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Abstract

A distance magic labeling of a graph G = (V,E) with |V | = n is a
bijection ℓ : V → {1, . . . , n} such that the weight of every vertex v, computed
as the sum of the labels on the vertices in the open neighborhood of v, is a
constant.

In this paper, we show that hypercubes with dimension divisible by four
are not distance magic. We also provide some positive results by proving
necessary and sufficient conditions for the Cartesian product of certain com-
plete multipartite graphs and the cycle on four vertices to be distance magic.
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1. Introduction

1.1. Definitions

For standard graph theoretic definitions and notation, we refer to Diestel [9]. All
graphs G = (V,E) are finite undirected simple graphs with vertex set V (G) and
edge set E(G). Given any vertex v, the set of all vertices adjacent to v is the
open neighborhood of v, denoted N(v) (or NG(v), if necessary), and the degree

of v is |N(v)|. If every vertex in a graph G has the same degree r, the graph is
called r-regular. The closed neighborhood of v is N(v) ∪ {v}, denoted N [v] (or
NG[v]).

A distance magic labeling of a graph G of order n is a bijection ℓ : V (G) →
{1, . . . , n} such that the weight of every vertex v, defined as w(v) =

∑

u∈N(v) ℓ(v),
is a constant, which we call the magic constant, denoted simply as µ. Any graph
which admits a distance magic labeling is called a distance magic graph. Distance
magic graphs are analogue to closed distance magic graphs; see [3, 6].

We use the definition of Cartesian product given in [12]. Given two graphs
G and H, the Cartesian product of G and H, denoted G�H, is the graph with
vertex set V (G)×V (H), where two vertices (g, h) and (g′, h′) are adjacent if and
only if g = g′ and h is adjacent to h′ in H, or h = h′ and g is adjacent to g′ in G.

The cycle on n vertices is denoted Cn. The complete graph on n vertices
is denoted Kn. The complete bipartite graph with parts of cardinality m and
n, respectively, is denoted Km,n. The complete r-partite graph with n vertices
in each part is denoted K(n; r). The n-dimensional hypercube is denoted Qn.
The vertices of Qn are binary n-tuples and two vertices are adjacent if their
corresponding tuples differ in exactly one position. For integers 0 ≤ k ≤ n, we
say that a vertex of Qn belongs to row k, denoted rk, if the corresponding n-tuple
contains exactly k entries that are 1’s. For a vertex v ∈ rk, if 0 ≤ k ≤ n− 1, we
say the upper neighbors of v, denoted Nu(v), are those vertices in rk+1 that are
adjacent to v, and if 1 ≤ k ≤ n, we say the lower neighbors, denoted Nl(v), are
those in rk−1 that are adjacent to v. For a vertex v ∈ V (Qn), let {v} denote the
label on v and let Nu{v} =

∑

x∈Nu(v)
{x} and Nl{v} =

∑

x∈Nl(v)
{x} denote the

sum of the labels on the upper and lower neighbors of v, respectively. Note that
Qn also may be defined recursively in terms of the Cartesian product: Q1 = K2

and Qn = Qn−1�K2 for integers n ≥ 2.

1.2. History and motivation

Graph labelings have served as the focal point of considerable study for over forty
years; see Gallian’s survey [11] for a review of results in the field. For a detailed
survey of previous work and open problems concerning distance magic labelings,
see Arumugam et al. [5]. Some graph which are distance magic among (some)
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products can be seen in [2, 4, 6, 7, 8, 16, 18, 19]. The general question about
characterizing graphs G and H such that G�H is distance magic was posed in
[5]. Some results along that line follow:

Theorem 1 [18]. The Cartesian product Cn�Cm is distance magic if and only

if n = m and n,m ≡ 2 (mod 4).

Theorem 2 [19]. (1) The Cartesian product Pn�Cm, where n is an odd integer

greater than 1 or n ≡ 2 (mod 4), has no distance magic labeling.

(2) The Cartesian product K1,n�Cm has no distance magic labeling.

(3) The Cartesian product Kn,n�Cm, where n 6= 2 and m is odd, has no distance

magic labeling.

(4) The Cartesian product Kn,n+1�Cm, where n is even and m ≡ 1 (mod 4),
has no distance magic labeling.

It was shown in [15, 16, 17, 20] that if G is an r-regular distance magic graph
with n vertices, then the magic constant must be µ = r(n+1)/2, implying that no
graph with odd regularity can be distance magic. That is, Qn for odd n is not dis-
tance magic. The concept of distance magic labelings has been motivated by the
construction of magic rectangles (see [10, 13, 14]) since we can construct a distance
magic labeling of K(n; r) by labeling the vertices in each part by the columns
of the magic rectangle. Note, however, that lack of an n × r magic rectangle
does not imply that K(n; r) is not distance magic; for example, there is no 2× 2
magic rectangle but Q2 = K(2; 2) = K2,2 is distance magic. In 2004, Acharya et

al. stated the following conjecture.

Conjecture 3 [1]. For any even integer n ≥ 4, the n-dimensional hypercube Qn

is not a distance magic graph.

The following problem was given in [7].

Problem 4. If G is a regular graph, determine if G�C4 is distance magic.

Notice that if G is an r-regular graph, then the necessary condition for H =
G�C4 to be distance magic is that r is even (since H is (r + 2)-regular).

In Section 2, we show that Qn, where n ≡ 0 (mod 4), is not distance magic.
In Section 3, we provide some positive results by giving necessary and sufficient
conditions for which K(n; r)�C4, where n 6= 2, is distance magic.

2. Non-Distance Magic Hypercubes

Theorem 5. The hypercube Qn, where n ≡ 0 (mod 4), is not distance magic.
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Proof. Assume that Qn, where n ≡ 0 (mod 4), is distance magic with magic
constant µ. Let k = n/2. By symmetry of the hypercube, we have that

(

n

k − 1

)

µ =
∑

v∈rk−1

(Nl{v}+Nu{v}) =
∑

v∈rk+1

(Nl{v}+Nu{v}) .(2.1)

By considering the binary representation of the vertices of the hypercube, for
1 ≤ j ≤ k − 1 and every vertex v ∈ rj , we have |Nu(v)| = n− j and |Nl(v)| = j.
Thus,

(

n

k − 1

)

µ = (k + 1)
∑

v∈rk

{v}+ (k − 1)
∑

v∈rk−2

{v}

= (k + 1)
∑

v∈rk

{v}+ (k − 1)
∑

v∈rk+2

{v},

which implies that

∑

v∈rk−2

{v} =
∑

v∈rk+2

{v}.(2.2)

Using (2.1) and (2.2) as the basis step, we perform induction on the hypercube
rows. Assume that for some j, where 1 < j ≤ k/2, and all i ≤ j,

∑

v∈rk−2(i−1)

{v} =
∑

v∈rk+2(i−1)

{v}.(2.3)

Now, by symmetry of the hypercube,

(

n

k − 2i+ 1

)

µ =
∑

v∈rk−2i+1

(Nl{v}+Nu{v}) =
∑

v∈rk+2i+1

(Nl{v}+Nu{v}) ,

which implies

(k + 2i− 1)
∑

v∈rk−2i

{v}+ (k − 2i+ 1)
∑

v∈rk−2(i−1)

{v}

= (k + 2i− 1)
∑

v∈rk+2i

{v}+ (k − 2i+ 1)
∑

v∈rk+2(i−1)

{v}.

Using (2.3) gives

∑

v∈rk−2i

{v} =
∑

v∈rk+2i

{v};
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in particular,

∑

v∈r0

{v} =
∑

v∈r2k

{v}.(2.4)

Since both r0 and r2k contain only one vertex, (2.4) implies that the labels on
these vertices are the same, which contradicts that Qn has a distance magic
labeling.

3. Distance Magic K(n; r)�C4

In this section the proof is based on an application of magic rectangles, which are
a natural generalization of magic squares. A magic rectangle MR(a, b) is an a× b
array with entries from the set {1, 2, . . . , ab}, each appearing once, with all its
row sums equal to a constant δ and with all its column sums equal to a constant
η. Harmuth proved the following:

Theorem 6 [13, 14]. A magic rectangle MR(a, b) exists if and only if a, b > 1,
ab > 4, and a ≡ b (mod 2).

To prove our main result in this section, we will need the following general-
ization of magic rectangles that was introduced in [10].

Definition 3.1. A magic rectangle set MRS(a, b; c) is a collection of c arrays
(a×b) whose entries are elements of {1, 2, . . . , abc}, each appearing once, with all
row sums in every rectangle equal to a constant δ and all column sums in every
rectangle equal to a constant η.

Moreover, Froncek proved:

Theorem 7 [10]. If a ≡ b ≡ 0 (mod 2), a ≥ 2 and b ≥ 4, then a magic rectangle

set MRS(a, b; c) exists for every c.

Observation 8 [10]. If a magic rectangle set MRS(a, b; c) exists, then both

MR(a, bc) and MR(ac, b) exist.

In the following lemmas, we use C4 = xuywx and denote the vertices of
K(n; r), the complete r-partite graph with n vertices in each part, by {vji : i =
1, . . . , n and j = 1, . . . , r}, where we drop the subscript i if n = 1.

Lemma 3.2. The Cartesian product Kn�C4 is not distance magic.

Proof. Notice that Kn = K(1;n). Let H = K(1;n)�C4. Suppose H is distance
magic and ℓ is a distance magic labeling ofH with magic constant µ. Let ℓ(vj , u)+
ℓ(vj , w) = aju,w and ℓ(vj , x) + ℓ(vj , y) = ajx,y for any j = 1, . . . , n.



304 S. Cichacz, D. Froncek, E. Krop and C. Raridan

Since

0 = w(vj , x)− w(vh, x) = ℓ(vh, x)− ℓ(vj , x) + ahu,w − aju,w

= w(vj , y)− w(vh, y) = ℓ(vh, y)− ℓ(vj , y) + ahu,w − aju,w,

we obtain ℓ(vh, x)−ℓ(vh, y) = ℓ(vj , x)−ℓ(vj , y) for any j, h = 1, . . . , n. Therefore,
ℓ(vj , x) = k+ ℓ(vj , y) for some constant k and for any j = 1, . . . , n. On the other
hand,

µ = w(vj , y) =
r

∑

p=1,p 6=j

ℓ(vp, y) + aju,w

= w(vj , x) =

r
∑

p=1,p 6=j

ℓ(vp, x) + aju,w =

r
∑

p=1,p 6=j

(k + ℓ(vp, y)) + aju,w,

which implies k = 0 and ℓ(vj , x) = ℓ(vj , y), a contradiction.

Lemma 3.3. The Cartesian product K(2; r)�C4 is not distance magic.

Proof. Notice thatK2 = K(2; 1) is not distance magic by Lemma 3.2. Moreover,
K2,2

∼= C4 and C4�C4 is not distance magic by Theorem 1, so we assume that
r > 2. Let H = K(2; r)�C4. Suppose that H is a distance magic graph with
distance magic labeling ℓ and magic constant µ. We have

µ = w(vj1, x) =
r

∑

p=1,p 6=j

(ℓ(vp1 , y) + ℓ(vp2 , y)) + ℓ(vj1, u) + ℓ(vj1, w)

= w(vj2, x) =
r

∑

p=1,p 6=j

(ℓ(vp1 , y) + ℓ(vp2 , y)) + ℓ(vj2, u) + ℓ(vj2, w),

which implies that ℓ(vj1, u) + ℓ(vj1, w) = ℓ(vj2, u) + ℓ(vj2, w) for any j = 1, . . . , r.

Analogously, we obtain that ℓ(vj1, x) + ℓ(vj1, y) = ℓ(vj2, x) + ℓ(vj2, y) for any j =
1, . . . , r.

Since w(vj1, x) = w(vj1, y), we obtain that

r
∑

p=1,p 6=j

(ℓ(vp1 , x) + ℓ(vp2 , x)) =
r

∑

p=1,p 6=j

(ℓ(vp1 , y) + ℓ(vp2 , y))

for any j = 1, 2, . . . , r. Hence

(r − 1)
r

∑

j=1

(ℓ(vj1, x) + ℓ(vj2, x)) = (r − 1)
r

∑

j=1

(ℓ(vj1, y) + ℓ(vj2, y)),

implying that ℓ(vj1, x) + ℓ(vj2, x) = ℓ(vj1, y) + ℓ(vj2, y), a contradiction.
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Lemma 3.4. Let r > 1, n > 2. The Cartesian product K(n; r)�C4 is distance

magic if and only if n is even.

Proof. Let H = K(n; r)�C4. Notice that |V (H)| = 4nr and H is [n(r− 1)+ 2]-
regular. Suppose that H is distance magic and ℓ is a distance magic labeling of
H with magic constant µ.

Let ℓ(vji , u) + ℓ(vji , w) = aju,w for any i = 1, . . . , n, j = 1, . . . , r. Then

µ = w(vji , x) =
r

∑

p=1,p 6=j

n
∑

h=1

ℓ(vph, x) + aju,w,

for any i = 1, . . . , n, j = 1, . . . , r. Analogously, let ℓ(vji , x) + ℓ(vji , y) = ajx,y for
any i = 1, . . . , n, j = 1, . . . , r.

Observe that

2µ = w(vhi , x) + w(vhi , y) = n
r

∑

p=1,p 6=h

apx,y + 2ahu,w(3.1)

and

2µ = w(vji , x) + w(vji , y) = n
r

∑

p=1,p 6=j

apx,y + 2aju,w(3.2)

for j = 1, . . . , r, i = 1, . . . , n.
Thus subtracting equation (3.1) from (3.2) we obtain

n
(

ajx,y − ahx,y

)

= 2
(

aju,w − ahu,w

)

,

for any j, h = 1, . . . , r. Analogously, 2(ajx,y − ahx,y) = n(aju,w − ahu,w) for any
j, h = 1, . . . , r.

Obviously, for any j, h = 1, . . . , r we have (n − 2)(ajx,y − ahx,y) = −(n − 2)

(aju,w − ahu,w). Since n 6= 2, thus for any j = 1, . . . , r we have ajx,y + aju,w = a for
some constant a.

If ajx,y = aju,w = a/2 for any j = 1, 2, . . . , r, then since µ = w(vji , z) =
∑r

p=1,p 6=j

∑n
h=1 ℓ(v

p
h, z) + a/2 for any z ∈ {x, y, u, w} and i = 1, . . . , n, j =

1, . . . , r, it is easy to check that
∑n

i=1 ℓ(v
j
i , z) = na/4 for any z ∈ {x, y, u, w}

and j = 1, . . . , r. In this situation there exists a distance magic labeling for the
graph G if and only if there exists a magic rectangle set MRS(2, n; 2r) with all
its row sums equal to the constant a/2 and with all its column sums equal to the
constant na/4.

If n is even, then a magic rectangle set MRS(2, n; 2r) exists by Theorem 7.
Denote by zji,h the entry in the i-th row and h-th column of the j-th rectangle
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from the set MRS(2, n; 2r), let

ℓ(vji , x) = zji,1, ℓ(vji , y) = zji,2, ℓ(vji , u) = zj+r
i,1 , ℓ(vji , v) = zj+r

i,2

for i = 1, . . . , n and j = 1, . . . , r. Obviously, the labeling ℓ is distance magic.
Therefore, we can assume now that n is odd. Suppose first that ajx,y = a/2−c

for any j = 1, 2, . . . , r and some constant c. Thus ajx,y = a/2 + c for any j =
1, 2, . . . , r and moreover

∑n
i=1(ℓ(v

j
i , x) + ℓ(vji , y)) = n(a/2 + c),

∑n
i=1(ℓ(v

j
i , u) +

ℓ(vji , v)) = n(a/2− c) for any j = 1, 2, . . . , r. Observe that

2µ = w(vji , x) + w(vji , y) = n(r − 1)(a/2 + c) + 2(a/2− c),

2µ = w(vji , u) + w(vji , v) = n(r − 1)(a/2− c) + 2(a/2 + c).

Subtracting the above equations we obtain that c = 0, hence ajx,y = aju,v = a/2
and a distance magic labeling is impossible since there does not exist a magic
rectangle set MRS(2, n; 2r) for n being odd (n must be even by Theorem 6 and
Observation 8).

Let now ajx,y = a/2− cj and aju,v = a/2 + cj for any j = 1, 2, . . . , r and some
constants cj . Therefore,

∑n
i=1(ℓ(v

j
i , x) + ℓ(vji , y)) = n(a/2 + cj),

∑n
i=1(ℓ(v

j
i , u) +

ℓ(vji , v)) = n(a/2− cj) for any j = 1, 2, . . . , r. Notice that

2µ = w(vji , x) + w(vji , y) = n
r

∑

p=1,p 6=j

(a/2 + cp) + 2(a/2− cj)(3.3)

and

2µ = w(vhi , x) + w(vhi , y) = n
r

∑

p=1,p 6=h

(a/2 + cp) + 2(a/2− ch)(3.4)

for j = 1, . . . , r,i = 1, . . . , n.
Thus subtracting equation (3.3) from (3.4) we obtain (n + 2)ch = (n + 2)cj

for any j, h = 1, . . . , r. Hence cj = c for any j = 1, 2, . . . , r and a distance magic
labeling does not exist.

As a consequence of Lemmas 3.2, 3.3 and 3.4, we have the following theorems.

Theorem 9. The Cartesian product K(n; r)�C4 is distance magic if and only if

r > 1 and n > 2 is even.

Theorem 10. The Cartesian product K(n; r)�C4 is distance magic if and only

if there exists a magic rectangle set MRS(2, n; 2r).
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