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Abstract

Let G be a graph with no isolated vertex. In this paper, we study a
parameter that is a relaxation of arguably the most important domination
parameter, namely the total domination number, γt(G). A set S of vertices
in G is a disjunctive total dominating set of G if every vertex is adjacent to
a vertex of S or has at least two vertices in S at distance 2 from it. The
disjunctive total domination number, γd

t
(G), is the minimum cardinality of

such a set. We observe that γd
t
(G) ≤ γt(G). A leaf of G is a vertex of

degree 1, while a support vertex of G is a vertex adjacent to a leaf. We
show that if T is a tree of order n with ℓ leaves and s support vertices, then
2(n−ℓ+3)/5 ≤ γd

t
(T ) ≤ (n+s−1)/2 and we characterize the families of trees

which attain these bounds. For every tree T , we show have γt(T )/γ
d
t
(T ) < 2

and this bound is asymptotically tight.
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1. Introduction

A total dominating set, abbreviated a TD-set, of a graph G with no isolated
vertex is a set S of vertices of G such that every vertex in V (G) is adjacent to at
least one vertex in S. The total domination number of G, denoted by γt(G), is
the minimum cardinality of a TD-set of G. Total domination is now well studied
in graph theory. The literature on the subject of total domination in graphs has
been surveyed and detailed in the recent book [13]. A survey of total domination
in graphs can also be found in [9].

In this paper we continue the study of disjunctive total domination in graphs,
a parameter introduced and motivated by the authors in [11, 12] as a relaxation of
total domination in graphs. As remarked in [11, 12], given the sheer scale of mod-
ern networks (see [6]), many existing domination type structures are expensive
to implement. Variations on the theme of dominating and total dominating sets
studied to date tend to focus on adding restrictions which in turn raises their
implementation costs. As an alternative route a relaxation of the domination
number, called disjunctive domination, was proposed and studied by Goddard et

al. [8]. This concept was recently extended in [11] to a relaxation of total domi-
nation, called disjunctive total domination, which allows for greater flexibility in
modeling networks where one trades off redundancy and backup capability with
resource optimization.

A set S of vertices in G is a disjunctive total dominating set, abbreviated
DTD-set, of G if every vertex is adjacent to a vertex of S or has at least two
vertices in S at distance 2 from it. For example, the set of seven darkened
vertices in the graph G shown in Figure 1 is a DTD-set of G.

Figure 1. A graph G with γd
t
(G) = 7.

We say that a vertex v ∈ V is disjunctively totally dominated, abbreviated
DT-dominated, by a set S, if v has a neighbor in S or if v is at distance 2 from
at least two vertices of S. Further, if v has a neighbor in S, we say S totally

dominates the vertex v, while if v is at distance 2 from at least two vertices of S,
we say S disjunctively dominates the vertex v. The disjunctive total domination

number, γdt (G), is the minimum cardinality of a DTD-set in G. A DTD-set of
cardinality γdt (G) is called a γdt (G)-set.
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1.1. Notation

Let G = (V,E) be a graph with vertex set V = V (G) of order n(G) = |V | and
edge set E = E(G) of size m(G) = |E|, and let v be a vertex in V . We denote
the degree of v in G by dG(v). A path on n vertices is denoted by Pn. For two
vertices u and v in a connected graph G, the distance dG(u, v) between u and
v is the length of the shortest (u, v)-path in G. The maximum distance among
all pairs of vertices of G is the diameter of G, denoted by diam(G). A graph is
nontrivial if n(G) ≥ 2. The subgraph of G induced by a set S of vertices in G is
denoted by G[S].

A rooted tree T distinguishes one vertex r called the root. For each vertex
v 6= r of T , the parent of v is the neighbor of v on the unique (r, v)-path, while
a child of v is any other neighbor of v. A descendant of v is a vertex u 6= v such
that the unique (r, u)-path contains v. Thus, every child of v is a descendant of
v. Let D(v) denote the set of descendants of v, and define D[v] = D(v) ∪ {v}.
The maximal subtree at v is the subtree of T induced by D[v], and is denoted Tv.
A leaf of T is a vertex of degree 1, while a support vertex of T is adjacent to a
leaf. A double star is a tree with exactly two vertices that are not leaves.

By a weak partition of a set we mean a partition of the set in which some
of the subsets may be empty. For our purposes we define a labeling of a tree T
as a weak partition S = (SA, SB, SC) of V (T ). We will refer to the pair (T, S)
as a labeled tree. The label or status of a vertex v, denoted sta(v), is the letter
x ∈ {A,B,C} such that v ∈ Sx.

The open neighborhood of a vertex v is the set NG(v) = {u ∈ V | uv ∈ E}
and the closed neighborhood of v is NG[v] = {v} ∪ NG(v). If the graph is clear
from the context, we write n, m, d(v), d(u, v), N(v) and N [v] rather than n(G),
m(G), dG(v), dG(u, v), NG(v), and NG[v], respectively. We use the standard
notation [k] = {1, 2, . . . , k}.

1.2. Known results

Every TD-set is a DTD-set, implying the following observation.

Observation 1 ([11]). For every graph G with no isolated vertex, γdt (G) ≤ γt(G).

The following upper bounds on the total domination number of a graph G in
terms of its order n and small minimum degree δ(G) are given by Theorem 2.

Theorem 2. Let G be a connected graph of order n. Then the following holds.

(a) ([2]) If n ≥ 3, then γt(G) ≤ 2n/3.

(b) ([10]) If n ≥ 11, then γt(G) ≤ 4n/7.

(c) ([1, 3, 14]) γt(G) ≤ n/2.
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If we restrict our attention to the class of trees, then the following lower and
upper bounds on the total domination number in terms of the number of leaves
and support vertices are shown in [4, 5].

Theorem 3 [4, 5]. If T is a tree with n ≥ 3 vertices, ℓ leaves and s support

vertices, then
n− ℓ+ 2

2
≤ γt(T ) ≤

n+ s

2
,

and these bounds are tight.

The authors show in [11] that for a connected graph G the upper bound on
γdt (G) implied by Observation 1 and Theorem 2(a) of two-thirds the order of the
graph may be improved ever-so-slightly. However, if the graph G is restricted
to minimum degree at least 2, then it is shown in [12] that the upper bound on
γdt (G) implied by Observation 1 and Theorem 2(b) may be improved significantly
to one-half the order of the graph.

Theorem 4. Let G be a connected graph of order n. Then the following holds.

(a) ([11]) If n ≥ 8, then γt(G) ≤ 2(n− 1)/3.

(b) ([12]) If n ≥ 13, then γt(G) ≤ (n− 1)/2.

The disjunctive total domination number of a path Pn on n vertices is established
in [12].

Proposition 5 [12]. For n ≥ 2, γdt (Pn) = ⌈2(n+1)/5⌉+1 if n ≡ 1(mod 5), and
γdt (Pn) = ⌈2(n+ 1)/5⌉ otherwise.

1.3. Special families of trees

We introduce here three special families of trees, and one special tree on seven
vertices.

The Family T . Let T be the minimum family of labeled trees that: (i) contains
(P4, S

∗

0) where S
∗

0 is the labeling that assigns to both support vertices of P4 status
A and both leaves status B; and (ii) is closed under the two operations O1 and
O2 that are defined below which extend the tree T ′ to a tree T by attaching a
tree to the vertex v ∈ V (T ′), called the attacher of T ′. We called the edge that
joins v to the vertex of the attached tree, the attached edge. A tree in the family
T is shown in Figure 2, where the darkened vertices have status A, the leaves
have status B, and the six vertices of degree 2 have status C.

• Operation O1. Let v be a vertex in T ′ ∈ T with sta(v) = A. The resulting
tree obtained from T ′ by adding a new vertex z1 and the edge vz1 and letting
sta(z1) = B is in T .
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• Operation O2. Let v be a vertex in T ′ ∈ T with sta(v) = B. The resulting
tree obtained from T ′ by adding a path z1z2z3z4z5 and the edge vz1 and letting
sta(v) = sta(z1) = sta(z2) = C, sta(z5) = B and sta(z3) = sta(z4) = A is in T .

Figure 2. A tree in the family T .

The Families F and H. For k ≥ 2, let Hk be the tree obtained from a star K1,k

by subdividing every edge exactly twice and let H be the family of all such trees
Hk. We note that P7 = H2 ∈ H. For k ≥ 3, let Fk be the tree obtained from Hk

by deleting an edge uv incident with the central vertex v of Hk and adding the
edge uw for some neighbor w of v different from u, and let F be the family of all
such trees Fk. Let T ∗ be the tree obtained from a star K1,3 by subdividing one
edge three times, and so T ∗ has order 7. The trees H4 ∈ H, F4 ∈ F and T ∗ are
illustrated in Figure 3(a), 3(b) and 3(c), respectively.

(a) H4 (b) F4 (c) T ∗

Figure 3. The trees H4, F4 and T ∗.

2. Main Results

Our aims in this paper are threefold. Firstly, we prove a tight lower bound for
the disjunctive total domination number of a tree in terms of its order and the
number of leaves in the tree. Further, we provide a constructive characterization
of trees that achieve equality in this bound. The key to the constructive charac-
terization is to find a labeling of the vertices that gives a minimum disjunctive
total dominating set. In particular, we have the following result, a proof of which
is given in Section 4.
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Theorem 6. If T is a nontrivial tree of order n with ℓ leaves, then γdt (T ) ≥
2(n− ℓ+ 3)/5, with equality if and only if T ∈ T .

Secondly, we prove a tight upper bound for the disjunctive total domination
number of a tree in terms of its order and the number of support vertices in the
tree. A proof of Theorem 7 is given in Section 5.

Theorem 7. If T is a tree of order n ≥ 4 with s support vertices and T 6=
P6, then γdt (T ) ≤ (n + s − 1)/2, with equality if and only if T ∈ F ∪ H ∪
{P5, P11,K1,3, T

∗}.

As an immediate consequence of Theorems 6 and 7, we have the following
result, which shows that if we restrict ourselves to the class of trees, then an ana-
logue to Theorem 3 may be proved for the disjunctive total domination number.

Corollary 8. If T is a tree of order n ≥ 7 with ℓ leaves and s support vertices,

then
2(n− ℓ+ 3)

5
≤ γdt (T ) ≤

n+ s− 1

2
,

and these bounds are tight.

For k ≥ 3, if G is obtained from a complete bipartite graph K2,k by attaching
a pendant edge to each vertex of degree 2, then γt(G) = k + 1 and γdt (G) = 3.
Moreover, if G is obtained from a complete graph Kk by attaching a pendant
edge to each vertex in the given complete graph, then γt(G) = k and γdt (G) = 2.
These examples imply that the ratio γt(G)/γdt (G) can be arbitrarily large, even
when restricted to the class of bipartite graphs or claw-free graphs or chordal
graphs. Unlike this somewhat negative result, we show that if G belongs to the
class of trees, then the ratio γt(G)/γdt (G) is bounded. More precisely, our third
aim is to prove the following result, a proof of which is presented in Section 6.

Theorem 9. For every nontrivial tree T , the ratio
γt(T )

γd
t
(T )

< 2, and this bound is

asymptotically tight.

3. Preliminary Observations

In this section, we present three preliminary observations.

Observation 10. Let T be a tree. Then the following holds.

(a) Every TD-set in T contains all the support vertices in T .
(b) If diam(T ) ≥ 3, then there is a γt(T )-set that contains no leaf of T .

Observation 11. If T is a tree and D is a DTD-set, then the following holds.

(a) Every support vertex of T is either contained in D or has at least two neigh-

bors in D.

(b) If diam(T ) ≥ 3, then there is a γdt (T )-set which contains no leaf of T .
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The following result was first observed in [11].

Observation 12 [11]. If v is a support vertex in a graph G with exactly one

neighbor w that is not a leaf, then there is a γdt (G)-set which contains v. Further,

if dG(w) = 2, then there is a γdt (G)-set which contains both v and w.

4. Proof of Theorem 6

The following observation establishes properties of trees in the family T .

Observation 13. If (T, S) ∈ T , then (T, S) has the following properties.

(a) Every support vertex in T has status A.
(b) A vertex in T is a leaf if and only if it has status B in T .
(c) Every vertex of status A has a neighbor of status A.
(d) Every vertex of status C has degree 2 in T and is either adjacent to a vertex

of status A or is at distance 2 from two vertices of status A.
(e) The set SA is a DTD-set in T .

We are now in a position to determine the disjunctive total domination num-
ber of trees in the family T .

Lemma 14. If (T, S) ∈ T has order n ≥ 4 and ℓ leaves, then γdt (T ) = |SA| =
2(n− ℓ+ 3)/5.

Proof. The proof is by induction on the number of operations k used to construct
(T, S) ∈ T . Let (T, S) ∈ T , where T is a tree of order n ≥ 4 with ℓ leaves, and
(T, S) is constructed from (P4, S

∗

0) by k ≥ 0 applications of the operations O1

and O2. If k = 0, then T = P4 and γdt (T ) = |SA| = 2 = 2(n − ℓ + 3)/5. This
establishes the base case. Suppose k ≥ 1 and assume that if (T ′, S′) ∈ T , where
T ′ is a tree of order n′ ≥ 4 with ℓ′ leaves, and (T ′, S′) is constructed using k − 1
applications of the operations O1 and O2, then γdt (T

′) = |S′

A| = 2(n′ − ℓ′ + 3)/5,
where S′

A is the set of vertices labeled A in S′. Let (T, S) ∈ T , where T is a
tree of order n ≥ 4 with ℓ leaves, and (T, S) is constructed by k applications of
the operations O1 and O2. Let (T, S) be obtained from (T ′, S′) ∈ T by applying
either operation O1 or O2. Let T ′ have order n′ ≥ 4 with ℓ′ leaves. Further, let
S = (SA, SB, SC) and S′ = (S′

A, S
′

B, S
′

C). Applying the inductive hypothesis to
(T ′, S′), the set S′

A is a γdt (T
′)-set and γdt (T

′) = |S′

A| = 2(n′ − ℓ′ + 3)/5.

Suppose firstly that (T, S) is obtained from (T ′, S′) by Operation O1. Let
v be the attacher vertex in T ′ and let vz1 be the attached edge, and so V (T ) \
V (T ′) = {z1}. In the tree T , we note that sta(v) = A and sta(z1) = B. In
particular, we note that SA = S′

A, and that n = n′ + 1 and ℓ = ℓ′ + 1. By
Observation 13(e), the set SA is a DTD-set of T , and so γdt (T ) ≤ |SA| = |S′

A| =
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γdt (T
′). By Observation 11(b), there exists a γdt (T )-set, D say, which contains

no leaf of T . In particular, z1 /∈ D, implying that D is a DTD-set in T ′. Thus,
γdt (T

′) ≤ |D| = γdt (T ). Consequently, γdt (T ) = γdt (T
′). As observed earlier,

γdt (T
′) = |S′

A| = 2(n′ − ℓ′ + 3)/5. Since |S′

A| = |SA| and n′ − ℓ′ = n − ℓ, this
implies that γdt (T ) = |SA| = 2(n− ℓ+ 3)/5.

Suppose secondly (T, S) is obtained from (T ′, S′) by Operation O2. Let v
be the attacher vertex in T ′ and let z1z2z3z4z5 be the path added to T ′, where
vz1 is the attached edge. Since sta(v) = B in the tree T ′, by Observation 13(b)
the vertex v is a leaf in T ′ and its neighbor in T ′, say v′, has status A in T ′

(which remains status A in T ). Thus, the set S′

A ∪ {z3, z4} is a DTD-set in
T , and so γdt (T ) ≤ |S′

A| + 2 = γdt (T
′) + 2. By Observation 12, there exists

a γdt (T )-set D such that D ∩ {z3, z4, z5} = {z3, z4}. If z2 ∈ D, then we can
simply replace the vertex z2 in D with the vertex v′. Hence we may choose D
so that z2 /∈ D. Analogously, we may choose D so that z1 /∈ D, implying that
the set D ∩ V (T ′) is a DTD-set of T ′ and |D ∩ V (T ′)| = |D| − 2. Therefore,
γdt (T

′) ≤ |D| − 2 = γdt (T ) − 2. Consequently, γdt (T ) = γdt (T
′) + 2. As observed

earlier, γdt (T
′) = |S′

A| = 2(n′ − ℓ′ + 3)/5. Since |S′

A| = |SA| − 2, this implies that
γdt (T ) = |S′

A| + 2 = |SA|. Further, since n′ = n − 5 and ℓ′ = ℓ, we note that
n′ − ℓ′ = n− ℓ− 5, implying that γdt (T ) = 2(n′ − ℓ′ + 3)/5 + 2 = 2(n− ℓ+ 3)/5.

We are now in a position to prove Theorem 6. Recall its statement.

Theorem 6. If T is a nontrivial tree of order n with ℓ leaves, then γdt (T ) ≥
2(n− ℓ+ 3)/5, with equality if and only if (T, S) ∈ T for some labeling S.

Proof. Let T be tree of order n ≥ 2 and with ℓ leaves. If (T, S) ∈ T for some
labeling S, then, by Lemma 14, γdt (T ) = 2(n− ℓ+ 3)/5. We prove the necessity
by induction on n ≥ 2. If n ∈ {2, 3}, then γdt (T ) = 2 > 2(n − ℓ + 3)/5. This
establishes the base cases. Suppose that n ≥ 4 and assume that if T ′ is a tree
of order n′, where 2 ≤ n′ < n, and with ℓ′ leaves, then γdt (T

′) ≥ 2(n′ − ℓ′ + 3)/5
with equality only if (T ′, S′) ∈ T for some labeling S′. Let T be a tree of order n
with ℓ leaves. If diam(T ) = 2, then T is a star and γdt (T ) = 2 > 2(n− ℓ+ 3)/5.
Hence we may assume that diam(T ) ≥ 3, for otherwise the desired result follows.

Suppose that diam(T ) = 3. Then, T is a double star. In this case, ℓ ≥ 2,
n − ℓ = 2 and γdt (T ) = 2 = 2(n − ℓ + 3)/5. Further, there exists a labeling S
of the vertices of T such that (T, S) can be obtained from (P4, S

∗

0) by ℓ − 2 ≥ 0
successive applications of Operation O1. Thus, (T, S) ∈ T for some labeling S.
Hence we may assume that diam(T ) ≥ 4, for otherwise the desired result follows.
In particular, we note that n ≥ 5.

In what follows, we shall adopt the following notation. Our aim is to prune
the tree T by deleting certain vertices of T to produce a nontrivial tree T ′ to
which we apply the inductive hypothesis. We denote the order of such a pruned
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tree T ′ by n′ and the number of leaves in T ′ by ℓ′. We let D′ denote a γdt (T
′)-

set. Further, if diam(T ′) ≥ 3, then by Observation 11(b) the set D′ is chosen
to contain no leaf of T ′. We now proceed with a series of claims that we may
assume are satisfied by the tree T , for otherwise the desired result hold.

Claim A. Every support vertex in T has exactly one leaf neighbor.

Proof. Let v be a support vertex of T that is adjacent to k ≥ 2 leaves. Let u
be a redleaf neighbor of v and let T ′ be obtained from T by removing every leaf
neighbor of v except for the leaf u. Then, n′ = n − k + 1 and ℓ′ = ℓ − k + 1.
Since diam(T ′) = diam(T ) ≥ 4, we note that n′ ≥ 5. By Observation 11(a),
either v ∈ D′ or v has at least two neighbors in D′. In both cases, the set
D′ is DTD-set in T , implying that γdt (T ) ≤ |D′| = γdt (T

′). Conversely, by
Observation 11(b), we can choose a γdt (T )-set which contains no leaf. Such a set is
a DTD-set of T ′, implying that γdt (T

′) ≤ γdt (T ). Consequently, γ
d
t (T ) = γdt (T

′) ≥
2(n′ − ℓ′ + 3)/5 = 2(n− ℓ+ 3)/5. Further, suppose that γdt (T ) = 2(n− ℓ+ 3)/5.
Then, γdt (T

′) = 2(n′ − ℓ′ + 3)/5, implying that (T ′, S′) ∈ T for some labeling S′.
By Observation 13(a), the labeling S′ assigns to the support vertex v the label
A. Let S be the labeling obtained from S′ by labeling each deleted leaf with
the label B. Then, (T, S) can be obtained from (T ′, S′) by repeated applications
of Operation O1, implying that (T, S) ∈ T . Hence, we may assume that every
support vertex is adjacent to exactly one leaf, for otherwise the desired result
follows.

We now root the tree T at a vertex r on a longest path in T . Necessarily,
r is a leaf. Let u be a vertex at maximum distance from r. Necessarily, u is a
leaf. Let v be the parent of u, let w be the parent of v, let x be the parent of
w, and let y be the parent of x. Since u is a vertex at maximum distance from
the root r, every child of v is a leaf. By Claim A, every support vertex in T has
exactly one leaf neighbor. In particular, this implies that dT (v) = 2. We state
this formally as follows.

Claim B. dT (v) = 2.

By Observation 11(b), there exists a γdt (T )-set that contains no leaf of T . Let D
be such a γdt (T )-set.

Claim C. dT (w) = 2.

Proof. Suppose that dT (w) ≥ 3. Suppose that w has a child, v′, different from
v that is not a leaf. Then, v′ is a support vertex. Since every support vertex in
T has exactly one leaf neighbor, dT (v

′) = 2. Let u′ be the leaf neighbor of v′. By
our choice of the γdt (T )-set D, we note that D ∩ {u, u′, v, v′} = {v, v′}.
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Suppose that w ∈ D. We now consider the tree T ′ = T − {u, v}. Then,
n′ = n − 2 and ℓ′ = ℓ − 1. The set D \ {v} is a DTD-set of T ′, implying that
γdt (T

′) ≤ |D| − 1 = γdt (T )− 1. Thus, γdt (T ) ≥ γdt (T
′) + 1 ≥ 2(n′ − ℓ′ +3)/5+ 1 >

2(n−ℓ+3)/5. Hence we may assume that w /∈ D, for otherwise the desired result
follows.

Since w /∈ D, at least one neighbor of w, different from both v and v′,
belongs to D. We now consider the tree T ′ = T − {u, u′, v}. Then, n′ = n − 3
and ℓ′ = ℓ − 1. The set (D \ {v, v′}) ∪ {w} is a DTD-set of T ′, implying that
γdt (T

′) ≤ |D| − 1 = γdt (T )− 1. Thus, γdt (T ) ≥ γdt (T
′) + 1 = 2(n′ − ℓ′ +3)/5+ 1 =

2(n − ℓ + 1)/5 + 1 > 2(n − ℓ + 3)/5. Hence, we may assume that every child of
w different from v is a leaf, for otherwise the desired result holds. Therefore, by
Claim A, dT (w) = 3 and the child of w different from v is a leaf. Let v′ be the
child of w different from v.

We now consider the tree T ′ = T − v′. In this case, n′ = n− 1 and ℓ′ = ℓ− 1.
By our choice of the γdt (T )-set D, we note that D ∩ {u, v, v′, w} = {v, w}. Thus
the set D is a DTD-set of T ′, implying that γdt (T ) = |D| ≥ γdt (T

′) ≥ 2(n′ − ℓ′ +
3)/5 + 1 = 2(n− ℓ+ 3)/5. Further, suppose that γdt (T ) = 2(n− ℓ+ 3)/5. Then,
γdt (T

′) = 2(n′ − ℓ′ + 3)/5, implying that (T ′, S′) ∈ T for some labeling S′. By
Observation 13(a), the labeling S′ assigns to the support vertex v the label A.
Further, by Observation 13(b) and 13(c), the labeling S′ assigns to the vertices
u and w the labels B and A, respectively. Let S be the labeling obtained from
S′ by labeling the deleted leaf v′ with the label B. Then, (T, S) can be obtained
from (T ′, S′) by applying Operation O1, implying that (T, S) ∈ T . Hence, we
may assume that dT (w) = 2, for otherwise the desired result follows.

By Claim C, dT (w) = 2. By our choice of the γdt (T )-set D, we note that
D ∩ {u, v, w} = {v, w}.

Claim D. dT (x) = 2.

Proof. Suppose that dT (x) ≥ 3. If the vertex x has a descendant u′ 6= u at
distance 3 from it, and if u′v′w′x denotes the (u′, x)-path, then u′ is a leaf and
analogous arguments as in Claims B and C show that dT (v

′) = dT (w
′) = 2. In

this case, our choice of the set D implies that D contains both v′ and w′. If the
vertex x has a descendant v′ at distance 2 from it that is a leaf, and if v′w′x
denotes the (v′, x)-path, then since D contains no leaf, the set D contains the
vertex w′. If the vertex x has a child w′ that is a leaf, then either x ∈ D or D
contains at least two vertices in N(x).

We now consider the tree T ′ = T −{u, v, w}. Then, n′ = n−3 and ℓ′ = ℓ−1.
Since dT (x) ≥ 3, our earlier observations imply that the set D contains at least
one vertex in N [x] different from w. If x ∈ D, then let D∗ = (D \ {v, w}) ∪ {y}.
If x /∈ D, then let D∗ = (D \ {v, w}) ∪ {x}. In both cases, the set D∗ is a
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DTD-set of T ′, implying that γdt (T
′) ≤ |D∗| ≤ |D| − 1 = γdt (T ) − 1. Thus,

γdt (T ) ≥ γdt (T
′) + 1 ≥ 2(n′ − ℓ′ + 3)/5 + 1 > 2(n− ℓ+ 3)/5.

By Claim D, dT (x) = 2. If y = r, then T = P5 and T is the path uvwxy. In
this case, n = 5, ℓ = 2 and γdt (T ) = 3 > 2(n − ℓ + 3)/5. Hence we may assume
that y 6= r, for otherwise the desired result holds. Let z be the parent of y.

Claim E. N [y] ∩D = ∅.

Proof. Suppose that x ∈ D. Thus, D ∩ {u, v, w, x} = {v, w, x}. In this case, we
consider the tree T ′ = T − {u, v}. Then, n′ = n− 2 and ℓ′ = ℓ. Further, the set
D \ {v} is a DTD-set of T ′, implying that γdt (T

′) ≤ |D| − 1 = γdt (T ) − 1. Thus,
γdt (T ) ≥ γdt (T

′)+1 ≥ 2(n′− ℓ′+3)/5+1 > 2(n− ℓ+3)/5. Hence we may assume
that x /∈ D.

Suppose next that y ∈ D. Thus, D ∩ {u, v, w, x, y} = {v, w, y}. In this case,
we again consider the tree T ′ = T − {u, v}. As before, n′ = n − 2 and ℓ′ = ℓ.
The set (D \ {v, w}) ∪ {x} is a DTD-set of T ′, implying that γdt (T

′) ≤ |D| − 1 =
γdt (T ) − 1. Thus, γdt (T ) ≥ γdt (T

′) + 1 ≥ 2(n′ − ℓ′ + 3)/5 + 1 > 2(n − ℓ + 3)/5.
Hence we may assume that y /∈ D.

Suppose finally that some neighbor x′ of y belongs to D. By our earlier
assumptions, D ∩ {x, y} = ∅. We now consider the tree T ′ = T − {u, v, w, x}.
Then, n′ = n − 4 and ℓ′ ≤ ℓ. In this case, the set D \ {v, w} is a DTD-set of
T ′, implying that γdt (T

′) ≤ |D| − 2 = γdt (T ) − 2. Thus, γdt (T ) ≥ γdt (T
′) + 2 ≥

2(n′ − ℓ′ + 3)/5 + 2 > 2(n− ℓ+ 3)/5. Hence we may assume that N [y] ∩D = ∅,
for otherwise the desired result follows.

By Claim E, N [y] ∩D = ∅. In particular, this implies that dT (z) ≥ 2.

Claim F. dT (y) = 2.

Proof. Suppose that dT (y) ≥ 3. If the vertex y has a descendant u′ 6= u at
distance 4 from it, and if u′v′w′x′y denotes the (u′, y)-path, then u′ is a leaf and
analogous arguments as in Claims B, C and D show that dT (v

′) = dT (w
′) =

dT (x
′) = 2. By Claim E, we note that N [y] ∩ D = ∅. By our choice of the set

D which was chosen to contain no leaf of T , this implies that every leaf that is a
descendant of y is at distance 4 from y. This in turn, together with our earlier
observations, implies that every descendant of y at distance 1, 2 or 3 from y has
degree 2 in T .

Let k = dT (y)−1. By supposition, k ≥ 2. By our earlier observations, the tree
Ty can be obtained from a starK1,k by subdividing every edge exactly three times.
We now consider the tree T ′ = T−V (Ty) of order n

′ = n−4k−1 with ℓ′ ≤ ℓ−k+1
leaves. We note that n′ − ℓ′ ≥ n− ℓ− 3k − 2. Let D∗ be the restriction of D to
the tree T ′, and so D∗ = V (T ′)∩D. By our choice of the set D and by Claim E,
we note that D∗ is a DTD-set of T ′ and that |D∗| = |D| − 2k, implying that
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γdt (T
′) ≤ |D|−2k = γdt (T )−2k. Thus, γdt (T ) ≥ γdt (T

′)+2k ≥ 2(n′−ℓ′+3)/5+2k ≥
2(n− ℓ− 3k + 1)/5 + 2k = 2(n− ℓ+ 2k + 1)/5 > 2(n− ℓ+ 3)/5.

By Claim F, dT (y) = 2. As in the proof of Claim F, we now consider the
tree T ′ = T − V (Ty) = T − {u, v, w, x, y}. In this case, n′ = n− 5. If dT (z) = 2,
then ℓ′ = ℓ, while if dT (z) ≥ 3, then ℓ′ = ℓ − 1. In both cases, ℓ′ ≤ ℓ, and so
n′ − ℓ′ ≥ n− ℓ− 5. As in the proof of Claim F, we let D∗ be the restriction of D
to the tree T ′, and so D∗ = D \ {v, w}. The set D∗ is a DTD-set of T ′, implying
that γdt (T ) ≥ γdt (T

′)+2 ≥ 2(n′−ℓ′+3)/5+2 ≥ 2(n−ℓ−2)/5+2 = 2(n−ℓ+3)/5.
Further, suppose that γdt (T ) = 2(n − ℓ + 3)/5. Then, γdt (T

′) = 2(n′ − ℓ′ + 3)/5
and ℓ′ = ℓ, implying that (T ′, S′) ∈ T for some labeling S′ and that z is a leaf in
T ′. By Observation 13(b), the labeling S′ assigns to the leaf z the label B. Let S
be the labeling obtained from S′ by labeling the deleted vertices y, x, w, v and u
with the labels C, C, A, A, and B, respectively, and relabeling the vertex z with
the label C. Then, (T, S) can be obtained from (T ′, S′) by applying Operation O2

with z as the attacher of T ′, implying that (T, S) ∈ T . This completes the proof
of Theorem 6.

5. Proof of Theorem 7

In this section, we prove Theorem 7. Recall its statement.

Theorem 7. If T is a tree of order n ≥ 4 with s support vertices and T 6=
P6, then γdt (T ) ≤ (n + s − 1)/2, with equality if and only if T ∈ F ∪ H ∪
{P5, P11,K1,3, T

∗}.

Proof. Let T 6= P6 be a tree of order n ≥ 4 with s support vertices. We proceed
by induction on n. If n = 4, then T = P4 or T = K1,3. If T = P4, then
s = 2 and γdt (T ) = 2 < (n + s − 1)/2, while if T = K1,3, then s = 1 and
γdt (T ) = 2 = (n + s − 1)/2. This establishes the base case. Suppose that n ≥ 5
and assume that if T ′ 6= P6 is a tree of order n′, where 4 ≤ n′ < n, and with
s′ support vertices, then γdt (T

′) ≤ (n′ + s′ − 1)/2 with equality if and only if
T ′ ∈ F ∪H∪ {P5, P11,K1,3, T

∗}. Let T 6= P6 be a tree of order n with s support
vertices.

If diam(T ) = 2, then T is a star, s = 1, and γdt (T ) = 2 < (n + s − 1)/2. If
diam(T ) = 3, then T is a double star, s = 2, and γdt (T ) = 2 < (n + s − 1)/2.
If T is a path Pn (where recall that n ≥ 5 and P 6= P6), then as an immediate
consequence of Proposition 5, we have that γdt (T ) ≤ (n + 1)/2 with equality if
and only if T ∈ {P5, P7, P11}. Hence, recalling that P7 = H2 ∈ H, we may
assume that diam(T ) ≥ 4 and that T is not a path, for otherwise the desired
result follows. In particular, we note that n ≥ 6.

In what follows, we shall adopt the following notation. Our aim is to prune
the tree T by deleting certain vertices of T to produce a nontrivial tree T ′ 6= P6 to
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which we apply the inductive hypothesis. We denote the order of such a pruned
tree T ′ by n′ and the number of support vertices in T ′ by s′. We let D′ denote
a γdt (T

′)-set. Further, if diam(T ′) ≥ 3, then by Observation 11(b) the set D′ is
chosen to contain no leaf of T ′. If n′ ≥ 4 and T ′ 6= P6, then applying the inductive
hypothesis to T ′ we have |D′| ≤ (n′ + s′ − 1)/2. We now proceed with a series of
claims that we may assume are satisfied by the tree T , for otherwise the desired
result holds.

Claim G. Every support vertex in T has exactly one leaf neighbor.

Proof. Let v be a support vertex of T that is adjacent to k ≥ 2 leaves. Let
T ′ be obtained from T by removing all but one leaf neighbor of v. Then, n′ =
n − k + 1 and s′ = s. Since diam(T ′) = diam(T ) ≥ 4, we note that n′ ≥ 5.
By Observation 11, either v ∈ D′ or v has at least two neighbors in D′. Thus,
D′ is a DTD-set of T , and so γdt (T ) ≤ |D′| = γdt (T

′). If T ′ 6= P6, then |D′| ≤
(n′ + s′ − 1)/2, implying that γdt (T ) ≤ (n+ s− k)/2 < (n+ s− 1)/2. If T ′ = P6

and k ≥ 3, then n = k + 6, s = 2 and γdt (T ) = 4 < (k + 6)/2 = (n+ s− 1)/2. If
T ′ = P6 and k = 2, then T = T ∗ and γdt (T ) = 4 = (n+ s− 1)/2. Hence, we may
assume that every support vertex is adjacent to exactly one leaf, for otherwise
the desired result follows.

We now root the tree T at a vertex r on a longest path in T . Necessarily,
r is a leaf. Let u be a vertex at maximum distance from r. Necessarily, u is a
leaf. Let v be the parent of u, let w be the parent of v, let x be the parent of
w, and let y be the parent of x. Since u is a vertex at maximum distance from
the root r, every child of v is a leaf. By Claim G, every support vertex in T has
exactly one leaf neighbor. In particular, this implies that dT (v) = 2. We state
this formally as follows.

Claim H. dT (v) = 2.

Claim I. dT (w) = 2.

Proof. Suppose dT (w) ≥ 3. Let T ′ = T −{u, v}. Then, n′ = n−2 and s′ = s−1.
Since diam(T ′) ≥ diam(T ) − 1 ≥ 3, we note that n′ ≥ 4. The vertex w is either
a support vertex in T ′ or, by Claim G, every child of w in T is a support vertex
of degree 2. If w has a leaf neighbor in T ′, then w ∈ D′ or at least two neighbors
of w belong to D′. If w has a child, v′, of degree 2, then v′ ∈ D′ and w ∈ D′

or at least two neighbors of w different from v′ belong to D′. In both cases,
w ∈ D′ or at least two neighbors of w belong to D′. Thus the set D′ ∪ {v} is a
DTD-set of T , implying that γdt (T ) ≤ |D′| + 1 = γdt (T

′) + 1. If T ′ 6= P6, then
γdt (T ) ≤ γdt (T

′) + 1 ≤ (n′ + s′ − 1)/2 + 1 = (n + s − 2)/2 < (n + s − 1)/2. If
T ′ = P6, then either w is a support vertex in T ′ or a central vertex in T ′. In both
cases, n = 8, s = 3, and γdt (T ) = 4 < (n+ s− 1)/2.



166 M.A. Henning and V. Naicker

By Claim I, dT (w) = 2. By Observation 11(b), there exists a γdt (T )-set that
contains no leaf of T . Let D be such a γdt (T )-set. We note that D ∩ {u, v, w} =
{v, w}.

Claim J. dT (x) = 2.

Proof. Suppose that dT (x) ≥ 3. In this case, we consider the tree T ′ = T −
{u, v, w}. Then, n′ = n− 3 and s′ = s− 1. By Claim G, n′ ≥ 4. If T ′ = P6, then
either x is a support vertex in T ′ or a central vertex in T ′. In both cases, n = 9,
s = 3, and γdt (T ) = 5 < (n+ s− 1)/2. Hence we may assume that T ′ 6= P6, and
so |D′| ≤ (n′ + s′ − 1)/2. The set D′ ∪ {v, w} is a DTD-set of T , implying that
γdt (T ) ≤ |D′|+ 2 ≤ (n′ + s′ − 1)/2 + 2 = (n+ s− 1)/2.

Further, suppose that γdt (T ) = (n+ s− 1)/2. Then, γdt (T
′) = (n′+ s′− 1)/2,

implying that T ′ ∈ F∪H∪{P5, P11,K1,3, T
∗}. By Claim G, T ′ 6= K1,3. If T

′ = T ∗,
then by Claim G, the vertex x is a leaf of T , and so dT (x) = 2, a contradiction.
Hence, T ′ 6= T ∗. If T ′ = P5, then either x is a support vertex in T ′ or a central
vertex in T ′. In both cases, n = 8, s = 3, and γdt (T ) = 4 < (n + s − 1)/2. If
T ′ = P11, then either x is a support vertex in T ′ or the distance from x to a leaf
of T ′ is 2 or 3. In all three cases, n = 14, s = 3, and γdt (T ) ≤ 7 < (n+ s− 1)/2.
Therefore, we may assume that T ′ ∈ H ∪ F , for otherwise the desired result
follows.

Suppose that T ′ ∈ H. Then, T ′ = Hk for some k ≥ 2 (possibly, k = 2,
in which case T ′ = P7). Then, n = 3k + 4 and s = k + 1. Let z denote the
central vertex of T ′. Since dT (x) ≥ 3, we note that x has degree at least 2 in T ′.
Suppose that x is a support vertex of T ′. Let z′ denote the common neighbor
of x and z, and let L(T ) denote the set of leaves in T . In this case, the set
V (T ) \ (L(T ) ∪ {z, z′}) is a DTD-set of T of cardinality 2k + 1, implying that
γdt (T ) ≤ 2k + 1 < (n + s − 1)/2. Hence we may assume that either x = z or x
is a neighbor of z. If x = z, then T = Hk+1 ∈ H. If x is a neighbor of z, then
T = Fk+1 ∈ F .

Suppose finally that T ′ ∈ F . Then, T ′ = Fk for some k ≥ 3, and n = 3k + 4
and s = k + 1. Let T ′ be the tree obtained from the vertex disjoint union of k
paths P3 on three vertices, where the ith path is given by aibici for i ∈ [k], by
adding a new vertex z and joining z to a2, a3, . . . , ak and adding the edge a1a2.
Since dT (x) ≥ 3, the vertex x has degree at least 2 in T ′. Let A = {a1, a2, . . . , ak}
and let B = {b1, b2, . . . , bk}. Suppose that x ∈ B. Then, x = bi for some i ∈ [k].
In this case, then set A∪(B\{bi})∪{v, w} is a DTD-set of T of cardinality 2k+1,
implying that γdt (T ) ≤ 2k + 1 < (n + s − 1)/2. Suppose x ∈ A. If x = ai where
i ∈ {1, 2}, let R = (A \ {ai}) ∪ B ∪ {v, w}. If x = ai where i ∈ {3, . . . , k},
let R = (A \ {a2, ai}) ∪ B ∪ {v, w, z}. In both cases, R is a DTD-set of T of
cardinality 2k + 1, implying that γdt (T ) ≤ 2k + 1 < (n+ s− 1)/2. If x = z, then
T = Fk+1 ∈ H and γdt (T ) = 2(k + 1) = (n + s − 1)/2. Hence, we may assume
that dT (x) = 2, for otherwise the desired result follows.
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By Claim J, dT (x) = 2. If y = r, then T = P5, contrary to our earlier
assumption that T is not a path. Hence, y 6= r. Let z be the parent of y. Since
T is not a path, we note that n ≥ 7. We now consider the tree T ′ = T − V (Tx)
of order n′ = n − 4 ≥ 3. If n′ = 3, then T = T ∗. Hence, we may assume that
n′ ≥ 4. Suppose that T ′ = P6, and so n = 10. Since T is not a path, the
vertex y is not a leaf in T ′, and so s = 3. If y is a support vertex of T ′, then
γdt (T ) ≤ 5 < (n + s − 1)/2. If y is a central vertex of T ′, then T ′ = F3 ∈ F .
Hence we may assume that T ′ 6= P6.

If y is a leaf in T ′, then s′ = s. If y is not a leaf in T ′, then s′ = s − 1.
In both cases, s′ ≤ s. By our earlier assumptions, n′ ≥ 4 and T ′ 6= P6. Thus,
|D′| ≤ (n′ + s′ − 1)/2. The set D′ ∪ {v, w} is a DTD-set of T , implying that
γdt (T ) ≤ |D′|+ 2 = (n′ + s′ − 1)/2 + 2 ≤ (n+ s− 1)/2.

Further, suppose that γdt (T ) = (n+ s− 1)/2. Then, γdt (T
′) = (n′+ s′− 1)/2,

implying that T ′ ∈ F ∪ H ∪ {P5, P11,K1,3, T
∗}. Further, s′ = s, and so y is a

leaf in T ′. Since T is not a path, this implies that T ′ /∈ {P5, P11}. By Claim G,
T ′ 6= K1,3. If T ′ = T ∗, then n = 11, s = 3 and γdt (T ) ≤ 6 < (n + s − 1)/2.
Therefore, we may assume that T ′ ∈ H ∪ F , for otherwise the desired result
follows.

Suppose that T ′ ∈ H. Then, T ′ = Hk for some k ≥ 2. Thus, n = 3k + 5.
Since y is a leaf in T ′ but not in T , we note that s = k. Further, we note that
since T is not a path, necessarily k ≥ 3. Let A be the set of neighbors of the
central vertex of T ′, and let B be the set of support vertices of T ′. Let b be the
neighbor of y in T ′. Then the set A ∪ (B \ {b}) ∪ {v, w} is a DTD-set of T of
cardinality 2k + 1, implying that γdt (T ) ≤ 2k + 1 < (n+ s− 1)/2.

Suppose finally that T ′ ∈ F . Then, T ′ = Fk for some k ≥ 3, and n = 3k + 5
and s = k. We adopt the notation for T ′ described in the last paragraph of
the proof of Claim J. As before, we define A = {a1, a2, . . . , ak} and let B =
{b1, b2, . . . , bk}. If y = ci where i ∈ {1, 2}, let R = A∪(B\{bi})∪{v, w}. If y = ci
where i ∈ {3, . . . , k}, let R = (A\{a2})∪(B \{bi})∪{v, w, z}. In both cases, R is
a DTD-set of T of cardinality 2k+1, implying that γdt (T ) ≤ 2k+1 < (n+s−1)/2.
This completes the proof of Theorem 7.

6. Proof of Theorem 9

In this section, we present a proof of Theorem 9. The following result shows
that the total domination of a tree is strictly less than twice its disjunctive total
domination number.

Theorem 15. If T is a nontrivial tree, then γt(T ) < 2γdt (T ).

Proof. We proceed by induction on the order n ≥ 2 of a tree. This base cases
when n ∈ {2, 3} are trivially true. Suppose that n ≥ 4 and assume that if T ′
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is a nontrivial tree of order less than n, then γt(T
′) < 2γdt (T

′). Let T be a tree
of order n. Let D denote a γdt (T )-set. If γdt (T ) = 2, then γt(T ) = 2. Suppose
that γdt (T ) = 3 and let D = {v1, v2, v3}. Suppose that D is not a TD-set in T .
Renaming vertices of D, if necessary, we may assume that v1 is isolated in T [D].
Since D is a DTD-set of T , the vertex v1 is at distance 2 from both v2 and v3.
If the common neighbor of v1 and v2 is different from the common neighbor of
v1 and v3, then d(v2, v3) = 4 and neither v2 nor v3 is DT-dominated by D, a
contradiction. Hence, v1, v2 and v3 are all adjacent to a common vertex, which
when added to the set D forms a TD-set of T , implying that γt(T ) ≤ 4 < 2γdt (T ).
Therefore, we may assume that γdt (T ) ≥ 4, for otherwise the desired result follows.
If diam(T ) ≤ 3, then γdt (T ) = 2, a contradiction. Hence, diam(T ) ≥ 4. Thus, by
Observation 11(b), the set D is chosen to contain no leaf of T .

Our aim in what follows is to prune the tree T by deleting certain vertices
of T to produce a nontrivial tree T ′ to which we apply the inductive hypothesis
to show that γt(T

′) < 2γdt (T
′). Let S′ be a γt(T

′)-set. We now proceed with a
series of claims that we may assume are satisfied by the tree T , for otherwise the
desired result holds.

Claim K. Every support vertex in T has exactly one leaf neighbor.

Proof. Let v be a support vertex of T that is adjacent to at least two leaves.
Let u be a leaf neighbor of v and let T ′ = T − u. Since diam(T ′) = diam(T ) ≥ 4,
by Observation 10(b) there exists a γt(T

′)-set, S′, that contains no leaf of T . By
Observation 10(a), the support vertex v ∈ S′. Thus, S′ is a TD-set of T , and
so γt(T ) ≤ |S′| = γt(T

′). By Observation 11(b), u /∈ D, implying that D is a
DTD-set of T ′, and so γdt (T

′) ≤ |D| = γdt (T ). Thus, γt(T ) ≤ γt(T
′) < 2γdt (T

′) ≤
2γdt (T ).

We now root the tree T at a vertex r on a longest path in T . Necessarily,
r is a leaf. Let u be a vertex at maximum distance from r. Necessarily, u is a
leaf. Let v be the parent of u, let w be the parent of v, let x be the parent of
w, and let y be the parent of x. Since u is a vertex at maximum distance from
the root r, every child of v is a leaf. By Claim K, every support vertex in T has
exactly one leaf neighbor. In particular, this implies that dT (v) = 2. We state
this formally as follows.

Claim L. dT (v) = 2.

Claim M. dT (w) = 2.

Proof. Suppose dT (w) ≥ 3. Let v′ be a child of w different from v. Suppose
firstly that v′ is a leaf. In this case, let T ′ = T−v′. By Observation 11(b), v′ /∈ D,
implying that D is a DTD-set of T ′, and so γdt (T

′) ≤ |D| = γdt (T ). Since v is a
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support vertex of degree 2 in T ′, we note that {v, w} ⊆ S′. Thus, S′ is a TD-set of
T , and so γt(T ) ≤ |S′| = γt(T

′). Therefore, γt(T ) ≤ γt(T
′) < 2γdt (T

′) ≤ 2γdt (T ).

Suppose secondly that v′ is not a leaf. Then, by Claim K, dT (v
′) = 2. Let u′

be the leaf neighbor of v′. In this case, let T ′ = T − {u, u′, v}. By our choice of
D, we note that D ∩ {u, u′, v, v′} = {v, v′}. If w ∈ D, then D \ {v} is a DTD-set
of T ′, implying that γdt (T

′) ≤ |D| − 1 = γdt (T ) − 1. If w /∈ D, then in order to
disjunctively dominate v, the set D contains at least one neighbor of w different
from v and v′, implying that the set (D \ {v, v′}) ∪ {w} is a DTD-set of T ′, and
so once again γdt (T

′) ≤ |D| − 1 = γdt (T )− 1. We now consider the γt(T
′)-set S′.

Since w is a support vertex in T ′ (with leaf neighbor v′), we note that w ∈ S′.
Thus, S′ ∪ {v, v′} is a TD-set of T , implying that γt(T ) ≤ |S′| + 2 = γt(T

′) + 2.
Therefore, γt(T ) ≤ γt(T

′) + 2 < 2γdt (T
′) + 2 ≤ 2γdt (T ).

By Claim M, dT (w) = 2. We note that D ∩ {u, v, w} = {v, w}.

Claim N. N [x] ∩D = {w}.

Proof. Suppose that |N [x]∩D| ≥ 2. Thus, D contains x or at least one neighbor
of x different from w. Let T ′ = T−{u, v, w}. If x ∈ D, let D′ = (D\{v, w})∪{y}.
If x /∈ D, letD′ = (D\{v, w})∪{x}. In both cases,D′ is a DTD-set of T ′, implying
that γdt (T

′) ≤ |D|− 1 = γdt (T )− 1. Every γt(T
′)-set can be extended to a TD-set

of T by adding to it the vertices v and w, implying that γt(T ) ≤ γt(T
′) + 2.

Therefore, γt(T ) ≤ γt(T
′) + 2 < 2γdt (T

′) + 2 ≤ 2γdt (T ).

By Claim N, N [x] ∩D = {w}.

Claim O. dT (x) = 2.

Proof. Suppose that dT (x) ≥ 3. If the vertex x has a descendant u′ 6= u at
distance 3 from it, and if u′v′w′x denotes the (u′, x)-path, then u′ is a leaf and
analogous arguments as in Claims L and M show that dT (v

′) = dT (w
′) = 2. By

our choice of the set D which was chosen to contain no leaf of T , this implies
that {v′, w′} ∈ D. If x has a descendant v′ at distance 2 from it that is a leaf,
then the common neighbor of x and v′ belongs to D. If x has a child that is a
leaf, then D contains x or at least two neighbors of x. In all cases, we contradict
Claim N.

By Claim O, dT (x) = 2. If y = r, then T = P5 and γdt (T ) = 3, a con-
tradiction. Hence, y 6= r. Let z be the parent of y. We now consider the tree
T ′ = T − {u, v, w, x}. If x ∈ D, let D′ = (D \ {v, w, x}) ∪ {y, z}. If x /∈ D
and y ∈ D, let D′ = (D \ {v, w}) ∪ {z}. If neither x nor y belong to D but
D contains a neighbor of y, let D′ = (D \ {v, w}) ∪ {y}. If D ∩ N [y] = ∅, let
D′ = (D \ {v, w}) ∪ {z}. In all cases, D′ is a DTD-set of T ′ and |D′| ≤ |D| − 1,
implying that γdt (T

′) ≤ |D|−1 = γdt (T )−1. Every γt(T
′)-set can be extended to a
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TD-set of T by adding to it the vertices v and w, implying that γt(T ) ≤ γt(T
′)+2.

Therefore, γt(T ) ≤ γt(T
′) + 2 < 2γdt (T

′) + 2 ≤ 2γdt (T ). This completes the proof
of Theorem 15.

We show next that the bound of Theorem 15 is asymptotically tight.

Proposition 16. For every fixed ǫ > 0, there exists a tree T such that γt(T ) >
(2− ǫ)γdt (T ).

Proof. Let ǫ > 0 be given. Let k > max{2, 3
ǫ
− 3}. Let T ′

k be obtained from a
path v1v2 · · · v2k+1 by adding a pendant edge to each of v2 and v2k, and let Tk

be obtained from T ′

k by adding a pendant edge to every vertex of T ′

k. The tree
T4, for example, is illustrated in Figure 4, where the darkened vertices form a
minimum DTD-set of T4. Letting T = Tk, it is a simple exercise to show that
γt(T ) = 2k + 3 and γdt (T ) = k + 3. Since ǫ > 3

k+3 , we note that (2 − ǫ)γdt (T ) <
(

2− 3
k+3

)

(k + 3) = 2k + 3 = γt(T ).

Figure 4. The tree T4.

Theorem 9 is an immediate consequence of Theorem 15 and Proposition 16.
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