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Abstract

A vertex v ∈ V (G) is said to distinguish two vertices x, y ∈ V (G) of
a graph G if the distance from v to x is different from the distance from
v to y. A set W ⊆ V (G) is a total resolving set for a graph G if for
every pair of vertices x, y ∈ V (G), there exists some vertex w ∈ W − {x, y}
which distinguishes x and y, while W is a weak total resolving set if for every
x ∈ V (G)−W and y ∈W , there exists some w ∈W−{y} which distinguishes
x and y. A weak total resolving set of minimum cardinality is called a weak

total metric basis of G and its cardinality the weak total metric dimension

of G. Our main contributions are the following ones: (a) Graphs with small
and large weak total metric bases are characterised. (b) We explore the
(tight) relation to independent 2-domination. (c) We introduce a new graph
parameter, called weak total adjacency dimension and present results that
are analogous to those presented for weak total dimension. (d) For trees,
we derive a characterisation of the weak total (adjacency) metric dimension.
Also, exact figures for our parameters are presented for (generalised) fans
and wheels. (e) We show that for Cartesian product graphs, the weak total
(adjacency) metric dimension is usually pretty small. (f) The weak total
(adjacency) dimension is studied for lexicographic products of graphs.
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1. Introduction

A resolving set for a graph G is a set S ⊆ V (G) with the property that every
vertex of G is uniquely determined by the distances from the elements of S. The
distance of two vertices x, y of a graph G is the length of a shortest path between
x and y in G, written dG(x, y). If two vertices belong to different connected
components, their distance is infinite. A vertex v ∈ V (G) is said to distinguish

two vertices x and y if dG(v, x) 6= dG(v, y). More formally, a set S ⊆ V is said
to be a resolving set for G if any pair of vertices of G is distinguished by some
element of S. A minimum resolving set is called a metric basis, and its cardinality
the metric dimension of G, denoted by dim(G).

Motivated by the problem of uniquely determining the location of an intruder
in a network, the concept of metric dimension of a graph was introduced by Slater
in [9]. This concept was also introduced by Harary and Melter in [4]. Several
variations of resolving sets including resolving dominating sets [1], independent
resolving sets [2], local metric sets [7], strong resolving sets [8], weak total resolv-
ing sets [6], etc. have since been introduced and studied. In this paper we focus
on the study of weak total resolving sets.

To begin with, we introduce some notation and terminology. All graphs
that we consider in this paper are undirected and without loops or multi-edges.
If G is a graph, V (G) is its set of vertices and E(G) is its set of edges. The
number |V (G)| is also called the order of G. A graph G with E(G) = ∅ is
known as an empty graph, and the empty graph of order one is also called the
trivial graph. We write G ∼= H if G and H are isomorphic graphs. For a
vertex v of a graph G, NG(v) will denote the set of neighbours of v in G, i.e.,
NG(v) = {u ∈ V (G) : uv ∈ E(G)} is the open neighbourhood of v. Additionally,
we denote by NG[v] = NG(v) ∪ {v} the closed neighbourhood of v. Also, given
a set S ⊆ V (G), we define NG(S) =

⋃

v∈S NG(v). The subgraph induced by a
set S of vertices will be denoted by 〈S〉. The eccentricity ǫG(v) of a vertex v in
a connected graph G is the maximum distance between v and any other vertex
of G. The diameter of G is defined as

D(G) = max
v∈V (G)

{ǫG(v)}.

The diameter of a graph is infinite if and only if the graph has more than one
connected component. A graph G is 2-antipodal if for each vertex x ∈ V (G) there
exists exactly one vertex y ∈ V (G) such that dG(x, y) = D(G).

We will use the notation Kn, Kr,s, Cn, Nn and Pn for complete graphs,
complete bipartite graphs, cycle graphs, empty graphs and path graphs of order
n, respectively.

The join G+H is defined as the graph obtained from disjoint graphs G and
H by taking one copy of G and one copy of H and joining by an edge each vertex
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of G with each vertex of H. For instance, the graph K1 + Ct is a wheel graph,
K1 +Kr

∼= Kr+1 is a complete graph and K1 +Nt
∼= K1,t is a star graph whose

central vertex is the vertex of K1 and whose t leaves are the vertices of the empty
graph Nt.

A set W ⊆ V (G) is a total resolving set for G if for every pair x, y ∈ V (G),
there exists some vertex w ∈W −{x, y} such that dG(w, x) 6= dG(w, y), while W
is a weak total resolving set if for every x ∈ V (G) −W and y ∈ W , there exists
some w ∈W − {y} such that dG(w, x) 6= dG(w, y), as defined in [6].1

A weak total resolving set of minimum cardinality is called weak total metric

basis of G, and its cardinality is called the weak total metric dimension of G,
denoted by dimwt(G). For instance, W = {v1, v2, v3} is a weak total metric basis
of the two graphs of Figure 1.

v1v2

v3

G

v1v2

v3

G′

Figure 1. W = {v1, v2, v3} is a weak total metric basis of G and G′.

The remaining definitions are given the first time that the concept is found
in the text below, unless they refer to standard notions that can be found in any
textbook on graph theory.

2. General Results

In this section, we are (finally) going to derive characterisations of those graphs G
that have a weak total metric dimension that equals |V (G)| or |V (G)| − 1. We

1We are going to discuss more on the history of this notion at the end of this paper.
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also identify conditions under which the weak total metric dimension is 2. More-
over, we derive comparisons with other graph parameters, especially related to
independent domination.

2.1. Preparations

First, we will argue why studying connected graphs is of major importance to
derive our results. We therefore first discuss graphs with at least two components.

Proposition 1. Let G = (V,E) be a graph with c ≥ 2 connected components 〈Vi〉
induced by the vertex sets Vi, 1 ≤ i ≤ c. Then, we can conclude:

1. Let W ⊆ V be a weak total resolving set for G. If |Vi| > 1 and Wi := W ∩Vi 6=
∅, then Wi is a weak total resolving set for 〈Vi〉.

2. Conversely, if some Ui ⊆ Vi is a weak total resolving set for 〈Vi〉, then Ui is

also a weak total resolving set for G.

Proof. For the first claim, consider any x ∈ Wi and y ∈ Vi −Wi (if Wi = Vi,
Wi is a trivial weak total resolving set for 〈Vi〉). Since for all w ∈ W − Wi

dG(w, x) = dG(w, y) =∞, there has to be some u ∈Wi−{x} which distinguishes
x and y.

For the second claim, consider some x /∈ Ui and some y ∈ Ui. Clearly, if
x ∈ Vi, there is some w ∈ Ui − {y} that distinguishes x and y, as Ui is a weak
total resolving set for 〈Vi〉. If x /∈ Vi, then dG(x,w) = ∞ for any w ∈ Ui − {y},
while dG(y, w) <∞, as y and w are both in the same connected component.

This allows us to conclude as follows.

Corollary 2. Let G = (V,E) be a graph of order n ≥ 2 with c ≥ 2 connected

components Vi, 1 ≤ i ≤ c. Then, one of the following two cases applies:

• All components Vi are singleton sets, or, equivalently, G is empty. This means

that G ∼= Nn and dimwt(G) = n.

• G is a non-empty graph. Then,

dimwt(G) = min {dimwt(〈Vi〉) : 1 ≤ i ≤ c ∧ |Vi| > 1} .

Since every vertex belonging to any weak total resolving set W must be
distinguished by at least one other vertex in W , it follows that for any graph of
order n the weak total metric dimension satisfies the following inequality:

(1) 2 ≤ dimwt(G) ≤ n.

Another simple yet important observation is contained in the following statement.
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Lemma 3. Let G = (V,E) be a graph. If for a vertex v ∈ V there is no

u ∈ V − NG[v] such that NG(v) ⊆ NG(u), then NG[v] is a weak total resolving

set for G.

Proof. Let v ∈ V satisfies the stated condition. Any x ∈ NG(v) can be distin-
guished from any y ∈ V − NG[v] by v, since dG(v, x) = 1 < dG(v, y). For any
y ∈ V − NG[v], there is some u ∈ NG(v) − NG(y), so dG(u, y) > 1 = dG(u, v),
which means that u distinguishes v and y.

A special case concerning vertices of degree 2 will be important for trees.

Corollary 4. For any graph G having at least three vertices v, x, y ∈ V (G) such
that NG(v) = {x, y} and NG(x) ∩NG(y) = {v}, dimwt(G) ≤ 3.

Proposition 5. Let G be a graph. If there exists some W ⊆ V (G) such that for

every v ∈W there are two vertices a, b ∈ NG(v)∩W such that NG(a)∩NG(b) ⊂
W , then dimwt(G) ≤ |W |.

Proof. LetW ⊆ V (G) such that for every v ∈W there are a, b ∈ NG(v)∩W such
that NG(a) ∩NG(b) ⊂ W. We claim that W is a weak total resolving set for G.
Consider any v ∈W and its two neighbours a, b ∈W with NG(a) ∩NG(b) ⊂W .
For any u ∈ V (G)−W , we have u /∈ NG(u) ∩NG(v), which yields dG(a, u) > 1 =
dG(a, v) or dG(b, u) > 1 = dG(b, v).

A special case which will become an important tool in the study of Cartesian
product graphs (in Subsection 5.2) is

Corollary 6. Let G be a graph. If there exists some W ⊆ V (G) such that 〈W 〉 ∼=
C4 and N(v) ∩N(w) ⊂W for all nonadjacent v, w ∈W , then dimwt(G) ≤ 4.

2.2. Connection to independent 2-dominating sets

A k-dominating set of a graph G is a set S of vertices of G such that every
vertex not in S is adjacent to at least k vertices in S. The k-domination number
of G, denoted by γk(G), is the minimum size of a k-dominating set [5]. A set
is independent (or stable) if no two vertices in it are adjacent. An independent

dominating set in a graph G is a set that is both dominating and independent
in G. The independent k-domination number of G, denoted by ik(G), is the
minimum size of an independent k-dominating set. The independence number of
G, denoted α(G), is the maximum size of an independent set in G. For graphs
G for which an independent k-dominating set exists, we have

(2) γk(G) ≤ ik(G) ≤ α(G).

Remark 7. Any independent 2-dominating set of G is a weak total resolving set
for G.
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Proof. Let S ∈ V (G) be an independent 2-dominating set in G. Let s ∈ S
and v ∈ V (G) − S. As there exists w ∈ S − {s} such that dG(w, s) ≥ 2 and
dG(w, v) = 1, the result is immediate.

Corollary 8. If a graph G has at least one independent 2-dominating set, then

dimwt(G) ≤ i2(G).

To show the tightness of this inequality we take the complete bipartite graph
Kr,s, r, s ≥ 2. Clearly, dimwt(Kr,s) = i2(Kr,s) = min{r, s}.

Notice that any independent 2-dominating set of a graph G is also an inde-
pendent 2-dominating set of any join graph of the form G +H. Thus, we point
out the following remark.

Remark 9. Let G and H be two graphs. If G has at least one independent
2-dominating set, then

dimwt(G+H) ≤ i2(G).

The above bound is tight. For instance,

(a) dimwt(Nr + Ct) = i2(Nr) = dimwt(Nr + Pt) = r, for 2 ≤ r ≤ 4 and t ≥ 7.

(b) dimwt(Nr + C3) = i2(Nr) = dimwt(Nr + P2) = r, for r ≥ 2.

(c) dimwt(Nr + C6) = i2(C6) = dimwt(Nr + P5) = i2(P5) = 3, for r ≥ 3.

(d) dimwt(Nr + C4) = i2(C4) = dimwt(Nr + P3) = i2(P3) = 2, for r ≥ 1.

(e) dimwt(Kr + C4) = i2(C4) = dimwt(Kr + P3) = i2(P3) = 2, for r ≥ 1.

(f) dimwt(Kr + C6) = i2(C6) = dimwt(Kr + P5) = i2(P5) = 3, for r ≥ 1.

Proposition 10. Let G be a graph of diameter 2. Then the following assertions

hold.

(i) dimwt(G) = 2 if and only if i2(G) = 2.

(ii) If i2(G) = 3, then dimwt(G) = 3.

Proof. By Corollary 8 we have that if G has an independent 2-dominating set,
then 2 ≤ dimwt(G) ≤ i2(G). So, i2(G) = 2 leads to dimwt(G) = 2.

Now, assume that W = {a, b} is a weak total metric basis of G. Notice that a
and b cannot be adjacent. Indeed, if they are adjacent, then for any neighbour c of
a we have that dG(a, c) = 1 = dG(a, b), which is a contradiction. Moreover, since
D(G) = 2, we deduce that any vertex in u ∈ V (G)−W must be adjacent to both
a and b, as otherwise either dG(a, u) = 2 = dG(a, b) or dG(b, u) = 2 = dG(b, a),
which is a contradiction. Therefore, W is an independent 2-dominating set and
so (i) follows.

The proof of (ii) is derived from Corollary 8 and (i).
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2.3. The role of twin vertices

Two vertices x, y are called false twins if NG(x) = NG(y) and x, y are called true

twins if NG[x] = NG[y]. Two vertices x, y are twins if they are false twins or true
twins. If two vertices x, y ∈ V (G) are twins, then for any z ∈ V (G) − {x, y} it
holds dG(z, x) = dG(z, y). Therefore, the next result follows.

Lemma 11. Let G be a graph and let W be a weak total metric basis of G. If

x, y ∈ V (G) are twins, then either both x and y are in W or neither x nor y
belongs to W .

We define the twin equivalence relation R on V (G) as follows:

xRy ←→ NG[x] = NG[y] or NG(x) = NG(y).

Let us see three different examples where every vertex has a twin. An example
of a graph where every equivalence class is a true twin equivalence class is Kr +
(Ks ∪Kt), r, s, t ≥ 2. In this case, there are three equivalence classes composed
of r, s and t true twins, respectively. As an example where no class is composed
of true twins, we take the complete bipartite graph Kr,s, r, s ≥ 2. Finally, the
graph Kr+Ns, r, s ≥ 2, has two equivalence classes and one of them is composed
of r true twins. On the other hand, K1+(Kr∪Ns), r, s ≥ 2, is an example where
one class is singleton, one class is composed of true twins and the other one is
composed of false twins.

If U is a twin equivalence class in a connected graph G with |U | ≥ 2 and
there exists a weak total resolving set for G, say W , which contains at least
one element from U , then Lemma 11 leads to U ⊆ W . Thus, we point out the
following result.

Proposition 12. Let G be a connected graph of order n with dimwt(G) < n and

let {U1, U2, . . . , Uk} be the set of twin equivalence classes of G. Then,

min
1≤i≤k

|Ui| ≤ dimwt(G) ≤ n− min
1≤i≤k

|Ui|.

Moreover, dimwt(G) = min1≤i≤k |Ui| if and only if there exists a twin equivalence

class U, which is an independent |U |-dominating set whose cardinality is |U | =
min1≤i≤k |Ui| ≥ 2.

Proof. The bounds are directly obtained from Lemma 11. Now, let U be a twin
equivalence class, which is an independent |U |-dominating set, whose cardinality
is |U | = min1≤i≤k |Ui| ≥ 2. By the lower bound, we have that dimwt(G) ≥ |U |
and, since U is an independent |U |-dominating set, by Remark 7 we conclude
that dimwt(G) = |U |.
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Assume that dimwt(G) = min1≤i≤k |Ui|. Since dimwt(G) ≥ 2, we have that
no twin equivalence class is a singleton set. So, by Lemma 11, we have that any
weak total metric basis U of G is a twin equivalence class, as |U | = min1≤i≤k |Ui|.
If U is a true twin equivalence class, then given u ∈ U , v ∈ NG(u) − U and
w ∈ U − {u}, we have dG(u, v) = dG(w, v) = 1, which is a contradiction, and so
U is a false twin equivalence class. Then for any u, v ∈ U , dG(u, v) = 2, which
implies that U is a |U |-dominating set, as the existence of a vertex w ∈ V (G)−U
at distance two from a vertex u ∈ U leads to a contradiction.

For instance, for r, s ≥ 2, the graph Kr +Ns, of order n = r+ s, is composed
of twins and its twin equivalence classes are U1 = V (Kr) and U2 = V (Ns). The
only weak total metric basis is U2 = V (Ns) and so the upper bound is achieved
for r < s, where dimwt(Kr +Ns) = s = n− r = n−min1≤i≤2 |Ui|, and the lower
bound is achieved for r > s, where dimwt(Kr+Ns) = s = min1≤i≤2 |Ui|. If r = s,
then both lower and upper bounds are achieved, and U2 is indeed an independent
|U2|-dominating set.

2.4. Characterisations for dimwt(G) ∈ {n, n − 1, 2}

We define the following parameter for a non-complete graph G via its graph
complement G

Θ(G) = max
u,v∈V (G): uv∈E(G)

|NG(u) ∩NG(v)|.

We also assume that Θ(Kn) = 0.

Proposition 13. For any non-trivial graph G of order n, dimwt(G) ≤ n−Θ(G).

Proof. It is straightforward that the result holds for G = Kn, i.e., dimwt(Kn) =
n − Θ(Kn) = n. We now suppose that there are two vertices x, y ∈ V (G) with
xy ∈ E(G). Let W = NG(x) ∩NG(y). We claim that W ′ = V (G)−W is a weak
total resolving set. To see this, we differentiate the following cases where w ∈W
and w′ ∈W ′.

1. w′ ∈ NG(x). Since w′ 6∈ NG[y], we have that dG(y, w
′) ≥ 2 > 1 = dG(y, w).

2. w′ ∈ NG(y). This case is analogous to the previous one.

3. w′ 6∈ NG(x) ∪ NG(y). If w′ 6= x, then dG(x,w
′) ≥ 2 > 1 = dG(x,w) and, if

w′ = x, then dG(y, w
′) = 2 > 1 = dG(y, w).

According to the three cases above, we conclude that W ′ is a weak total
resolving set and, as a consequence, the result follows.

Proposition 13 and Corollary 2 immediately yield the following characterisa-
tion.
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Corollary 14. Let G be a graph of order n ≥ 2. Then dimwt(G) = n if and only

if G ∼= Kn or G ∼= Nn.

The following straightforward remark will be useful in describing a procedure
to determine the graphs where dimwt(G) = 2.

Remark 15. Let G be a graph. Given x, y ∈ V (G), let

indist(x, y) := {z ∈ V (G) : dG(x, y) = dG(x, z) or dG(x, y) = dG(y, z)}.

Then dimwt(G) = 2 if and only if there exist x, y ∈ V (G) such that indist(x, y) =
{x, y}.

In particular, if there is some z /∈ {x, y} such that z ∈ indist(x, y), then x
does not distinguish y and z, or y does not distinguish x and z. Remark 15 can
be used to derive the following algorithmic result.

Proposition 16. Given a graph G of order n ≥ 2, in time O(n3) it can be

decided if dimwt(G) = 2.

Proof. Initially we can compute the distance matrix DistMG by using the well-
known Floyd-Warshall algorithm. DistMG is a symmetric n × n-matrix whose
rows and columns are labelled by vertices, with entries between 0 and n− 1 (or
∞). Now observe that indist(x, y) = {x, y} if and only if DistMG possesses a
non-zero entry, say, j at position (x, y), i.e., j = DistMG(x, y), such that both
the row (labelled x) and the column (labelled y) contain j only at position (x, y).
Given DistMG, this condition can be checked in linear time for each pair (x, y),
i.e., the overall runnning time of the sketched algorithm is dominated by the
cubic time of the Floyd-Warshall algorithm.

Examples of infinite families of graphs where dimwt(G) = 2 are given in
Remark 39 and Corollary 40. It remains to study graphs with 3 ≤ dimwt(G) ≤
n− 1.

Theorem 17. Let G be a connected graph of order n ≥ 5. Then dimwt(G) = n−1
if and only if G ∼= K1,n−1 or G ∼= K1 + (Kn−2 ∪K1).

Proof. First of all, note that 2 ≤ dimwt(K1,n−1). So, at least one leaf of K1,n−1

must belong to any weak total resolving set and, by Lemma 11, we have that
dimwt(K1,n−1) ≥ n − 1. By Corollary 14, dimwt(K1,n−1) = n − 1. Analogously,
2 ≤ dimwt(K1 + (Kn−2 ∪ K1)) ≤ n − 1, and since the set composed of the two
vertices associated to the copies of K1 does not form a weak total resolving set,
at least one vertex of degree n − 2 must belong to any weak total resolving set
and, by Lemma 11, we have that the n−2 twins composing the clique Kn−2 must
belong to any weak total resolving set. Let A be this set of twin vertices. Given
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w ∈ A, no vertex of A−{w} distinguishes w from the vertex of degree n−1, thus
dimwt(K1 + (Kn−2 ∪K1)) ≥ n − 1 and, as a consequence, dimwt(K1 + (Kn−2 ∪
K1)) = n− 1.

Now, let dimwt(G) = n − 1. First consider some vertex v ∈ V (G) with 2 ≤
|NG(v)| ≤ n−3. If there exists some u ∈ V (G)−NG[v] with |NG(u)∩NG(v)| ≥ 2,
then Proposition 13 shows that dimwt(G) ≤ n−2, which is a contradiction. Hence,
for all u ∈ V (G)−NG[v], |NG(u)∩NG(v)| ≤ 1. As |NG(v)| ≥ 2, this means that
NG(v) ⊆ NG(u) cannot hold. Hence, by Lemma 3, NG[v] is a weak total resolving
set with |NG[v]| ≤ n−2, contradicting dimwt(G) = n−1. Therefore, G may only
contain vertices of degree 1 or of degree at least n− 2. Since G is connected and
n ≥ 5, there is at least one vertex of degree larger than 1.

Suppose there is a vertex v with |NG(v)| = n − 2, which leaves exactly
one vertex u /∈ NG(v). Again, by Proposition 13, NG(u) and NG(v) are not
allowed to intersect in more than one node w implying NG(u) = {w}. Since
{v, u} ⊂ NG(w), the node w has to have a degree at least n− 2. With n ≥ 5, w
has at least one other neighbour x ∈ V − {v, u}. Since {v, w} ⊆ NG(x), x also
has to have at least n − 2 neighbours. With NG(u) = {w} this only leaves the
possibility NG[x] = V − {u} which yields deg(y) ≥ 2 for all remaining vertices
y ∈ V − {u, v, w, x}. Again, with NG(u) = {w}, this only leaves the possibility
NG[y] = V − {u}, hence 〈V − {w, u}〉 = Kn−2. Since {x, v} ⊂ NG(w) ∩NG(y)
for any y ∈ V − {u, v, w, x}, Proposition 13 gives wy ∈ E(G), which means
G ∼= K1 + (Kn−2 ∪K1).

Suppose there is no vertex of degree n − 2. Then, at least one vertex v has
to have degree n − 1. If there was another vertex u of degree larger than 1, its
degree would have to be n− 1 as well. Any vertex w /∈ {u, v} of G is a neighbour
of u and of v, so w has a degree n− 1. Hence, we face the complete graph with
weak total dimension n by Corrolary 14. Therefore, the only valid possibility is
degree 1 for all vertices V − {v}, which yields G ∼= K1,n−1.

Checking the few possibilities for n = 2, n = 3 and n = 4, and by Corollary 2,
we obtain the following result for not necessarily connected graphs of order at
least three.

Theorem 18. Let G be a graph of order n. Then, dimwt(G) = n− 1 if and only

if n ≥ 3 and if one of the following cases applies:

G ∼= K1,n−1 or G ∼= K1 + (Kn−2 ∪K1) or G ∼= K1 ∪Kn−1.

3. The Weak Total Adjacency Dimension

We introduce now the weak total adjacency dimension as a tool to study the
weak total metric dimension. We say that a set W ⊆ V (G) is a weak total
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adjacency resolving set if for every x ∈ V (G)−W and y ∈W , there exists some
w ∈ W − {y} such that w ∈ NG(x)∆NG(y). Henceforth, we will say that a
vertex w distinguishes a pair of vertices x, y if w ∈ NG(x)∆NG(y). A weak total
adjacency resolving set of minimum cardinality is called a weak total adjacency

basis of G, and its cardinality is called the weak total adjacency dimension of G,
denoted by adimwt(G). As each weak total adjacency resolving set is a weak total
resolving set, we have the following inequalities:

(3) 2 ≤ dimwt(G) ≤ adimwt(G) ≤ n.

Moreover, for any graph G of diameter (at most) two,

(4) dimwt(G) = adimwt(G)

and, by definition of weak total adjacency dimension, for any graph G,

(5) adimwt(G) = adimwt(G),

where G denotes the complement of G. The latter identity, together with the
bound of equation (3), shows that the adjacency dimension variant is a suitable
tool to study the graph complement operation with respect to the weak total
dimension. A set-like notation of the definition of weak total adjacency resolving
sets gives:

Lemma 19. A subset W ⊂ V is a weak total adjacency resolving set for a graph

G = (V,E) if and only if for any v ∈W,

U(v) :=





⋃

w∈W−NG[v]

NG(w)



 ∪





⋃

w∈W∩NG(v)

(V −NG[w])



 ⊇ V −W.

With equation (4), this statement also holds for weak total resolving sets of
graphs of diameter two.

While most of the results for weak total resolving sets remain true for weak
total adjacency resolving sets, point two of Proposition 1 and consequently Corol-
lary 2 do not hold. Consider for example the graph G = C4∪C4: Each component
has a weak total adjacency basis of cardinality two but these sets cannot be used
for the whole graph G which has a weak total adjacency dimension equal to four.
A weaker version of Proposition 1 however still holds.

Proposition 20. Let G = (V,E) be a graph with c ≥ 2 connected components

described by the vertex sets Vi, 1 ≤ i ≤ c. Then

1. Let W ⊆ V be a weak total adjacency resolving set. If |Vi| > 1 and Wi :=
W ∩ Vi 6= ∅, then Wi is a weak total adjacency resolving set for 〈Vi〉.
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2. Conversely, a weak total adjacency resolving set Ui ⊆ Vi for 〈Vi〉 is a weak total

adjacency resolving set for G if and only if the subgraph 〈Ui〉 has no isolated

vertices.

Proof. The first part follows by analogy to the proof of Proposition 1, part one.
For the second part, assume that Ui ⊆ Vi is a weak total adjacency resolving set
for 〈Vi〉. If there exists an isolated vertex u in 〈Ui〉, then u cannot be distinguished
from any v′ ∈ V −Vi and hence Ui is no weak total adjacency resolving set for G.

If the subgraph 〈Ui〉 has no isolated vertices, then any u ∈ Ui and v ∈ V −Vi

can be distinguished by a vertex u′ ∈ NG(u)∩Ui. Any u ∈ Ui can be distinguished
from any v ∈ Vi − Ui since Ui is a weak total adjacency resolving set for 〈Vi〉.
Altogether Ui is a weak total adjacency resolving set for the whole graph.

Lemma 3 (and hence Corollary 4) remains true for weak total adjacency resolving
sets. We explicitly state these results, making use of equation (5) in the following:

Lemma 21. Let G = (V,E) be a graph. If for some v ∈ V there is no u ∈
V − NG[v] such that NG(v) ⊆ NG(u), then NG[v] is a weak total adjacency

resolving set for G. Also, if for some v ∈ V there is no u ∈ NG(v) such that

NG[u] ⊆ NG[v], then NG(v) is a weak total adjacency resolving set for G.

Proposition 5 also remains true and has some interesting variations.

Proposition 22. Let G be a graph and let W ⊆ V (G). If for every v ∈W , there

are two vertices a, b ∈W such that either a, b ∈ NG(v) and NG(a) ∩NG(b) ⊂W
or a, b ∈ NG[v] and NG(a) ∩NG(b) ⊂W , then adimwt(G) ≤ |W |.

By equations (3), (5) and Proposition 22 we deduce the next result.

Corollary 23. Let G be a graph and let W ⊆ V (G). If for every v ∈ W , there

are two vertices a, b ∈W such that either a, b ∈ NG(v) and NG(a) ∩NG(b) ⊂W
or a, b ∈ NG[v] and NG(a) ∩NG(b) ⊂W , then dimwt(G) ≤ |W |.

By Corollary 4 and equation (5) we have:

Corollary 24. For any graph G having at least three vertices v, x, y ∈ V (G) such
that either NG(v) = {x, y} and NG(x) ∩ NG(y) = {v}, or NG(v) = V − {x, y}
and NG(x) ∪NG(y) = V − {v}, we find that adimwt(G) ≤ 3.

The connections to independent 2-dominating sets yield even stronger results
with respect to the weak total adjacency dimension. To derive the next remark
we proceed as in the proof of Proposition 7.

Remark 25. Any independent 2-dominating set of G is a weak total adjacency
resolving set for G.
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Corollary 26. Let G be a graph. If G has at least one independent 2-dominating

set, then adimwt(G) ≤ i2(G).

Proposition 27. Let G be a graph. Then adimwt(G) = 2 if and only if i2(G) = 2
or i2(G) = 2.

Proof. By Corollary 26 we conclude that i2(G) = 2 leads to adimwt(G) = 2, and
also i2(G) = 2 leads to adimwt(G) = 2.

Now, assume that {a, b} is a weak total adjacency resolving set for G. Note
that if ab ∈ E(G), then NG(a) = {b} and NG(b) = {a}, and thus, G = K2

or G = K2 ∪ H where H is an arbitrary graph. So, {a, b} is an independent
2-dominating set for G and, as a result, i2(G) = 2. Conversely, if ab ∈ E(G),
then in G any c ∈ V (G)−{a, b} should be adjacent to both a and b, and so {a, b}
is an independent 2-dominating set for G.

Characterisations of graphs with weak total adjacency dimension n or n− 1
can be shown similarly to those for the weak total metric dimension. Using the
parameter Θ(G) defined prior to Proposition 13 we deduce that for any graph G
of order n

adimwt(G) ≤ n−max{Θ(G),Θ(G)}.

Therefore, the following result immediately follows.

Remark 28. Let G be a non-trivial graph of order n. Then adimwt(G) = n if
and only if G ∼= Kn or G ∼= Nn.

Theorem 29. Let G be a graph of order n ≥ 5. Then adimwt(G) = n− 1 if and

only if G ∼= H with H ∈ {K1,n−1,K1 ∪Kn−1,K1 + (Kn−2 ∪K1),K1 ∪K1,n−2}.

Proof. The equality adimwt(K1,n−1) = adimwt(K1 + (Kn−2 ∪K1) = n − 1 im-
mediately follows from equation (3), Theorem 17 and Remark 28. With equa-
tion (5) the same dimension follows for the complement: adimwt(K1 ∪Kn−1) =
adimwt(K1 ∪K1,n−2) = n− 1.

As this part of the proof to Theorem 17 only uses properties which remain
true for weak adjacency resolving sets (Lemma 21 and Proposition 13), any con-
nected graph G of order n ≥ 5 and adimwt(G) = n − 1 is isomorphic to either
K1,n−1 or K1 + (Kn−2 ∪K1). Since the complement of any non-connected graph
is connected, equation (5) yields that any non-connected graph G of order n ≥ 5
and with adimwt(G) = n− 1 is isomorphic to either K1 ∪Kn−1 or K1 ∪K1,n−2.

Observe that this result is not true for n = 4 since P4 has a weak total
adjacency dimension equal to three but is not in the stated family of graphs.
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4. Special Graph Classes: Trees, Fans and Wheels

Given a tree T , we define δ∗(T ) as the minimum degree among all the internal
vertices of T . Given two vertices u, v ∈ V (T ) we say that Bu(v) is the branch at v
containing u and we define it as the connected component of T − {v} containing
u. The following proposition is remarkable in the sense that it not only gives a
possibility to compute the weak total metric dimension on trees, but also gives a
neat characterisation of this parameter on a tree T in terms of δ∗(T ).

Proposition 30. Let T be a tree.

(i) If δ∗(T ) = 2, then dimwt(T ) ≤ 3.

(ii) If δ∗(T ) ≥ 3, then dimwt(T ) = δ∗(T ).

Proof. Since (i) is a direct consequence of Corollary 4, from now on we assume
that δ∗(T ) ≥ 3. Let u ∈ V (T ) be a vertex of degree δ∗(T ). We claim that NT (u)
is a weak total resolving set for T . On one hand, for any a, b ∈ NT (u) we have
dT (a, u) = 1 6= 2 = dT (a, b). So, any pair u, a, where a ∈ NT (u), is distinguished
by some element b ∈ NT (u)−{a}. For any c ∈ V (T )−NT [u] and a ∈ NT (u) there
is a vertex b ∈ NT (u) − {a} such that c 6∈ Bb(u); recall that deg(u) ≥ 3. Any
vertex b of this type distinguishes a and c since dT (b, c) = dT (u, c) + 1 ≥ 3 > 2 =
dT (b, a). Hence NT (u) is a weak total resolving set for T and, as a consequence,
dimwt(T ) ≤ |NT (u)| = δ∗(T ).

It remains to prove that dimwt(T ) ≥ δ∗(T ). Let W be a weak total metric
basis of T . Let u, v be two adjacent vertices of T such that Bu(v)∩W = {u}. If v
is a leaf, W has to be the set {u, v}. This set however does not allow to distinguish
v from any other neighbour of u which means that v is an internal vertex. With
δ∗(T ) ≥ 3 this implies that |NT (v)| ≥ 3. Since dT (x, y) = dT (x, u) = dT (x, v) + 1
for any y ∈ NT (v) and x 6∈ By(v) ∪ Bu(v), any y ∈ NT (v) −W requires a node
xy ∈ By(v) to distinguish y from u which yields By(v)∩W 6= ∅ for all y ∈ NT (v)
and hence |W | ≥ |NG(v)|.

A similar result can be stated for forests, making use of Corollary 2.

Remark 31. Notice that our combinatorial results also lead to a polynomial-time
algorithm for computing the weak total dimension of a tree:

1. Determine (in linear time) the value of δ∗(T ).

2. If δ∗(T ) = 2, then check whether dimwt(T ) = 2 by using Proposition 16; if the
check fails, then we conclude that dimwt(T ) = 3.

3. If δ∗(T ) ≥ 3, then dimwt(T ) = δ∗(T ).

Our next result gives the value of the weak total adjacency dimension for any
tree T , different from a star, in terms of its minimum internal degree δ∗(T ).



Weak Total Resolvability in Graphs 199

Proposition 32. For any tree T different from a star,

adimwt(T ) = δ∗(T ) + 1.

Proof. Let u ∈ V (T ) be a vertex of degree δ∗(T ). By Lemma 21, NT [u] is a
weak total adjacency resolving set of cardinality δ∗(T ) + 1.

It remains to prove that adimwt(T ) ≥ δ∗(T ) + 1. Let W be a weak total
adjacency basis of T . Similar to the proof to Proposition 30, let u, v be two
adjacent vertices of T with Bu(v) ∩ W = {u}; again, v is an internal vertex.
Distinguishing u from any node x ∈ (NT (v) − {u}) − W requires a node in
NT (x) − {v} which yields (NT [x] − {v}) ∩W 6= ∅ for all x ∈ NT (v) − {u}. If
v ∈ W , this immediately yields |W | ≥ |NT [v]| ≥ δ∗(T ) + 1. Suppose v 6∈ W .
Since T is not a star, at least one neighbour y of v is an interior vertex implying
the existence of a vertex z ∈ NT (y)−{v}. Distinguishing z from y requires either
a neighbour of z other than y or a neighbour of y other than z, which yields
|W ∩By(v)| ≥ 2 and hence

|W | = |W ∩By(v)|+
∑

x∈NT (v)−{y}

|W ∩NT [x]| ≥ 2 + |NT (v)| − 1 ≥ δ∗(T ) + 1.

Now we derive some results on the weak total metric dimension for comple-
ments of trees.

Proposition 33. The following assertions hold.

(i) For any tree T , dimwt(T ) ≤ δ∗(T ) + 1.

(ii) For any tree T of diameter three, dimwt(T ) = 2.

(iii) For any tree T of diameter D(T ) ≥ 4, dimwt(T ) ≥ 3.

Proof. (i) By Theorem 18, together with equation (4), and by Proposition 32,
we have adimwt(T ) ≤ δ∗(T ) + 1 for all trees T . Thus, by equations (3) and (5),
we get dimwt(T ) ≤ adimwt(T ) = adimwt(T ) ≤ δ∗(T ) + 1.

(ii) The two central vertices x, y of any tree T of diameter three are antipodal
vertices in T , and for any v ∈ V (T ) − {x, y} we have that dT (v, x) < 3 and
dT (v, y) < 3. Hence, {a, b} is a weak total metric basis of T .

(iii) First of all, notice that T has diameter two. Suppose that {x, y} is
a weak total metric basis of T . Since x and y cannot be adjacent in T , they
are adjacent in T and so, for any vertex z adjacent to x in T we have that
dT (x, y) = 2 = dT (x, z) and so x does not distinguish the pair y, z in T , which is
a contradiction.

By equations (3), (5) and Corollary 24 we obtain the following corollaries.

Corollary 34. Let n be an integer.

• If n ≥ 1, then dimwt(Pn) ≤ adimwt(Pn) = adimwt(Pn) ≤ 3.



200 K. Casel, A. Estrada-Moreno, H. Fernau and J.A. Rodŕıguez-Velázquez

• If n ≥ 5, then dimwt(Cn) ≤ adimwt(Cn) = adimwt(Cn) ≤ 3.

Corollary 35. For any tree T having a vertex of degree two, dimwt(T ) ≤ 3.

We now consider generalisations of the wheel graph and fan graph: the
complete-core generalised wheel Wr,t = Kr + Ct (r ≥ 1, t ≥ 4), and the complete-

core generalised fan Fr,t = Kr +Pt, (r ≥ 1, t ≥ 3). The complete-core generalised
fan F3,4 is shown in Figure 2.

v1

v2

v3

Figure 2. W = {v1, v2, v3} is a weak total metric basis of the complete-core generalised
fan F3,4.

By performing some simple calculations, we have that

dimwt(Fr,4) = dimwt(Wr,5) = 3,

while the values of dimwt(Fr,t) for t ∈ {3, 5} and dimwt(Wr,t) for t ∈ {4, 6} have
been shown in Remark 9. For the remaining values of t, Lemma 19 gives the
following result.

Theorem 36. The following assertions hold.

(i) For any integer t ≥ 6, dimwt(Fr,t) = adimwt(Fr,t) = 4.

(ii) For any integer t ≥ 7, dimwt(Wr,t) = adimwt(Wr,t) = 4.

Proof. First observe that dimwt(Fr,t) = adimwt(Fr,t) and that dimwt(Wr,t) =
adimwt(Wr,t) by equation (4). Suppose W is a weak total resolving set for Wr,t =
(V,E) (or Fr,t = (V,E)). By Lemma 19 for any vertex v ∈ W , the set U(v) has
to contain at least all vertices of V −W . Since N [w] = V for all w ∈ V (Kr),
these kinds of vertices do not contribute to the set U(v), what allows us to
assume W − V (Kr) = W . Suppose W = {x, y}. Since r + 2 ≤ |N [y]| ≤ r + 3,
neither the set N(y) nor the set V − N [y] can contain r + t − 2 vertices, which
means |U(x)| < |V − W |. Suppose W = {v, x, y} ⊂ V (Ct) (V (Pt)). Since
V (Kr) ⊂ N(w) for every vertex w ∈ V − V (Kr), each vertex z ∈ W needs a
vertex z′ ∈W−NWr,t(z) (z

′ ∈W−NFr,t(z)) for U(z) to contain V (Kr) ⊂ V −W .
Assume v /∈ NG(x) ∩NG(y), which gives U(v) = N [x] ∪N [y]. The requirement
V −W = U(v) yields that {x, y} is a dominating set for 〈V (Ct)−v〉 (〈V (Pt)−v〉),
which is impossible for t ≥ 7 (t ≥ 6).
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Any induced P4 in G on the other hand yields a weak total resolving set
W of cardinality 4, since every vertex in W has one neighbour u ∈ W with
V (Ct) −W ⊂ V − N(u) (Pt −W ⊂ V − N(u)) and one non-neighbour w with
V (Kr) ⊂ N(w).

We now consider the empty-core generalised wheel Wr,t = Nr + Ct (r ≥ 1,
t ≥ 3), and the empty-core generalised fan Fr,t = Nr + Pt, (r ≥ 1, t ≥ 2). Notice
that the first number, giving the size of the core, is overlined to differentiate this
notion from the (complete-core) generalised wheel, resp. fan.

Some cases of dimwt(Fr,t) and dimwt(Wr,t) have been shown after Remark 9.
Also, by performing some simple calculations, we have that

dimwt(F2,4) = dimwt(F2,5) = 2 and dimwt(Fr,4) = 3, for r ≥ 3.

Moreover,

dimwt(W2,5) = dimwt(W2,6) = 2 and dimwt(Wr,5) = 3, for r ≥ 3.

By Remark 7, for r ≥ 2, the set of vertices of Nr is a weak total resolving set
for Wr,t and Fr,t. However, if we take r ≥ 4 and we proceed analogously to the
proof of Theorem 36 we deduce the following result.

Remark 37. The following assertions hold.

(i) For any integers r ≥ 4 and t ≥ 6, dimwt(Fr,t) = adimwt(Fr,t) = 4.

(ii) For any integers r ≥ 4 and t ≥ 7, dimwt(Wr,t) = adimwt(Wr,t) = 4.

5. Operations on Graphs

In this section, we study operations on graphs in connection with the weak total
metric/adjacency dimension. Henceforth, in the case of ordered pairs (x, y) we
will write NG(x, y), NG[x, y] and U(x, y) rather than NG((x, y)), NG[(x, y)] and
U((x, y)), respectively.

5.1. Point attaching graphs

Let GW [H] be a graph constructed from a graph G, a set W = {v1, . . . , vk} ⊆
V (G) and a family of pairwise disjoint (non-trivial) connected graphs H =
{G1, . . . , Gk} as follows. Select one vertex ui of Gi and identify ui with vi ∈ W ,
for every i ∈ {1, . . . , k}. In Figure 1, the graph G′ = GW [H] is obtained by
so-called point attaching from G, the family H = {K3,K1 + C4, C5} and the set
W = {v1, v2, v3}. Note that for any Gi ∈ H we have dimwt(Gi) ≥ dimwt(G) and
dimwt(GW [H]) = dimwt(G) = 3.

We would point out the following remark which follows from Lemma 21.
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Remark 38. Let G be a graph and let W ⊆ V (G). Then for any family H
composed of |W | pairwise disjoint non-trivial connected graphs and any v ∈ W ,
the set NGW [H][v] is a weak total adjacency resolving set for GW [H].

The following remark is straightforward.

Remark 39. Let W = {a, b} be a weak total metric basis of a graph G and let
H = {G1, G2} be a family of disjoint connected graphs. If for ui ∈ V (Gi) it holds
that ǫGi

(ui) < dG(a, b), i ∈ {1, 2}, then

dimwt(GW [H]) = 2.

Corollary 40. Let G be a 2-antipodal graph and let H = {G1, G2} be a family

of disjoint connected graphs. If for ui ∈ V (Gi) it holds that ǫGi
(ui) < D(G),

i ∈ {1, 2}, then for any set W = {v1, v2} ⊂ V (G) of antipodal vertices,

dimwt(GW [H]) = 2.

Proposition 41. Let G be a connected graph with dimwt(G) ≥ 3 such that

there exists a weak total metric basis W ′ such that dG(v, w) = dG(x, y) for all

v, w, x, y ∈ W ′ with v 6= w and x 6= y. For any non-empty set W ⊆ W ′ and any

family H composed of |W | pairwise disjoint connected graphs,

dimwt(GW [H]) ≤ dimwt(G).

Moreover, if for all Gi ∈ H it holds that dimwt(Gi) ≥ dimwt(G), then

dimwt(GW [H]) = dimwt(G).

Proof. Consider G, W ′ and W as described in the statement of the proposition.
We will show that W ′ is a weak total resolving set for GW [H]. Since W ′ is a weak
total metric basis of G, we only need to show that for any w ∈ W ′ and any v ∈
V (Gj), there exists some w′ ∈W ′−{w} such that dGW [H](w

′, w) 6= dGW [H](w
′, v).

With vj ∈ V (G) ∩ V (Gj), any w′ ∈ W ′ − {vj , w} satisfies dGW [H](w
′, w) =

dG(w
′, w) = dG(w

′, vj) < dG(w
′, vj) + dGj

(vj , v) = dGW [H](w
′, v). Thus, the

upper bound follows.
Now, assume that dimwt(Gi) ≥ dimwt(G), for all Gi ∈ H, and let {vi} =

W ∩ V (Gi). Let X be a weak total metric basis of GW [H]. We claim that |X| ≥
dimwt(G). To see this, we define Xi = X ∩ V (Gi) for all Gi ∈ H. If Xi ⊆ {vi},
for all Gi ∈ H, then X is a weak total resolving set for G so especially |X| ≥
dimwt(G). Also, if there exists Gi ∈ H such that |X| ≥ dimwt(Gi), also |X| ≥
dimwt(G). So, assume that there exists Gi ∈ H such that 0 < |Xi| < dimwt(Gi).
Then there exists x ∈ Xi and y ∈ V (Gi) − Xi such that dGi

(u, x) = dGi
(u, y)

for any u ∈ Xi − {x}. Since X is a weak total metric basis of GW [H], there
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must exist some u′ ∈ X − V (Gi) such that dGW [H](u
′, x) 6= dGW [H](u

′, y). Hence,
dGW [H](u

′, vi) + dGi
(vi, x) = dGW [H](u

′, x) 6= dGW [H](u
′, y) = dGW [H](u

′, vi) +
dGi

(vi, y) and, as a result, dGi
(vi, x) 6= dGi

(vi, y). Thus, Xi ∪ {vi} must be a
weak total resolving set for Gi and so dimwt(GW [H]) = |X| ≥ |Xi ∪ {vi}| ≥
dimwt(Gi) ≥ dimwt(G). Therefore, the result follows.

An example of application of Proposition 41 is shown in Figure 1.

5.2. Cartesian product graphs

In this section we study the weak total metric dimension of Cartesian product
graphs. We recall that the Cartesian product of two graphs G = (V1, E1) and
H = (V2, E2) is the graph G�H such that V (G�H) = V1 × V2, and two vertices
(a, b), (c, d) are adjacent in G�H if and only if, either (a = c and bd ∈ E2) or
(b = d and ac ∈ E1).

Proposition 42. Let G and H be two connected non-trivial graphs. Then

dimwt(G�H) = 2 if and only if there exists a weak total metric basis {a, c}
of G such that dG(a, c) = ǫG(a) = ǫG(c) and there exists a weak total metric basis

{b, d} of H such that dH(b, d) = ǫH(b) = ǫH(d).

Proof. Assume that there exists a weak total metric basis {a, c} of G such that
dG(a, c) = ǫG(a) = ǫG(c) and there exists a weak total metric basis {b, d} of H
such that dH(b, d) = ǫH(b) = ǫH(d).

We claim that W = {(a, b), (c, d)} is a weak total metric basis of G�H.
Since dG(a, x) < dG(a, c) for any vertex x ∈ V (G) and dH(b, y) < dH(b, d) for
any vertex y ∈ V (H), we can conclude that for any vertex (x, y) ∈ V (G�H)

dG�H((a, b),(x, y)) = dG(a, x)+dH(b, y) < dG(a, c)+dH(b, d) = dG�H((a, b),(c, d)).

Analogously, we deduce that dG�H((c, d), (x, y)) < dG�H((a, b), (c, d)). There-
fore, W is a weak total metric basis of G�H and so we conclude that
dimwt(G�H) = 2.

On the other hand, assume that dimwt(G�H) = 2 and let {(x, y), (u, v)}
be a weak total metric basis of G�H. Suppose that y = v. Let u′ be a vertex
adjacent to u, lying on a shortest path between x and u, and let w ∈ NH(y).
Then dG�H((x, y), (u, v)) = dG�H((x, y), (u′, w)), which is a contradiction, and
as a consequence y 6= v. By analogy we deduce that x 6= u.

Suppose that ǫG(x) > dG(x, u). Thus, there exists u′ ∈ V (G) such that
dG(x, u

′) = dG(x, u) + 1. Let y′ be a vertex adjacent to v lying on a shortest
path between y and v. Then dG�H((x, y), (u, v)) = dG�H((x, y), (u′, y′)), which
is a contradiction. Thus, ǫG(x) = dG(x, u). Analogously, it follows that ǫG(u) =
dG(x, u). Now, if there exists z ∈ V (G) such that dG(x, z) = dG(x, u), then
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dG�H((x, y), (u, v)) = dG�H((x, y), (z, v)), which is a contradiction again. By
analogy we deduce that for every z ∈ V (G) it holds dG(u, z) 6= dG(x, u). So,
{x, u} is a weak total metric basis of G.

By symmetry it holds that dH(y, v) = ǫG(y) = ǫG(v) and {y, v} is a weak
total metric basis of H. Therefore, the result follows.

Corollary 43. For any connected non-trivial graph G and any integer n ≥ 3,

dimwt(G�Kn) ≥ 3.

By Proposition 5 and Corollary 43 we deduce our next result.

Proposition 44. For any connected graph G,

dimwt(G�K3) = 3.

Proposition 45. For any integers k ≥ 1 and n ≥ 2,

dimwt(C2k+1�Kn) = 3.

Proof. The case k = 1 was previously studied in Proposition 44, so we can
assume that k ≥ 2. Since dimwt(C2k+1) = 3, by Proposition 42, we deduce
dimwt(C2k+1�Kn) ≥ 3.

Let u1, u2, u3 ∈ V (C2k+1) such that u1u2 ∈ E(C2k+1) and dC2k+1
(u3, u1) =

dC2k+1
(u3, u2) = k. Given v ∈ V (Kn) and W = {u1, u2, u3}, we claim that

W ′ = W × {v} is a weak total resolving set for C2k+1�Kn. To this end, we
differentiate three cases for any (a, b) ∈ V (C2k+1�Kn)−W ′ and (u, v) ∈W ′.

• In case a = u, immediately b 6= v and for any u′ ∈ W − {u}, we have
dC2k+1�Kn((u

′, v), (a, b)) = dC2k+1
(u′, a) + 1 > dC2k+1�Kn((u

′, v), (u, v)).

• In case a ∈ W − {u}, the definition of W ′ yields b 6= v. Let u′ ∈ W − {a, u}.
If u′ = u3, we have dC2k+1�Kn((u

′, v), (a, b)) = dC2k+1�Kn((u
′, v), (a, v)) + 1 >

dC2k+1�Kn((u
′, v), (u, v)). Since k ≥ 2, for u′ 6= u3 we immediately obtain that

dC2k+1�Kn((a, v), (u, v)) = k > dC2k+1�Kn((a, v), (a, b)) = 1.

• In case a /∈W , if b = v, W × {v} is a weak total resolving set for 〈V (C2k+1)×
{v}〉 ∼= C2k+1, so consider b 6= v. Let {u′, u′′} = W − {u}. Suppose that vertex
(u′, v) does not distinguish the pair (u, v), (a, b), i.e., dC2k+1�Kn((u

′, v), (u, v)) =
dC2k+1�Kn((u

′, v), (a, b)). Thus, dC2k+1
(u′, u) = dC2k+1

(u′, a) + 1 and, as a conse-
quence, either u = u3 or u′ = u3. Note that in both cases dC2k+1

(u′, a) = k−1. If
u = u3, we observe that dC2k+1�Kn((u

′′, v), (u, v)) = k 6= dC2k+1�Kn((u
′′, v), (a, b))

∈ {k−1, k+1}. Otherwise, u′ = u3 which means that dC2k+1�Kn((u
′′, v), (u, v)) =

1 < dC2k+1�Kn((u
′′, v), (a, b)) ∈ {2, 3}.

According to the three cases above, we conclude that W ′ is a weak total
resolving set for C2k+1�Kn and, as a consequence, dimwt(C2k+1�Kn) ≤ |W

′|
= 3. Therefore, the result follows.
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Since the Cartesian product of two 2-antipodal graphs is a 2-antipodal graph,
we have that for any 2-antipodal graphs G and H it holds that dimwt(G�H) = 2.
For instance, the following graphs all have a weak total metric dimension of two:
Pr�Pt, C2k�Pr, C2k�C2t, C2k�Qt Pr�Qt, where Qt denotes the hypercube of
degree t.

Proposition 46. For any 2-antipodal graph G and for any integer k ≥ 1,

dimwt(G�C2k+1) = 3.

Proof. Let a, b ∈ V (G) such that dG(a, b) = D(G), and let x, y, z ∈ V (C2k+1)
such that yz ∈ E(C2k+1) and dC2k+1

(x, y) = dC2k+1
(x, z) = k. Since for any

(u, v) ∈ V (G�C2k+1) it holds that (u, v) lies on a shortest path between (a, x)
and (b, y) or (u, v) lays on a shortest path between (a, x) and (b, z), we conclude
that {(a, x), (b, y), (b, z)} is a weak total resolving set for G�C2k+1 and, as a
consequence, dimwt(G�C2k+1) ≤ 3. On the other hand, by Proposition 42 we
deduce that dimwt(G�C2k+1) ≥ 3.

Notice that Proposition 46 can be extended to any pair of graphs G and H
satisfying the following restrictions:

• There exist a, b ∈ V (G) such that dG(a, b) = D(G) and for any c ∈ V (G) −
{a, b}, dG(a, c) < D(G) and dG(b, c) < D(G).

• There exist x, y, z ∈ V (H) such that yz ∈ E(H), dH(x, y) = dH(x, z) = D(H)
and for any v ∈ V (H) − {x, y, z}, dH(x, v) < D(H), dH(y, v) < D(H) and
dH(z, v) < D(H).

The following result is a direct consequence of Corollary 6.

Corollary 47. For any non-trivial graphs G and H,

dimwt(G�H) ≤ 4.

Looking at the weak total adjacency dimension, Corollary 23 and equation
(3) give bounds for complements of Cartesian products2.

Remark 48. For any non-trivial graphs G and H, dimwt(G�H) ≤ 4. Moreover,
dimwt(G�K3) ≤ 3.

Proposition 49. For any graph G of order n ≥ 4 and for any integer r ≥ 4,
adimwt(Kr�G) = 3 if and only if there exists some W = {x, y, z} ⊂ V (G) such

that 〈W 〉 ∼= K3 and NG(v) ∩NG(w) ⊂W for all v, w ∈W .

2Notice that for G ∼= H ∼= K2, Corollary 23 does not apply, although dimwt(K2�K2) =
dimwt(K2 ∪K2) = 2 ≤ 4.
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Proof. For any (v, w) ∈ V (Kr) × V (G), by the structure of H := Kr�G, the
set of neighbours is given by NH [v, w] = ({v} ×NG(w)) ∪ (V (Kr)× {w}). Since
|NH(v, w)| ≤ n + r − 2 and |V (Kr) × V (G) − NH [v, w]| ≤ rn − r, a weak total
adjacency basis of cardinality two for H would be a contradiction to Lemma 19
(recall that n, r ≥ 4).

Assume that S = {(v1, w1), (v2, w2), (v3, w3)} is a weak total adjacency basis
for H. Counting cardinalities, NH(vi, wi) ∪NH(vj , wj) cannot contain V (Kr) ×
V (G)− S for any i, j ∈ {1, 2, 3}. Lemma 19 hence yields |NH(vi, wi)∩ S| ≥ 1 for
all i = 1, 2, 3.

Suppose that (v1, w1) and (v3, w3) are not adjacent, which implies that w1 6=
w3 and that (v1, w1) and (v2, w2) are adjacent. U(v1, w1) ⊇ V (Kr) × V (G) − S
requires NH(v2, w2) − S ⊂ NH [v3, w3]. Since r, n ≥ 4, there is a v 6∈ {v1, v2, v3}.
The vertex (v, w2) ∈ NH(v2, w2)−S requires w3 = w2. For the set U(v3, w3), the
neighbourhood NH(v1, w1) similarly has to contain (v, w2), what would require
w1 = w2 and hence w1 = w3, so that (v1, w1) and (v3, w3) are indeed adjacent, a
contradiction.

Then we have that (vi, wi) and (vj , wj) are adjacent for all i, j = 1, 2, 3,
so that either v1 = v2 = v3 or w1 = w2 = w3. Notice that the set U(v1, w1)
equals V (G) × V (Kr) − (NH [v2, w2] ∩ NH [v3, w3]) which, by Lemma 19, means
that NH [v2, w2] ∩ NH [v3, w3] ⊆ S. Thus, if w1 = w2 = w3, then NH [v2, w2] ∩
NH [v3, w3] = V (Kr) × {w2} 6⊆ S, which is a contradiction. Hence, v1 = v2 = v3
and the subgraph induced by {w1, w2, w3} is isomorphic to K3. Now we find that
{v2}× (NG(w2)∩NG(w3)) = ({v2}×NG(w2))∩ ({v3}×NG(w3)) = NH [v2, w2]∩
NH [v3, w3] ⊆ S and, as a result, NG(w2)∩NG(w3) = {w1}. Looking at U(vi, wi)
for i = 2, 3 in the same way, this argument gives NG(wi)∩NG(wj) ∈ {w1, w2, w3}
for all i 6= j which shows that {w1, w2, w3} is the required set.

Conversely, if we take W = {x, y, z} ⊂ V (G) such that 〈W 〉 ∼= K3 and
NG(v) ∩ NG(w) ⊂ W for all v, w ∈ W , then the choice S′ := {v} ×W for any
v ∈ V (Kr) yields a weak total adjacency set for H by Proposition 22.

Corollaries 43 and 47 lead to 3 ≤ dimwt(Kr�Ks) ≤ 4 for r, s ≥ 3, and hence
Proposition 49 and equation (4) give:

Corollary 50. For any integers r, s ≥ 4,

adimwt(Kr�Ks) = dimwt(Kr�Ks) = 4.

The previous propositions show that the weak total metric and adjacency
dimensions behave differently from other graph parameters, as usually it can
be expected that the parameter of a Cartesian product graph depends on the
parameter of its constituents.
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5.3. Lexicographic product graphs

The lexicographic product of two graphs G = (V1, E1) and H = (V2, E2) is the
graph G ◦H with vertex set V = V1 × V2 and two vertices (a, b), (c, d) ∈ V are
adjacent in G ◦H if and only if either ac ∈ E1, or (a = c and bd ∈ E2).

Note that the lexicographic product of two graphs is not a commutative
operation. Moreover, G ◦H is a connected graph if and only if G is connected.
We would point out the following known results.

Fact 51 [3]. Let G be a connected graph and H be a non-trivial graph. Then the
following assertions hold for any a, c ∈ V (G) and b, d ∈ V (H) such that a 6= c.

(i) dG◦H((a, b), (c, d)) = dG(a, c)

(ii) dG◦H((a, b), (a, d)) = min{dH(b, d), 2}.

Proposition 52. Let G be a connected graph and H be a non-trivial graph. Let

S be a weak total resolving set for G ◦ H, and let Si = {vj : (ui, vj) ∈ S}. If

Si 6= ∅, then Si is a weak adjacency resolving set for H and, as a consequence,

dimwt(G ◦H) ≥ adimwt(H).

Proof. We take Si 6= ∅. Thus, since S is a weak total metric basis of G ◦ H,
by Fact 51 (i), for any vj ∈ Si and vk 6∈ Si, there exists (ui, vs) ∈ S − {(ui, vj)}
such that dG◦H((ui, vs), (ui, vj)) 6= dG◦H((ui, vs), (ui, vk)). Hence, vs ∈ Si − {vj}
and, by Fact 51 (ii), either (vsvj ∈ E(H) and vsvk /∈ E(H)) or (vsvj /∈ E(H)
and vsvk ∈ E(H)). Therefore, Si is a weak total adjacent set for H. Moreover,
taking S as a weak total metric basis of G ◦ H we have dimwt(G ◦ H) = |S| ≥
|Si| ≥ adimwt(H).

Now we shall show that the above bound is tight.

Proposition 53. Let G be a connected graph and H be a non-trivial graph. If

there exists a weak adjacency basis S of H such that for every a ∈ S it holds that

NH(a) ∩ S 6= ∅ and NH [a] 6⊃ S, then

dimwt(G ◦H) = adimwt(H).

Proof. By Proposition 52, we have that dimwt(G ◦ H) ≥ adimwt(H). It only
remains to prove that dimwt(G ◦H) ≤ adimwt(H), and to this end, we will show
that Si = {ui} × S is a weak total resolving set for G ◦ H, where ui ∈ V (G) is
arbitrary and S is a weak total adjacency basis of H that satisfies the conditions
stated above. Let (ui, vj) ∈ Si and (ur, vs) ∈ V (G ◦ H) − Si. We differentiate
three cases.

• i = r. Since S is a weak total adjacency basis, there exists vk ∈ S such that
either (vjvk ∈ E(H) and vsvk /∈ E(H)) or (vjvk /∈ E(H) and vsvk ∈ E(H)).
Thus, dG◦H((ui, vj), (ui, vk)) 6= dG◦H((ui, vk), (ui, vs)).
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• dG◦H((ui, vj), (ur, vs)) = 1 and i 6= r. Since NH [a] 6⊃ S for all a ∈ S, there
exists vt ∈ S with vjvt /∈ E(H), so (ui, vj) and (ui, vt) are not adjacent in G ◦H.
Hence, dG◦H((ui, vj), (ui, vt)) = 2 6= 1 = dG◦H((ui, vj), (ur, vs)).

• dG◦H((ui, vj), (ur, vs)) ≥ 2 and i 6= r. Since NH(a) ∩ S 6= ∅ for all a ∈ S, there
exists vt ∈ S such that vjvt ∈ E(H), which means that (ui, vj) and (ui, vt) are ad-
jacent in G◦H. Hence, dG◦H((ui, vj), (ui, vt)) = 1 6= 2 ≤ dG◦H((ui, vj), (ur, vs)) =
dG◦H((ui, vt), (ur, vs)).

Therefore, the result follows.

If, given two connected graphs H1 and H2 we have adimwt(H1�H2) = 4, then
we can construct a weak total adjacency basis W in such a way that 〈W 〉 ∼= C4.
Hence, our next result is a direct consequence of Proposition 53.

Corollary 54. Let H1, H2, G be three connected graphs. If adimwt(H1�H2) = 4,
then

dimwt(G ◦ (H1�H2)) = dimwt(G ◦ (H1�H2)) = 4.

By equation (4) and Theorem 36 we have that for any complete-core gener-
alised fan graph Fr,t such that t ≥ 6, it holds that dimwt(Fr,t) = adimwt(Fr,t) = 4.
Analogously, for any complete-core generalised wheel graph Wr,t such that t ≥ 7,
it holds that dimwt(Wr,t) = adimwt(Wr,t) = 4. In both cases, the weak total
adjacency metric bases are composed by four consecutively adjacent vertices of
the corresponding path or cycle. Hence, these weak total metric basis satisfy
the premises of Proposition 53 for H = Fr,t and H = Wr,t, as well as for their
complements. Therefore, we can state the following result.

Proposition 55. Let r, t be two positive integers and let G be a connected graph.

• If t ≥ 6, then dimwt(G ◦ Fr,t) = dimwt(G ◦ F r,t) = 4.

• If t ≥ 7, then dimwt(G ◦Wr,t) = dimwt(G ◦W r,t) = 4.

Proposition 56. Let G be a non-trivial graph and let r ≥ 2 be an integer. Given

a weak total adjacency basis W ⊆ V (G) of G and u ∈ V (Kr), the set {u} ×W
is a weak total adjacency basis of Kr ◦ G if and only if W − NG(v) 6= ∅ for all

v ∈W .

Proof. Assume that {u} ×W is a weak total adjacency basis of Kr ◦ G. Since
for any u′ ∈ V (Kr) − {u} and any v ∈ W , the vertices (u, v) and (u′, v) are
adjacent, there must exists v′ ∈ W −NG(v) such that (u, v′) distinguishes (u, v)
from (u′, v). Therefore, W −NG(v) 6= ∅ for all v ∈W .

Conversely, assume that W − NG(v) 6= ∅ for all v ∈ W . Consider any
(x, y) ∈ V (Kr ◦ G) − ({u} ×W ) and v ∈ W . If x = u, then there exists (u, v′)
which distinguishes (u, v) from (u, y), as W is a weak total adjacency basis of G.
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Also, since there exists v′′ ∈W −NG(v), then for x 6= u, (u, v′′) ∈ NKr◦G(x, y)−
NKr◦G(u, v). Hence, {u} ×W is a weak total adjacency resolving set for Kr ◦G.
Now, suppose that S is a weak total adjacency resolving set for Kr ◦G such that
|S| < |W |. Then taking Sa = {b ∈ V (G) : (a, b) ∈ S} 6= ∅, by Proposition 52
we obtain that Sa is a weak total adjacency resolving set for G and |Sa| ≤ |S| <
|W | = adimwt(G), which is a contradiction. Therefore, {u} ×W is a weak total
adjacency basis of Kr ◦G.

6. Discussion

This paper was devoted to the study of combinatorial properties of graph parame-
ters called weak total metric, resp. adjacency, dimension. These parameters have
some very peculiar properties, for instance, the latter one is indifferent against
graph complementation, something we do not know for any other graph param-
eter. Also, it seems to be difficult to build gadgets with these parameters as this
is commonly done to prove computational hardness results, as piecing graphs
together from smaller graphs can dramatically decrease these parameters. So, we
leave it as an open question whether (or not) a weak total metric, resp. adjacency,
basis for a given graph can be computed in polynomial time.

There is one more peculiarity about the first parameter: We followed with our
definition the one contained in the abstract of [6]. In other places, the definition
of a weak total resolving set furthermore requires that the set is indeed a resolving
set. Of course, this changes the properties completely. In a sense, we studied a
pure version of this notion, not combining it with the previously and intensively
studied notion of metric dimension. In order to differentiate both notions and
avoid further confusions, we therefore propose to call the version that we studied
in this paper pure weak total resolving set and keep the notion of weak total
resolving set for sets that are also resolving sets. To put it positively, given
the fact that we observed quite interesting properties, it might be an idea to
study other “pure versions” of graph parameters to better understand the cause
of certain combinatorial and computational results. This would allow to study
certain effects in isolation.
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