subhypergraph is identical to C1.

Assume to the contrary that these two stars share an edge e. There exist
edges e1 ∈ E1 and e2 ∈ E2, both distinct from e, otherwise, one star would contain
the other. By the definition of star, |e ∩ e1| = |e ∩ e2| = k − 1. The kernels of C1
and C2 are e∩ e1 and e∩ e2, respectively. A maximal star is uniquely determined
by its kernel, so e ∩ e1 6= e ∩ e2. However, in this case, e1, e and e2 together
form either a semicycle of length 3 or a path of length 3 (depending on whether
e1\e = e2\e or not), which is a contradiction.

Corollary 8. If H = (V, E) is a k-uniform 2-hypertree, then there is a unique

decomposition of E into edge-disjoint maximal stars.

Proof. Every edge can be extended to a maximal star, and these stars are edge-
disjoint due to Lemma 7.

Let Ci and l denote the number of stars with i edges in the star-decomposition
and the number of uncovered (k − 1)-subsets of V , respectively.

Theorem 9 (Star-equation). If H = (V, E) is a k-uniform 2-hypertree, then

|E| =
1

k − 1

(
n

k − 1

)

−
1

k − 1

∑n−k+1

i=1
Ci −

l

k − 1
.

Proof. First, we assign a kernel to every maximal star of H. If a maximal
star has at least 2 edges, then there is a natural choice of the kernel: it is the
intersection of the edges. If a maximal star has only one edge, then we choose an
arbitrary (k − 1)-subset of the edge to be the kernel of it.

These star-kernels are pairwise distinct. If two maximal stars share the same
kernel, then we can merge them to a larger star, which is impossible due to the
maximality.

We count the (k− 1)-subsets of V . Such a subset can be either uncovered or
a star-kernel or covered, but not a star-kernel. The number of uncovered (k− 1)-
sets is l. The number of star-kernels is equal to the number of maximal stars,
which is

∑n−k+1
i=1 Ci.

Let us refer to the remaining (k− 1)-sets as non-kernels, for simplicity. Only
one edge covers a non-kernel, otherwise, it would be the kernel of a maximal star.
Every edge belongs to exactly one maximal star due to Lemma 7. Hence, every
non-kernel is a non-kernel of a uniquely determined maximal star. On the other
hand, every non-kernel of a maximal star is a non-kernel of H. So, the number
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of non-kernels is the sum of the number of non-kernels of maximal stars, which
is

∑n−k+1
i=1 (k − 1)iCi.

Summing up the three cases, we have

(
n

k − 1

)

= l +
∑n−k+1

i=1
Ci + (k − 1)

∑n−k+1

i=1
iCi.

On the other hand,
∑n−k+1

i=1 iCi = |E| because every edge belongs to exactly
one maximal star.

The star-equation shows that if a sequence of 2-hypertrees reaches the upper
bound of Theorem 3, then l +

∑
Ci must be o(nk−1), or in other words we

should cover almost all (k − 1)-sets with a relatively few number of stars. It is
an interesting open philosophical question, whether we should use a block design
type construction with almost equally-sized stars or an imbalanced construction
with some large stars as well as small ones filling the remaining gaps to reach the
asymptotic upper bound.

It turns out that one can refine the upper bound of Theorem 3 in case of
2-hypertrees with a term of order k − 2 by the help of the star-equation.

Theorem 10. If H = (V, E) is a k-uniform 2-hypertree, then |E| ≤ 1
k−1

(
n

k−1

)
−

1
(k−1)3

(
n

k−2

)
.

Proof. We use the simple fact that
∑n−k+1

i=1 Ci ≥
1

n−k+1 |E|, which follows from

|E| =
∑n−k+1

i=1 iCi and
∑n−k+1

i=1 iCi ≤ (n−k+1)
∑n−k+1

i=1 Ci. Comparing it to the
star-equation, we get

|E| ≤
1

k − 1

(
n

k − 1

)

−
1

(k − 1)(n− k + 1)
|E| −

1

k − 1
l

≤
1

k − 1

(
n

k − 1

)

−
1

(k − 1)(n− k + 1)
|E|,

≤
1

k − 1

(
n

k − 1

)

−
1

(k − 1)2(n− k + 1)

(
n

k − 1

)

≤
1

k − 1

(
n

k − 1

)

−
1

(k − 1)2(n− k + 2)

(
n

k − 1

)

=
1

k − 1

(
n

k − 1

)

−
1

(k − 1)3

(
n

k − 2

)

.

Theorem 10 shows that in case of l = 2 the bound of Theorem 3 cannot be
a tight, hence further improvements of the upper bound is needed. This is likely
to be true for greater values of l as well.
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A t-(n, k, λ) design, in our terminology, is a k-uniform hypergraph on n ver-
tices, where every t-element subset of vertices is contained in exactly λ edges.
Though, no general way is known to decide whether a block design exists for a
certain combination of parameters, the size of the design can be easily determined
by its parameters: a t-(n, k, λ) design has exactly λ

(kt)

(
n
t

)
edges. An S(k− 1, k, n)

Steiner system is a (k − 1)-(n, k, 1) design.
It is easy to see that every S(k − 1, k, n) Steiner system is a k-uniform 1-

hypertree, if k > 2: every (k−1)-subset of V is contained in exactly 1 edge, which
ensures chain-connectedness (k > 2 is needed here) and makes chains of length
at least 2 impossible. These hypertrees have 1

k

(
n

k−1

)
edges by the above formula.

Because every 1-hypertree is in fact a 2-hypertree, the existence of infinitely many
S(k − 1, k, n) Steiner system for a fixed k implies the existence of a sequence
of k-uniform 2-hypertrees with asymptotically 1

k

(
n

k−1

)
edges. Fortunately, this

existence theorem was proved by Hanani for k = 4 in 1960 [4], and by Keevash
in general in 2014 [7]. The bound 1

k

(
n

k−1

)
is called the trivial lower bound for

the edge number of k-uniform 2-hypertrees and will be improved for k = 4 by
our forthcoming construction. Notice that it is already really close to the upper
bound of Theorem 3 obtained in [6]. The fact that it counts as the “trivial”
lower bound from our viewpoint shows the difficulty of the topic very well. If we
want to know everything about hypertrees, we have to know everything about
balanced incomplete block designs, which is known to be a challenging research
area with long history.

Now, we show a general method to construct a k-uniform 2-hypertree with
high edge number from a given S(k− 1, k, n) Steiner system. We will apply it in
Theorem 13 in order to improve the trivial lower bound in the 4-uniform case.

Let H = (V, E) and G = (V,F) be a k-uniform and a (k − 1)-uniform hyper-
graph, respectively, on the same vertex set. We say that H is an extension of G
if every edge of H contains an edge of G.

The edge e ∈ E is an extension of f ∈ F (equivalently, f is a kernel of e) if
f ⊂ e. We say that f1 and f2 are mutually extended edges if |f1 ∩ f2| = k − 3,
and there exist v1 ∈ f1 and v2 ∈ f2 such that f1 ∪ {v2} ∈ E and f2 ∪ {v1} ∈ E .

Lemma 11 (Extension). If G = (V,F) is an S(k−2, k−1, n) Steiner system, and

H = (V, E) is a chain-connected extension of G that does not contain mutually

extended edges, then H is a k-uniform 2-hypertree.

Proof. H is chain-connected by assumption. It is enough to show that H does
not contain a semicycle of length 3 nor a chain of length 3 (a semicycle or a chain
of length at least 4 contains a chain of length 3).

First, we note that every edge e of H has a unique kernel. If f1, f2 ∈ F are
two distinct kernels of e, then |f1 ∩ f2| = k − 2, which contradicts the definition
of F .
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We claim that if two edges of H, say e1 and e2, intersect in a set of size k−1,
then the intersection will be a kernel. There certainly exist f1, f2 ∈ F such that
f1 ⊂ e1 and f2 ⊂ e2 because H is an extension of G. If f1, f2 6= e1∩e2, then there
exist vertices u1 ∈ (e1 ∩ e2)\f1 and u2 ∈ (e1 ∩ e2)\f2. Clearly, f1 ∪ {u1} = e1
and f2 ∪ {u2} = e2. Actually, u1 ∈ f2, otherwise f2 = e2\{u1}, and so f1 ∩ f2 =
(e1 ∩ e2)\{u1} is a set of size (k − 2), which contradicts the properties of G.
Similarly, u2 ∈ f1 and f1 ∩ f2 = (e1 ∩ e2)\{u1, u2}, thus |f1 ∩ f2| = k − 3. In
fact, we have just proved that f1 and f2 are mutually extended kernels, which is
a contradiction.

Finally, if P is a chain or a semicycle of length 3 of H with edges e1, e2 and
e3, then f1 = e1 ∩ e2 and f2 = e2 ∩ e3 would be kernels intersecting each other in
a set of size k − 2, which is impossible.

The simplest method to build an extension of a given S(k − 2, k − 1, n)
Steiner system is the ordered extension, where the vertex set is ordered linearly,
and every edge is extended with vertices that are greater than the greatest vertex
in the original edge. We must mention though that other, non-ordered extension
methods may yield better constructions.

We indicate the ordering of the vertices by a permutation. We want to
emphasize that the following construction works with every permutation, but it
is not irrelevant which one have been chosen because it can strongly affect the
number of edges.

Lemma 12 (Ordered extension). Let G = (V,F) be as in Lemma 11, |V | = n and

(v1, v2, . . . , vn) be a permutation of the vertices such that {v1, v2, . . . , vk−1} ∈ F .

Furthermore let

• Fi = {e ∈ F : e ⊆ {v1, v2, . . . , vi}, vi ∈ e}, for i = 1, 2, . . . , n;

• Ei = {f ∪ {vj} : f ∈ Fi, j > i}, for i = k − 1, k, . . . , n− 1 and E =
⋃n−1

i=k−1 Ei.

Then H = (V, E) is a k-uniform 2-hypertree.

Proof. We will check that the assumptions of Lemma 11 are satisfied. We note
that Fi = ∅ if i < k − 1, Fk−1 = {{v1, v2, . . . , vk−1}} and F =

⋃n
i=k−1Fi.

First, we show that H is an extension of G. Assume to the contrary that
f1, f2 ∈ F are mutually extended edges, u1 ∈ f1, u2 ∈ f2 such that e1 = f1 ∪
{u2} ∈ E and e2 = f2 ∪ {u1} ∈ E . By the definition of E , there exist indices
k − 1 ≤ i, j ≤ n − 1 such that e1 ∈ Ei, e2 ∈ Ej , and so there are g1 ∈ Fi and
g2 ∈ Fj such that g1 ⊂ e1 and g2 ⊂ e2. But now g1 = f1 and g2 = f2 because
every edge of H has a unique kernel. Without loss of generality, we can assume
that i ≤ j. If u1 = vl for some 1 ≤ l ≤ n, then l > j comes from e2 ∈ Ej
and f2 = g2. However, u1 ∈ f1 and f1 = g1 ∈ Fi implies l ≤ i, which is a
contradiction.
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Now, we show chain-connectedness of H. Let {v1, v2, . . . , vk−1} = f∗ and
el = f∗ ∪ {vl}, for l = k, k+ 1, . . . , n. Then E∗ = {el : l ≥ k} is a subset of E and
forms a k-uniform star on V , hence H is chain connected.

Finally, we can apply Lemma 11 to finish the proof.

Now, we show our the best construction for 4-uniform 2-hypertrees.

Theorem 13. There exists a sequence of 4-uniform 2-hypertrees with asymptotic

edge number 2
7

(
n
3

)
.

Proof. We use a well-known construction for Steiner triple systems. Let n =
2m−1, V = {v1, . . . , vn} and Vj = {vi : 2

j ≤ i ≤ 2j+1−1}, for j = 0, 1, . . . ,m−1.
Obviously, V =

⋃m−1
j=0 Vj and |Vj | = nj = 2j .

We can find 2j−1 edge-disjoint perfect matchings on Vj denoted by M1
j ,M

2
j ,

. . . ,M
nj−1
j . Let Est =

⋃m−1
j=1

⋃nj−1
i=1

⋃

P∈M i
j
{P ∪ {vi}} and Fst = (V, Est). Now,

Fst is a Steiner triple system for every fixed m.

We use Lemma 12 with G = Fst and vertex sequence {v1, v2, . . . , vn} to obtain
a 4-uniform 2-hypertree H = (V, E).

|E| =
∑n−1

i=3 |Ei| =
∑n−1

i=3 |Fi|(n − i) =
∑m−1

j=1

∑2j+1−1
i=2j (i − 2j)(2m − 1 − i) ∼

∑m−1
j=0

∑2j+1

i=2j (i− 2j)(2m − i) ∼
∑m−1

j=0

∑2j

i=0 i(2
m − 2j − i) ∼

∑m−1
j=0

∑2j

i=0(−i2 +

i(2m − 2j)) ∼
∑m−1

j=0

(
−1

32
3j + 1

22
m22j − 1

22
3j
)

∼
∑m−1

j=0

(
−5

62
3j + 1

22
m22j

)
∼

−5
6
8m

7 + 1
22

m 4m

3 ∼ 1
218

m ∼ 2
7

(
n
3

)
.

We note that the extension process can be used to reach the optimal asymp-
totic bound in the 3-uniform case. For the detailed construction we refer to
Section 5.

4. Edge-Minimal Hypertrees

In this section we turn our attention to the edge-minimal hypertrees. We concen-
trate on the upper bounds of the edge number and give an interesting construction
for a sequence of edge-minimal hypertrees with asymptotic edge number 1

k−1

(
n
2

)
.

Based on that construction, we establish a conjecture about the asymptotic upper
bound on the maximal number of edges. Finally, we show that any asymptotic
upper bound of the form α

(
n
2

)
is indeed an upper bound for every n.

Before we continue, we remark that an edge-minimal hypertree has at least
n − k + 1 edges if n ≥ (k − 1)2, and this bound is tight. This is a simple
consequence of Theorem 1 and the fact that every non-self-intersecting chain is
an edge-minimal hypertree.
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Theorem 14. There exists an infinite sequence {Hm} of k-uniform edge-minimal

hypertrees with nm vertices and em edges such that {nm} is strictly increasing and

em is asymptotically 1
k−1

(
nm

2

)
.

Proof. Let m be a positive integer divisible by k− 1, k ≥ 3 and Hm = (Vm, Em)
be the k-uniform hypergraph defined as follows. Let Vm = {vij : 1 ≤ i ≤ l+1, 1 ≤
j ≤ m}, where l =

(
m−1
k−2

)
, and let n = (l + 1)m. Vm can be understood as an

(l + 1)×m grid of vertices.

Since m is divisible by k − 1, by Baranyai’s theorem [1], there exists a 1-

factorisation of the (k−1)-uniform complete hypergraph K
(k−1)
m on the set [m] =

{1, . . . ,m} into l partitions. Let B1, B2, . . . , Bl denote these partitions. So, we

know that for all r 6= s, |Br| =
m
k−1 , Br ∩Bs = ∅ and

⋃l
i=1Bi =

( [m]
k−1

)
.

Let Hm be the hypergraph whose edges are all of the k-sets of the form
{vij , vrs1 , vrs2 , . . . , vrsk−1

}, where 1 ≤ j ≤ m, 1 ≤ i ≤ l, i < r ≤ l + 1 and
{s1, s2, . . . , sk−1} ∈ Bi. We can imagine this such that for every i, 1 ≤ i ≤ l, a
partition (namely Bi) is assigned to row i. Projecting this partition onto every
row with index greater than i, each (k − 1)-set obtained in this way forms an
edge with each vertex of row i.

B1

B2

B3

Figure 1. The rows of the 3-uniform hypergraph H4 with the matchings assigned to them.

First we show that Hm is an edge-minimal hypertree. Actually, a stronger
result can be proven.

Lemma 15. Hm is an edge-minimal 2-hypertree.

Proof. Hm is obviously a k-uniform hypergraph. It is enough to show that it is
chain-connected, semicycle-free, edge-minimal and 2-hypertree.

(1) Chain-connectedness.

Let vij , vrs ∈ Vm be vertices from different rows, where i < r. Since Bi is a
partition of [m], there exist indices s2, . . . , sk−1 6= s such that {s, s2, . . . , sk−1} ∈
Bi. Now, {vij , vrs, vrs2 , . . . , vrsk−1

} ∈ Em by definition, so vij and vrs are con-
nected by a chain of length 1. We have to show chain-connectedness of distinct
vertices in the same row. Let vij1 , vij2 be such vertices.



272 P.G.N. Szabó

If i < l+1, then choosing an arbitrary (k− 1)-set {s1, s2, . . . , sk−1} from Bi,
{vij1 , vi+1,s1 , . . . , vi+1,sk−1

}, {vij2 , vi+1,s1 , . . . , vi+1,sk−1
} ∈ Em, thus vij1 and vij2

are connected by a chain of length 2.

If i = l + 1, then there exists a partition Br which has an edge T =
{s1, s2, . . . , sk−1} containing the pair {j1, j2}, due to

⋃l
q=1Bq =

( [m]
k−1

)
. Hence, by

definition, {vrs, vis1 , . . . , visk−1
} ∈ Em for an arbitrary index s, namely vij1 and

vij2 are connected by a chain of length 1.

(2) Semicycle-freeness and freeness of chains of length 3.

Let us notice the simple fact that for any two vertices vij and vrs from
different rows, there is exactly one edge that contains both of them. For example,
if i < r, then all suitable edges are of the form {vij , vrs, vrs2 , . . . , vrsk−1

}, where
T = {s, s2, . . . , sk−1} ∈ Bi, and such a T is uniquely determined (exactly 1
partition class contains s).

From this observation follows that if e = {vij , vrs1 , vrs2 , . . . , vrsk−1
} is an edge

of a chain of length 3 in Hm, then this is the last edge of it. If it does not hold,
then there would be two different edges that intersect e in distinct (k − 1)-sets,
but at least one of these edges has to contain two vertices of e from different rows,
(here we use k ≥ 3). This is impossible since we have seen that only one edge can
contain such pair. The same is true for semicycles instead of chains (however, keep
in mind that in a semicycle the first and last vertices are identified). So, every
chain or semicycle has at most two edges (the first and last edges). Therefore,
there is no chain of length at least 3 or semicycle of any length in Hm because
even the shortest semicycle consists of 3 edges.

(3) Edge-minimality.

Let us delete an arbitrary edge e = {vij , vrs1 , . . . , vrsk−1
} from Hm. Note that

i < r by the definition of the edge-set. We show that the pairs {vij , vrsh} become
chain-disconnected, for all 1 ≤ h ≤ k − 1. It was shown above that at most one
edge contains vij and vrsh together, and e was that edge. Therefore they cannot
be connected by a chain of length one. Part (2) of the proof implies that only a
chain of length 2 could connect them. Write down the row indices of its vertices
in the natural sequence. This sequence is of the form i, p, . . . , p

︸ ︷︷ ︸

k−1

, r, where i, r < p.

It means that there is a (k − 1)-subset of the pth row that forms two edges
with two vertices from different rows. This is impossible because Bi ∩ Br = ∅.
Thus, one cannot connect vij and vrsh without using the edge e.

Now, since |Vm| = n = m(l+1), the number of edges is |Em| = |{edges of row
l}|+ |{edges of row (l− 1)}|+ · · ·+ |{edges of the first row}| = m m

k−1 +2m m
k−1 +

· · · + lm m
k−1 =

(
l+1
2

)
m2

k−1 ∼ l2m2

2(k−1) ∼ n2

2(k−1) ∼ 1
k−1

(
n
2

)
, which completes the proof

of Theorem 14.
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We remark that |Em| = 1
k−1

(
n
2

)
− (l + 1)

(
1

k−1

(
m
2

))
, so the gap between the

edge number and the asymptotic bound is, roughly speaking, ((k−2)!)
1

k−1

2(k−1) n1+ 1

k−1 ,
and we miss exactly as many edges as we could have maximally placed inside
the rows of Hm. Based on this idea, one can slightly improve the construction of
Theorem 14 by compressing the rows as much as possible. That, however, does
not give as much improvement ((14 −

1√
18
)n

3

2 in 3-uniform case) as complexity to

the proof, hence we omit the details.
We also note that Theorem 14 shows that the bound of Theorem 3 is asymp-

totically sharp for l = 2 in 3-uniform case.
Next, we present our conjectured upper bound on the number of edges of

edge-minimal hypertrees, however, we only prove a weaker result. These bounds
are quite surprising because the order of magnitude does not depend on k.

Conjecture 16. For every k-uniform edge-minimal hypertree F = (V, E) on n
vertices, |E| ≤ 1

k−1

(
n
2

)
holds.

Although we conjecture that the number of edges in an edge-minimal hyper-
tree is O(n2), we only prove the easier O(n3) upper bound.

Theorem 17. For every k-uniform edge-minimal hypertree F = (V, E) on n

vertices, |E| ≤ n(n−1)(n−k+1)
2 .

Proof. Let us count the edges of F . For every pair of vertices P , there are some
edges that really take part in connecting the pair, i.e., deleting such an edge
makes the two vertices chain-disconnected. Let us denote the set of these edges
by S(P ). Then

⋃

P∈(V2)
S(P ) = E due to the edge-minimality. The set S(P ) is

certainly contained in every chain connecting the vertices of P , otherwise we could
delete an edge of S(P ) without P becoming chain-disconnected. So, |S(P )| ≤
n − (k − 1) because every chain of F is of length at most n − (k − 1). Hence,
|E| = |

⋃

P∈(V2)
S(P )| ≤

∑

P∈(V2)
|S(P )| ≤ (n− (k − 1))

(
n
2

)
.

This bound guarantees that edge-minimal hypertrees cannot have Ω
(
nk−1

)

edges. Moreover, the existing examples (such as the one in Lemma 15) suggest
that the best candidate for the asymptotically sharp upper bound is 1

k−1

(
n
2

)
.

An edge-minimal 3-uniform 1-hypertree has at most 1
3

(
n
2

)
edges, since it is a

geometric hypertree. As we can seen in Theorem 3, the bound 1
2

(
n
2

)
of Conjecture

16 is true for 3-uniform 2-hypertrees, and it is asymptotically sharp by Theorem
14. The first open question is the case of 3-uniform edge-minimal 3-hypertrees.
They cannot have more than

(
n
2

)
edges by Theorem 2, but we must actually take

advantage of the edge-minimality in order to prove Conjecture 16.
Surprisingly, both the conjectured upper bound and the bound of Theorem

17 are decreasing in k. Usually, if we let the uniformity parameter increase, the
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degree of freedom would grow with it, and there would be more structures satisfy-
ing the predefined conditions, hence one may expect an upper bound to increase
as well. This either means that these bounds are not optimal or the number of
edges follows a somewhat counterintuitive pattern.

An interesting generalisation of Theorem 17 is an upper bound on the number
of edges in k-uniform edge-minimal l-hypertrees.

Theorem 18. For every k-uniform edge-minimal l-hypertree F = (V, E) on n

vertices, |E| ≤ ln(n−1)
2 .

Proof. Analogous to the proof of Theorem 17. For every pair P of V , |S(P )| ≤ l
because F is an l-hypertree.

If l is constant, we have m = O(n2) and this upper bound is far below the
bound of Theorem 17 or Theorem 3.

In the last part of this section we show that any asymptotic upper bound
of the form α

(
n
2

)
is a real upper bound. We define the edge-ratio of a k-uniform

hypertree that has n vertices and m edges, to be m/
(
n
2

)
. In order to prove

the above statement, we show that any k-uniform edge-minimal hypertree with
edge-ratio α can be extended to an infinite sequence of k-uniform edge-minimal
hypertrees with edge-ratio α. This sequence of hypertrees can be obtained by the
following gluing construction.

Theorem 19 (Gluing of hypertrees). Let H = (V, E) be an S(2, l, n) Steiner

system (i.e., every pair of points is contained in exactly one edge and m = |E| =
(
n
2

)
/
(
l
2

)
). Let k ≥ 3, and suppose that for each Ei ∈ E, a k-uniform hypergraph

Fi = (Ei, Ei) is given.

• If for all i = 1, 2, . . . ,m, |Ei| = α
(
l
2

)
, then |

⋃m
i=1 Ei| = α

(
n
2

)
.

• If for all i = 1, 2, . . . ,m, Fi is an edge-minimal hypertree, then F = (V,
⋃m

i=1 Ei)
is also an edge-minimal hypertree.

In this case, the edge-minimal hypertree F is called the gluing of the edge-

minimal hypertrees {Fi : Ei ∈ E} along the Steiner system H.

Proof. Part 1 is obvious, since |E| =
(
n
2

)
/
(
l
2

)
, |Ei| = α

(
l
2

)
and Ei and Ej are

disjoint if i 6= j, because k ≥ 3. The proof of part 2 is elementary, hence left
to the reader. Notice that if two edges of

⋃m
i=1 Ei intersect each other in k − 1

vertices, then they must belong to the same Ei. It means that every chain or
semicycle in F is a chain or semicycle in some Fi.

Let F be a k-uniform edge-minimal hypertree on l vertices with edge-ratio α.
If H is an S(2, l, n) Steiner system, let H(F) denote a gluing of

(
n
2

)
/
(
l
2

)
identical

copies of F along H. Based on the existence theorem of Lu and Ray-Chaudhuri
from [8, 9] we know that there exists an infinite sequence H1,H2, . . . of S(2, l, n)
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Steiner systems, thus H1(F),H2(F), . . . is a sequence of k-uniform edge-minimal
hypertrees with edge-ratio α. It means that the supremum and the limit superior
of the edge-ratios of k-uniform edge-minimal hypertrees must be equal.

5. Edge-Maximal Hypertrees in 3-Uniform Case

In this section, we show a construction of 3-uniform edge-maximal hypertrees,
and conjecture that the corresponding edge number is an asymptotic lower bound
on the number of edges of 3-uniform edge-maximal hypertrees.

Theorem 20. For all n > 2 even, there exists an edge-maximal 3-uniform hy-

pertree M = (V, E) with 1
2

(
n
2

)
− 1

4n edges.

Proof. First, let us define M. Let n > 2 be an even integer and V = {vij : 1 ≤
i ≤ n/2, j = 1, 2}. The set of edges is E = {{vij , vk1, vk2} : k < i}. If v ∈ V , then
v denotes the pair of v, i.e.,

v =

{
vk2, if v = vk1,
vk1, if v = vk2.

The second step is to show that M is an edge-maximal hypertree. The chain-
connectedness and semicycle-freeness can be shown similarly as in the proof of
Theorem 15 (choose Bi = {1, 2} for all i), only edge-maximality remains.

Let h be a new edge of M. Then h is of the form {vkl, vi1, vi2}, for i > k or
{vij , vkl, vrs}, for i > k > r (the other triples are in E). If h = {vkl, vi1, vi2}, then
the sequence vilvilvklvklvil determines a semicycle in M because {vil, vkl, vkl},
{vkl, vkl, vil} ∈ E . If h = {vij , vkl, vrs}, then the sequence vijvklvrsvrsvij deter-
mines a semicycle in M because {vkl, vrs, vrs}, {vrs, vrs, vij} ∈ E . Thus, M is
edge-maximal.

The reader may easily verify that the number of edges is n(n−2)
4 = 1

2

(
n
2

)
− 1

4n,
which completes the proof.

M is an ordered extension of the 1-(n, 2, 1) block design. It is actually a
complete matching with edges {vi1, vi2}, for i = 1, 2, . . . , n/2, and if we apply
Lemma 12 with the vertex-sequence v11, v12, v21, v22, . . . , vn

2
,1, vn

2
,2, M is proved

to be a 2-hypertree, and its edge number is asymptotically the bound we have
stated in Theorem 3 in the case of l = 2 and k = 3.

Conjecture 21. Every 3-uniform edge-maximal hypertree on n vertices has at

least 1
2

(
n
2

)
−O(n) edges.

If this conjecture is true, it would be asymptotically sharp due to Theorem 20.
For greater uniformity parameters, the lower bound should probably be 1

k−1

(
n

k−1

)
,

but our evidences seems to be vague in this general case.
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We close the section with an interesting lower bound on the number of edges
of k-uniform edge-maximal hypertrees.

Theorem 22. If F = (V, E) is a k-uniform edge-maximal hypertree of order n,
then |E| ≥ 1

k(k−1)
n−k+1
n−k+2

(
n

k−1

)
.

Proof. Let T (n, k, r) be the usual hypergraph Turán number, i.e., the minimal
edge number of an r-uniform hypergraph that contains no independent set of
size k. Let µ(n) denote the minimal edge number of an edge-maximal hypertree
of order n. For every k-set s ⊂ V , s /∈ E , there exists an edge e ∈ E such
that |s ∩ e| = k − 1, otherwise F ′ = (V, E ∪ {s}) would be a hypertree too, in
contradiction with the edge-maximality. Let us form a (k−1)-uniform hypergraph
F (k−1) = (V, E(k−1)) from F by exchanging every edge by its (k − 1)-subsets.
Then k|E| ≥ |E(k−1)|, and F (k−1) contains no independent set of size k, thus
|E(k−1)| ≥ T (n, k, k − 1). Using de Caen’s lower bound on Turán numbers [3],
T (n, k, k − 1) ≥ 1

k−1
n−k+1
n−k+2

(
n

k−1

)
, so

|E| ≥
1

k
|E(k−1)| ≥

1

k(k − 1)

n− k + 1

n− k + 2

(
n

k − 1

)

.

Let us call a hypertree isolated if it is both edge-minimal and edge-maximal.
An important consequence of Theorem 22 is that there are finitely many k-
uniform isolated hypertrees if k > 4, since the edge number of an edge-minimal
hypertree is O(n3) which is asymptotically less than the Ω(nk−1) bound stated in
Theorem 22, showing that there is a considerable gap between the edge numbers
of edge-minimal and edge-maximal hypertrees. This fact has an interesting inter-
pretation: if there is given a k-uniform hypertree with k > 4, one can add a new
edge to it or delete an original edge of it without violating the hypertree property.
An isolated hypertree would be an isolated point of the poset of hypertrees where
the ordering is defined by the “subhypergraph” relation. It is an open question
that there are infinitely many isolated hypertrees in cases of k = 3 and k = 4. Of
course, in case of k = 2, every tree is isolated.

6. Open Problems

There are many interesting open problems related to hypertrees. We have men-
tioned some obvious questions in this paper such that: “What is the maximal
number of edges in a k-uniform edge-minimal hypertree of order n?” or “What is
the minimal number of edges in a k-uniform edge-maximal hypertree of order n?”.

We have stated the following two conjectures.

1. Every k-uniform edge-minimal hypertree on n vertices has at most 1
k−1

(
n
2

)

edges.
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2. Every 3-uniform edge-maximal hypertree on n vertices has at least 1
2

(
n
2

)
−

O(n) edges.

It remained an open question, too, that the upper bound of the edge number
of k-uniform l-hypertrees is asymptotically sharp or not for every fixed k and l.
We can also modify the definition of edge-minimal hypertrees slightly. Instead of
edge-minimal hypertrees, it is interesting to study edge-minimal chain-connected
hypergraphs. Similarly, we can study edge-maximal semicycle-free hypergraphs
instead of edge-maximal hypertrees.

If we allow a chain to use an edge several times, then some of our definitions
and theorems would change significantly. One can, for example, show forbidden
substructures in edge-minimal chain-connected hypergraphs.

At the end of Section 5, we introduced the isolated (simultaneously edge-
minimal and edge-maximal) hypertrees. This is a small subclass of hypertrees,
and has finite cardinality if k > 4. In case of k = 3, the cardinality is not
conjectured yet. However, if it is infinite, then our conjectures suggest that the
asymptotic edge number of this family is 1

2

(
n
2

)
.

Alexey Pokrovskiy and his research group at Freie Universität Berlin recently
showed a great interest in these open questions, and showed the author some in-
teresting constructions that might be valuable in future research of edge-minimal
hypertrees.
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