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Abstract

If D = (V,A) is a digraph, its competition graph (with loops) CGl(D)
has the vertex set V and {u, v} ⊆ V is an edge of CGl(D) if and only if
there is a vertex w ∈ V such that (u,w), (v, w) ∈ A. In CGl(D), loops {v}
are allowed only if v is the only predecessor of a certain vertex w ∈ V . For
several products D1 ◦D2 of digraphs D1 and D2, we investigate the relations
between the competition graphs of the factors D1, D2 and the competition
graph of their product D1 ◦D2.

Keywords: competition graph, product of digraphs.

2010 Mathematics Subject Classification: 05C76, 05C20.

1. Introduction and Definitions

All graphs G = (V (G), E(G)), hypergraphs H = (V (H), E(H)) and digraphs
D = (V (D), A(D)) considered here may have isolated vertices but no multiple
edges and arcs, respectively. Moreover, in digraphs loops are forbidden. In
standard terminology concerning digraphs we follow Bang-Jensen and Gutin [1].
With d−D(v), d

+
D(v), N

−

D (v) and N+
D (v) we denote the in-degree, out-degree, in-

neighbourhood and out-neighbourhood of a vertex v in a digraph D, respectively.
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In 1968 Cohen [2] introduced the competition graph (without loops) CG(D)
associated with a digraph D = (V,A) representing a food web of an ecosystem.
CG(D) = (V,E) is the graph with the same vertex set as D (corresponding to
the species) and E = {{u, v} | u 6= v ∧ ∃ w ∈ V : (u,w) ∈ A ∧ (v, w) ∈ A}, i.e.
{u, v} ∈ E if and only if u and v compete for a common prey w ∈ V .

Surveys of the large literature around competition graphs can be found in
Roberts [6], Kim [4] and Lundgren [5].

In [7] it is shown that in many cases competition hypergraphs yield a better
description of the predation relations among the species in D = (V,A) than
competition graphs. If D = (V,A) is a digraph its competition hypergraph,
CH(D) = (V, E), has the vertex set V and e ⊆ V is an edge of CH(D) if and only
if |e| ≥ 2 and there is a vertex w ∈ V such that e = {v ∈ V | (v, w) ∈ A}. In this
case we say w ∈ V = V (D) corresponds to e ∈ E and vice versa.

In our paper [7] we dealt with competition hypergraphs without loops. That
way we followed the most usual definition of competition graphs. In the case of
digraphs D possessing vertices with only one predecessor, a competition hyper-
graph with loops contains a more detailed information on D (cf. [8]). For that
reason, we also include competition hypergraphs (as well as competition graphs)
with loops in our investigations and modify the notions given above.

If D = (V,A) is a digraph, its l-competition hypergraph (competition hy-

pergraph with loops) CHl(D) = (V, E l) has the vertex set V and e ⊆ V is an
edge of CH(D) if and only if e 6= ∅ and there is a vertex w ∈ V such that
e = {v ∈ V | (v, w) ∈ A}.

Analogously, the l-competition graph (competition graph with loops) CGl(D)=
(V,El) has the vertex set V and El = E(CG(D)) ∪ {{v} | v ∈ V ∧ ∃ w ∈ V :
N−

D (w) = {v}}.

For the sake of brevity, in the following we often use the term competition

graph (sometimes in connection with the notation CG(l)(D)) for the competition
graph CG(D) as well as for the l-competition graph CGl(D) (analogously for
competition hypergraphs).

Analogically with [8], for five products D1 ◦D2 (Cartesian product D1 ×D2,
Cartesian sum D1 +D2, normal product D1 ∗D2, lexicographic product D1 ·D2

and disjunction D1 ∨ D2) of digraphs D1 = (V1, A1) and D2 = (V2, A2) we

investigate the construction of the competition graph CG(l)(D1 ◦D2) = (V,E
(l)
◦ )

from CG(l)(D1) = (V1, E
(l)
1 ), CG(l)(D2) = (V2, E

(l)
2 ) and vice versa.

The products considered here always have the vertex set V := V1 × V2;
using the notation Ã := {((a, b), (a′, b′)) | a, a′ ∈ V1 ∧ b, b′ ∈ V2} their arc sets
A◦ := A(D1 ◦D2) are defined as follows:
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A× := {((a, b), (a′, b′)) ∈ Ã | (a, a′) ∈ A1 ∧ (b, b′) ∈ A2},

A+ := {((a, b), (a′, b′)) ∈ Ã | ((a, a′) ∈ A1 ∧ b = b′) ∨ (a = a′ ∧ (b, b′) ∈ A2)},

A∗ := A(D1 ×D2) ∪ A(D1 +D2),

A· := {((a, b), (a′, b′)) ∈ Ã | (a, a′) ∈ A1 ∨ (a = a′ ∧ (b, b′) ∈ A2)},

A∨ := {((a, b), (a′, b′)) ∈ Ã | (a, a′) ∈ A1 ∨ (b, b′) ∈ A2}.

It follows immediately that A+ ⊆ A∗ ⊆ A· ⊆ A∨ and A× ⊆ A∗. Except
the lexicographic product all these products are commutative in the sense that
D1 ◦D2 ≃ D2 ◦D1, where ◦ ∈ {×,+, ∗,∨}.

Usually we label the vertices of V1 and V2 by 1, 2, . . . , r1 and by 1, 2, . . . , r2,
respectively, and arrange the vertices of V = V1 × V2 according to the places
of an (r1, r2)-matrix. Then, for each ◦ ∈ {+, ∗, ·,∨}, the subdigraph of D1 ◦
D2 generated by the vertices of a column Sj := {(i, j) | i ∈ {1, . . . , r1}} (j ∈
{1, . . . , r2}) and a row Zi := {(i, j) | j ∈ {1, . . . , r2}} (i ∈ {1, . . . , r1}) of this
matrix scheme is isomorphic to D1 and D2, respectively.

The factor decomposition of product graphs is an interesting question (cf.
Imrich and Klavžar [3]). Related to this problem, the question arises whether
or not CG(l)(D1 ◦D2) can be obtained from CG(l)(D1) and CG(l)(D2) and vice
versa. For competition hypergraphs this problem had been investigated in [8].

Since competition hypergraphs include more information than competition
graphs, especially in the case of the reconstruction of CH(l)(D1) and CH(l)(D2)
from CH(l)(D1 ◦ D2) we achieved better results (cf. [8]) than for competition
graphs (see Section 3 in the present paper). In this context, it is interesting that
under certain conditions D1 ◦D2 and even D1 and D2 can be reconstructed from
CH(l)(D1 ◦D2) (cf. [8], Corollaries 1–3).

Contrastingly, the results for the construction of CG(l)(D1◦D2) from CG(l)(D1)
and CG(l)(D2) (see Section 2) and for the construction of CH(l)(D1 ◦ D2) from
CH(l)(D1) and CH(l)(D2) (cf. [8]) are comparable.

2. Determination of CG(l)(D1 ◦D2) from CG(l)(D1) and CG(l)(D2)

In the following, let D1 = (V1, A1) and D2 = (V2, A2) be digraphs. By N−

1 (v),
N−

2 (v) and N−

◦
(v) we denote the set of all predecessors of a vertex v in D1, D2

and D1 ◦D2, respectively, where ◦ ∈ {×,+, ∗, ·,∨}.

Theorem 1. The l-competition graph CGl(D1×D2) = (V,El
×
) of the Cartesian

product can be obtained from the l-competition graphs CGl(D1) = (V1, E
l
1) and

CGl(D2) = (V2, E
l
2) of D1 and D2:

El
×
= {{(a, b), (a′, b′)} | ∃e1 ∈ El

1 ∃e2 ∈ El
2 : {a, a

′} ⊆ e1 ∧ {b, b′} ⊆ e2

∧ (a = a′ ∧ b = b′ ⇒ e1 = {a} ∧ e2 = {b})}.
(1)
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Proof. The definition of A× implies

El
×

= {{(a, b), (a′, b′)} | ∃ x ∈ V1∃ y ∈ V2 : (a, x), (a
′, x) ∈ A1 ∧ (b, y), (b′, y) ∈A2

∧ ((a, b) = (a′, b′) ⇒ N−

1 (x) = {a} ∧N−

2 (y) = {b})}

= {{(a, b), (a′, b′)} | ∃ e1 ∈ El
1 ∃ e2 ∈ El

2 : {a, a
′} ⊆ e1 ∧ {b, b′} ⊆ e2

∧ (a = a′ ∧ b = b′ ⇒ e1 = {a} ∧ e2 = {b})}.

Clearly, E× results from El
×
by deleting all loops in El

×
.

Remark 2. In general, CG(D1 ×D2) = (V,E×) and therefore CGl(D1 ×D2) =
(V,El

×
) cannot be obtained from CG(D1) = (V1, E1) and CG(D2) = (V2, E2).

Proof. Consider D1 = (V1 = {a, x}, A1 = {(a, x)}), D′

1 = (V1, A
′

1 = ∅) and
D2 = (V2 = {b, b′, y}, A2 = {(b, y), (b′, y)}).

On the one hand, E(CG(D1 × D2)) = {{(a, b), (a, b′)}} 6= ∅ = E(CG(D′

1 ×
D2)), but on the other hand E(CG(D1)) = ∅ = E(CG(D′

1)).

Remark 3. If both D1 and D2 contain at least 2 vertices, then CGl(D1 ∨D2) =
CG(D1 ∨D2), i.e. CGl(D1 ∨D2) contains no loops.

Proof. Assume, {(a, b)} ∈ El
∨
is a loop. Then there is a vertex (x, y) ∈ V1 × V2

with N−

∨ ((x, y)) = {(a, b)}. Consequently, (a, x) ∈ A1 or (b, y) ∈ A2.
This implies {(a, b′) | b′ ∈ V2} ⊆ N−

∨ ((x, y)) or {(a′, b) | a′ ∈ V1} ⊆ N−

∨ ((x, y)).
Both situations contradict |N−

∨ ((x, y))| = 1.

Theorem 4. The l-competition graph CGl(D1 ∨ D2) = (V,El
∨
) of the disjunc-

tion can be obtained from the l-competition graphs CGl(D1) = (V1, E
l
1) and

CGl(D2) = (V2, E
l
2) of D1 and D2.

Proof. From the definition of A∨ it follows El
∨
= ∅ if and only if El

1 = El
2 = ∅.

In case of El
1 6= ∅ and El

2 6= ∅ we have

El
∨
= {{(a, b), (a′, b′)} | (a, b) 6= (a′, b′) ∧ ∃ x ∈ V1∃ y ∈ V2 :

((a, x) ∈ A1 ∨ (b, y) ∈ A2) ∧ ((a′, x) ∈ A1 ∨ (b′, y) ∈ A2)}

= {{(a, b), (a′, b′)} | (a, b) 6= (a′, b′) ∧ ∃ e1 ∈ El
1∃ e2 ∈ El

2 :

{a, a′} ⊆ e1 ∨ {b, b′} ⊆ e2 ∨ (a ∈ e1 ∧ b′ ∈ e2) ∨ (a′ ∈ e1 ∧ b ∈ e2)}.

If exactly one of the sets El
1, E

l
2 is empty, then

El
∨
= {{(a, b), (a′, b′)} | (a, b) 6= (a′, b′) ∧ ∃ e1 ∈ El

1 : {a, a
′} ⊆ e1

∨ ∃ e2 ∈ El
2 : {b, b

′} ⊆ e2}.
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Note that in the corresponding result for competition hypergraphs (cf. [8],
Theorem 2) an additional supposition is needed.

Considering digraphs D1 = (V1, A1) and D2 = (V2, A2) with |V1|, |V2| ≥ 2,
|A1| = 1 and A2 = ∅ we obtain the following remark.

Remark 5. In general, CG(D1∨D2) = (V,E∨) cannot be obtained from CG(D1)
= (V1, E1) and CG(D2) = (V2, E2).

Proposition 6. In general, CG(D1 ◦D2) = (V, E◦), and therefore CGl(D1 ◦D2),
cannot be obtained from CGl(D1) and CGl(D2), for ◦ ∈ {+, ∗, ·}.

Proof. For illustration, we use figures of CG(D1 ◦D2). In these figures several
large cliques (each of them induced by the in-neighbourhood N−

◦
(v) of a vertex

v of D1 ◦D2) will occur. Some of these cliques contain many edges what could
be confusing in the drawings. Therefore we represent such cliques (i.e. cliques
of cardinality greater than 2) as closed curves around the vertices of N−

◦
(v), i.e.

as a kind of hyperedges in the competition hypergraph CH(D1 ◦D2). Of course,
if N−

◦
(v′) ⊆ N−

◦
(v), it would be sufficient to draw the clique induced by the

larger in-neighbourhood N−

◦
(v). But for a better traceability of the structure of

CG(D1 ◦D2) we decided to draw all “hyperedges” representing such cliques.
We make use of an example from our paper [8].

Example 7. Consider the digraphs D1 = (V1, A1), D
′

1 = (V1, A
′

1) and D2 =
(V2, A2) with V1 = {1, 2, 3, 4}, V2 = {1, 2, 3}, A1 = {(1, 2), (3, 2), (4, 3)}, A′

1 =
{(1, 4), (3, 4), (4, 2)} and A2 = {(1, 3), (2, 3)}, respectively (cf. Figure 1).

Then E(CGl(D1)) = {{1, 3}, {4}} = E(CGl(D′

1)).

?

6

6

1

2

3

4

D1 : D′

1 : 1

2

3

4
?

�



D2 : -j

1 2 3

CG
l(D1) = CG

l(D′

1) : 1

2

3

4

CG
l(D2) :

1 2 3

Figure 1
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On the other hand, CG(D1 +D2) 6= CG(D′

1 +D2), since the vertices (4, 1)
and (1, 3) are adjacent in CG(D′

1 + D2) but non-adjacent in CG(D1 + D2) (cf.
Figure 2).

D1 + D2 : D
′

1
+ D2 :

1

2

3

4

1 2 3

1

2

3

4

1 2 3
j-

j-

j-

j-

?

6

6

?

6

6

?

6

6

-

-

-

-

j

j

j

*
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? ??

CG(D1 +D2) :

1

1

3

2

2

3

4

1

1

2

2

3

3

4

CG(D′

1 +D2) :

Figure 2

Moreover, CG(D1 ∗D2) 6= CG(D′

1 ∗D2), since the vertices (2, 1) and (4, 1)
are adjacent in CG(D′

1 ∗D2) but non-adjacent in CG(D1 ∗D2) (cf. Figure 3).

CG(D1 ∗D2) : 1

1

2

2

3

3

4

CG(D′

1 ∗D2) : 1 2

2

3

3

4

1

Figure 3

Finally, CG(D1 ·D2) 6= CG(D′

1 ·D2), since the vertices (2, 1) and (4, 1) are
adjacent in CG(D′

1 ·D2) but non-adjacent in CG(D1 ·D2) (cf. Figure 4).

Looking at Figures 3 and 4, replacing the ”hyperedges” by cliques of ordinary
edges (of cardinality 2) and identifying multiple edges we make a nice observation.

Remark 8. For the digraphs D1, D
′

1, D2, we obtain CG(D1 ∗D2) = CG(D1 ·D2)
and CG(D′

1 ∗D2) = CG(D′

1 ·D2).
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CG(D1 ·D2) :

1

1

3

2

2

3

4

1

1

2

2

3

3

4

CG(D′

1 ·D2) :

Figure 4

3. Reconstruction of CG(l)(D1) and CG(l)(D2) from CG(l)(D1 ◦D2)

Whereas in Section 2 the results for constructing CG(l)(D1 ◦D2) from CG(l)(D1)
and CG(l)(D2) are very closely related to the corresponding results for competi-
tion hypergraphs (cf. [8]), in the present Section 3 we will find more significant
differences between the graph and the hypergraph case. So it is worth mention-
ing that under certain conditions it is even possible to reconstruct the digraphs
D1 and D2 themselves from CHl(D1 + D2) or CH(D1 ∗ D2). In general, being
premised on competition graphs, this is impossible.

In the following, for a set e = {(i1, j1), . . . , (ik, jk)} ⊆ V1 × V2 we define
π1(e) := {i1, . . . , ik} and π2(e) := {j1, . . . , jk}, respectively, i.e. πi denotes the
projection of the vertices of CG(l)(D1 ◦ D2) onto their ith component, for i ∈
{1, 2}.

3.1. The Cartesian product D1 × D2

First of all, if El
×
= E(CGl(D1 ×D2)) = ∅ then A(D1 ×D2) = ∅ and, therefore,

A1 = ∅ or A2 = ∅. But considering only CGl(D1 ×D2) (or even D1 ×D2) it is
impossible to detect which of the arc sets A1 or A2 is empty. The same holds for
El

1 = E(CGl(D1)) = ∅ and El
2 = E(CGl(D2)) = ∅, respectively, since Ai = ∅ if

and only if E(CGl(Di)) = ∅ (i ∈ {1, 2}).
The following example shows digraphs D1, D

′

1 and D2 with CGl(D1×D2) =
CGl(D′

1 ×D2), but CGl(D1) 6= CGl(D′

1).

Example 9. Let D1 = (V1 = {1, 2, 3, 4}, A1 = {(1, 2), (3, 2), (3, 4)}),
D′

1 = (V1, A
′

1 = A1 ∪ {(1, 4)}) and D2 = (V2 = {1, 2, 3}, A2 = {(1, 2), (3, 2)}).
Then

E(CGl(D1 ×D2)) = {{(1, 1), (1, 3)}, {(1, 1), (3, 1)}, {(1, 1), (3, 3)},

{(1, 3), (3, 1)}, {(1, 3), (3, 3)}, {(3, 1), (3, 3)}}

= E(CGl(D′

1 ×D2)),

but E(CGl(D1)) = {{1, 3}, {3}} 6= {{1, 3}} = E(CGl(D′

1)).
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Theorem 10. For the Cartesian product D1 ×D2 it holds:

(a) If E× 6= ∅, then the competition graphs CG(D1) and CG(D2) can be recon-

structed from CG(D1 ×D2).

(b) In general, the l-competition graphs CGl(D1) and CGl(D2) cannot be recon-

structed from CGl(D1 ×D2).

(c) If CGl(D1 × D2) contains a loop, then the l-competition graphs CGl(D1)
and CGl(D2) can be reconstructed from CGl(D1 ×D2).

Proof. (a) Let e ∈ E× and (a, b) ∈ e. Then there exists a vertex (x, y) ∈ V1×V2

with (a, x) ∈ A1 and (b, y) ∈ A2.

Suppose {a′, a′′} ∈ E1 and x′ ∈ V1 such that (a′, x′), (a′′, x′) ∈ A1. Clearly,
(a′, b), (a′′, b) ∈ N−

×
((x′, y)), {(a′, b), (a′′, b)} ∈ E× and {a′, a′′} = π1({(a

′, b),
(a′′, b)}). So it follows E1 = {π1(e) | e ∈ E× ∧ |π1(e)| = 2} and, analogously
E2 = {π2(e) | e ∈ E× ∧ |π2(e)| = 2}.

(b) See Example 9.

(c) It suffices to show that all loops in CGl(D1) and CGl(D2) can be recon-
structed. Let {(a, b)} ∈ El

×
be a loop. Consequently, there is a vertex (x, y) ∈

V1 × V2 such that N−

×
((x, y)) = {(a, b)} and we obtain the loops N−

1 (x) = {a}
and N−

2 (y) = {b} in El
1 and El

2, respectively.

Now let {a′} ∈ El
1 be a loop in CGl(D1) and x′ ∈ V1 with N−

1 (x′) = {a′}.
Clearly, N−

×
((x′, y)) = {(a′, b)} ∈ El

×
is a loop and {a′} = π1({(a

′, b)}). Analo-
gously, every loop {b′} ∈ El

2 can be obtained as the projection π2(e) of a certain
loop e ∈ El

×
.

Note that there is a loop in CGl(D1 ×D2) if and only if both CGl(D1) and
CGl(D2) contain a loop, which is equivalent to the fact that in D1 as well as in
D2 there is at least one vertex with in-degree 1.

3.2. The Cartesian sum D1 + D2

Based on the definition of D1 + D2 = (V1 × V2, A+) we get the edge set of
CG(D1 +D2) as follows.

E+ = {{(a, b), (a′, b′)} | ∃(x, y) ∈ V1 × V2 : (a, b) 6= (a′, b′)

∧ {(a, b), (a′, b′)} ⊆ N−

+ ((x, y))}

= {{(a, b), (a′, b′)} | ∃(x, y) ∈ V1 × V2 : (a, b) 6= (a′, b′)

∧ ((a = x ∧ (b, y) ∈ A2) ∨ ((a, x) ∈ A1 ∧ b = y))

∧ ((a′ = x ∧ (b′, y) ∈ A2) ∨ ((a′, x) ∈ A1 ∧ b′ = y))}
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= {{(a, b), (a′, b′)} | ∃(x, y) ∈ V1×V2 : (a= a′= x ∧ b 6= b′∧ {(b, y), (b′, y)}⊆A2)

∨ (a = x ∧ (a′, x) ∈ A1 ∧ (b, y) ∈ A2 ∧ b′ = y)

∨ (a′ = x ∧ (a, x) ∈ A1 ∧ (b′, y) ∈ A2 ∧ b = y)

∨ (a 6= a′ ∧ {(a, x), (a′, x)} ⊆ A1 ∧ b = b′ = y)}

= {{(a, b), (a′, b′)} | (a = a′∧ {b, b′} ∈ E2) ∨ ((a′, a) ∈ A1 ∧ (b, b′) ∈ A2)

∨ ((a, a′) ∈ A1 ∧ (b′, b) ∈ A2) ∨ ({a, a′} ∈ E1 ∧ b = b′)}.

Moreover, if the edge set of CGl(D1+D2) is E
l
+ = {{(a, b)} | (a, b) ∈ V1×V2},

then either D1 is a directed cycle and A2 = ∅ or D2 is a directed cycle and
A1 = ∅. In this case it cannot be decided whether El

1 = {{a} | a ∈ V1} and
El

2 = ∅ or El
2 = {{b} | b ∈ V2} and El

1 = ∅. Therefore, the existence of a loop in
CGl(D1 +D2) (as in Theorem 10(c) for the Cartesian product) is not sufficient
for the reconstructibility of CGl(D1) and CGl(D2).

In analogy with Example 9, in our next example we give digraphs D1, D
′

1

and D2 with CGl(D1 +D2) = CGl(D′

1 +D2), but CGl(D1) 6= CGl(D′

1).

Example 11. Let D1 = (V1={1, 2, 3}, A1 = {(1, 2), (1, 3), (2, 3)}), D′

1=(V1, A
′

1

={(2, 1), (1, 3), (2, 3)}) and D2 = (V2 = {1, 2, 3}, A2 = {(1, 2), (1, 3), (2, 1), (2, 3),
(3, 1), (3, 2)}).

Clearly, E(CGl(D1)) = {{1, 2}, {1}} 6= {{1, 2}, {2}} = E(CGl(D′

1)).
Lets consider E(CGl(D1 +D2)) =

⋃
{EN−

+ ((i, j)) | (i, j) ∈ V1 × V2}, where
EN−

+ ((i, j)) includes all edges in CGl(D1+D2) generated by the predecessors of
the vertex (i, j) in D1+D2. Denoting the corresponding edge sets in E(CGl(D′

1+

D2)) by EN
′
−

+ ((i, j)), we observe the following:

• In E(CGl(D1 +D2)) we have the sets
EN−

+ ((1, 1)) = {{(1, 2), (1, 3)}},
EN−

+ ((1, 2)) = {{(1, 1), (1, 3)}},
EN−

+ ((1, 3)) = {{(1, 1), (1, 2)}},
EN−

+ ((2, 1)) = {{(1, 1), (2, 2)}, {(1, 1), (2, 3)}, {(2, 2), (2, 3)}},
EN−

+ ((2, 2)) = {{(1, 2), (2, 1)}, {(1, 2), (2, 3)}, {(2, 1), (2, 3)}},
EN−

+ ((2, 3)) = {{(1, 3), (2, 1)}, {(1, 3), (2, 2)}, {(2, 1), (2, 2)}},

EN−

+ ((3, 1)) = EN
′
−

+ ((3, 1)),

EN−

+ ((3, 2)) = EN
′
−

+ ((3, 2)), and

EN−

+ ((3, 3)) = EN
′
−

+ ((3, 3)).
The transition from D1+D2 to D′

1+D2 does not change the last three edge sets.

• The deletion of the arc (1, 2) ∈ A1 induces that in D1 +D2 the arcs ((1, 1),
(2, 1)), ((1, 2), (2, 2)) and ((1, 3), (2, 3)) vanish and, consequently, the edge set
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Ẽ = {{(1, 1), (2, 2)}, {(1, 1), (2, 3)}, {(1, 2), (2, 1)}, {(1, 2), (2, 3)},
{(1, 3), (2, 1)}, {(1, 3), (2, 2)}}

disappears in the l-competition graph.

• On the other hand, if we add the arc (2, 1) to D1\{(1, 2)}, then we obtain D′

1

and the same set Ẽ of edges emerges in the l-competition graph CGl(D′

1 +D2).
In detail, for E(CGl(D′

1 +D2)) we get

EN
′
−

+ ((1, 1)) = {{(1, 2), (1, 3)}, {(1, 2), (2, 1)}, {(1, 3), (2, 1)}},

EN
′
−

+ ((1, 2)) = {{(1, 1), (1, 3)}, {(1, 1), (2, 2)}, {(1, 3), (2, 2)}},

EN
′
−

+ ((1, 3)) = {{(1, 1), (1, 2)}, {(1, 1), (2, 3)}, {(1, 2), (2, 3)}},

EN
′
−

+ ((2, 1)) = {{(2, 2), (2, 3)}},

EN
′
−

+ ((2, 2)) = {{(2, 1), (2, 3)}}, and

EN
′
−

+ ((2, 3)) = {{(2, 1), (2, 2)}}.
Therefore, E(CGl(D1 + D2)) = E(CGl(D′

1 + D2)) in spite of E(CGl(D1)) 6=
E(CGl(D′

1)).

In our next theorem we need an additional notation. Let {α, β} = {1, 2},
D1 = (V1, A1), D2 = (V2, A2), V1 = {1, . . . , r1}, V2 = {1, . . . , r2}, k ∈ {1, . . . , rβ}
and

Rβ
k =

{
Zk if β = 1,
Sk if β = 2.

Theorem 12. For the Cartesian sum D1 +D2 it holds:

(a) The competition graphs CG(D1) and CG(D2) can be reconstructed from

CG(D1 +D2).

(b) In general, the l-competition graphs CGl(D1) and CGl(D2) cannot be recon-

structed from CGl(D1 +D2).

(c) Let {α, β} = {1, 2}. If

(c1) El
+ 6= {{(a, b)} | (a, b) ∈ V1 × V2} and for all edges e ∈ El

+ it holds

|πβ(e)| = 1 or

(c2) there exists an edge ẽ ∈ El
+ with |π1(ẽ)| = |π2(ẽ)| = 2 and

(2) ∃j ∈ {1, . . . , rβ} ∀e ∈ El
+ : Rβ

j ∩ e 6= ∅ ⇒ e ⊆ Rβ
j ,

then CGl(Dα), in case (c1) also CGl(Dβ), can be reconstructed from

CGl(D1 +D2).

Proof. (a) From the above expression for E+ we obtain
E1 = {π1(e) | e ∈ E+ ∧ | π1(e)| = 2 ∧ | π2(e)| = 1} and, analogously,
E2 = {π2(e) | e ∈ E+ ∧ | π2(e)| = 2 ∧ | π1(e)| = 1}.
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(b) See Example 11.

(c) First of all, it is clear that, in the case of |V1| = 1 or |V2| = 1, the
reconstruction is trivial; the same holds for |El

+| = 0. So, let |V1|, |V2| ≥ 2 and
|El

+| ≥ 1. Since every arc (a, a′) ∈ A1 induces |V2| arcs in D1 +D2 (analogously
for arcs (b, b′) ∈ A2 and |V1|), we know |El

+| ≥ 2.

(c1) First, let El
+ contain only loops. Then either A1=∅= El

1 or A2=∅=El
2.

Let {(a, b)} /∈ El
+. This implies {a} /∈ El

1, i.e. N
+
1 (a) = ∅ as well as {b} /∈ El

2,
i.e. N+

2 (b) = ∅.

If {{(a, b′)} | b′ ∈ V2} ∩ El
+ = ∅, then El

2 = ∅ and El
1 = {π1(e) | e ∈ El

+}.

Otherwise, {{(a′, b)} | a′ ∈ V1}∩E
l
+=∅ and El

1=∅ as well as El
2 = {π2(e) | e ∈

El
+}.

Secondly, let ẽ ∈ El
+ with |ẽ| = 2. It suffices to consider α = 1 and β = 2.

Then the case α = 2 and β = 1 follows from D1 +D2 ≃ D2 +D1.

Because of |π2(e)| = 1 for all e ∈ El
+, we have ẽ = {(a, b), (a′, b)} with distinct

a, a′ ∈ V1 and b ∈ V2. For the same reason, A2 = ∅ = El
2 and El

1 = {π1(e) | e ∈
El

+}.

(c2) The existence of an edge ẽ ∈ El
+ with |π1(ẽ)| = |π2(ẽ)| = 2 implies

A1 6= ∅ and A2 6= ∅. For ẽ = {(a, b), (a′, b′)} this follows from a 6= a′, b 6= b′ and
the definition of D1 +D2, since a ∈ N−

1 (a′) and b′ ∈ N−

2 (b) or a′ ∈ N−

1 (a) and
b ∈ N−

2 (b′) must be valid.

Again, we consider only the case α = 1 and β = 2.

Let j ∈ {1, . . . , r2} fulfil the condition (2) and, moreover, (i, i′) ∈ A1.

Assume there is a vertex j′ ∈ V2 \ {j} with (j, j′) ∈ A2. Then e′ :=
{(i, j′), (i′, j)} ⊆ N−

+ ((i′, j′)) is an edge in El
+ with e′ ∩ Sj 6= ∅ and e′ 6⊆ Sj ,

in contradiction to (2).

Consequently, N+
2 (j) = ∅.

Therefore, all edges e ∈ El
+ with e ∩ Sj 6= ∅ (or, equivalently, e ⊆ Sj) are

induced by the sets of predecessors N−

+ ((i′, j)) of vertices (i′, j) ∈ Sj . Hence
the subgraph 〈Sj〉CGl(D1+D2) = (Sj , {e | e ∈ El

+ ∧ e ⊆ Sj}) of CGl(D1 + D2) is

isomorphic to CGl(D1) and
El

1 = {π1(e) | e ∈ El
+ ∧ e ∩ Sj 6= ∅} = {π1(e) | e ∈ El

+ ∧ e ⊆ Sj}.

Remark 13. The condition (2) is equivalent to ∃j ∈ Vβ : N+
β (j) = ∅.

In Theorem 12 we prefer (2), since (2) uses only the edge set El
+ of the l-

competition graph of D1+D2, which is given by the assumptions of the theorem,
and not properties of the (unknown) digraph Dβ.
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3.3. The normal product D1 ∗ D2

In case of the normal product we obtain an analogous result as Theorem 12 for
the Cartesian sum.

Theorem 14. For the normal product D1 ∗D2 it holds:

(a) The competition graphs CG(D1) and CG(D2) can be reconstructed from

CG(D1 ∗D2).

(b) In general, the l-competition graphs CGl(D1) and CGl(D2) cannot be recon-

structed from CGl(D1 ∗D2).

(c) Let {α, β} = {1, 2}. If

(c1) El
∗
6= {{(a, b)} | (a, b) ∈ V1 × V2} and for all edges e ∈ El

∗
it holds

|πβ(e)| = 1 or

(c2) there exists an edge ẽ ∈ El
∗
with |π1(ẽ)| = |π2(ẽ)| = 2 and

(3) ∃j ∈ {1, . . . , rβ} ∀e ∈ El
∗
: Rβ

j ∩ e 6= ∅ ⇒ e ⊆ Rβ
j ,

then CGl(Dα), in case (c1) also CGl(Dβ), can be reconstructed from CGl(D1

∗D2).

Proof. (a) Because of A(D1+D2) ⊆ A(D1∗D2), we obtain E+ ⊆ E∗. Moreover,
we have

{e | e ∈ E+ ∧ | π1(e)| = 2 ∧ |π2(e)| = 1} = {e | e ∈ E∗ ∧ | π1(e)| = 2 ∧ | π2(e)| = 1}

and

{e | e ∈ E+ ∧ | π2(e)| = 2 ∧ | π1(e)| = 1} = {e | e ∈ E∗ ∧ | π2(e)| = 2 ∧ | π1(e)| = 1}.

Therefore, analogously to the proof of Theorem 12 (a) we get

E1 = {π1(e) | e ∈ E∗ ∧ | π1(e)| = 2 ∧ | π2(e)| = 1}, and

E2 = {π2(e) | e ∈ E∗ ∧ | π2(e)| = 2 ∧ | π1(e)| = 1}.

(b) We use the digraphs D1, D
′

1 and D2 given in Example 11. Since CGl(D1)
6= CGl(D′

1), to disprove the reconstructibility of CGl(Di) it suffices to verify
CGl(D1 ∗ D2) = CGl(D′

1 ∗ D2). We will show that both CGl(D1 ∗ D2) and
CGl(D′

1 ∗D2) are complete graphs.

So let (i, j), (i′, j′) ∈ V1×V2 with (i, j) 6= (i′, j′) and j′′ ∈ V2 \{j, j
′}. Because

the digraph D2 is complete, we have j, j′ ∈ N−

2 (j′′). This implies that in D1 ∗D2

(as well as in D′

1∗D2) the vertex (3, j′′) is a common successor of the vertices (i, j)
and (i′, j′), since in D1 (as well as in D′

1) the vertex 3 is a successor of the vertices
1 and 2 (note that also for i = 3 and i′ = 3 trivially (3, j′′) is a successor of (i, j)
and (i′, j′), respectively). Therefore, in both CGl(D1∗D2) and CGl(D′

1∗D2) any
two vertices (i, j), (i′, j′) ∈ V1 × V2 are adjacent, i.e. both l-competition graphs
are complete graphs.
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(c) Since nearly the whole argumentation from the proof of case (c) of The-
orem 12 remains valid also for the normal product if we replace D1 + D2 by
D1 ∗D2, we discuss only the differences between the proofs of Theorem 12(c) and
Theorem 14(c).

The considerations at the beginning of the proof of case (c) of Theorem 12
are the same for D1 ∗D2.

(c1) Here as well as in Theorem 12(c1) either A1 = ∅ or A2 = ∅, therefore
D1 +D2 = D1 ∗D2 and no additional thinking is necessary.

(c2) Analogously to the proof of Theorem 12(c2), we obtain A1 6= ∅ and
A2 6= ∅ from ẽ = {(a, b), (a′, b′)}, where a 6= a′, b 6= b′, but now using the
definition of D1 ∗D2, since

∃ x ∈ V1 : {a, a
′} ⊆ N−

1 (x) ∨ a ∈ N−

1 (a′) ∨ a′ ∈ N−

1 (a) and

∃ y ∈ V2 : {b, b
′} ⊆ N−

2 (y) ∨ b ∈ N−

2 (b′) ∨ b′ ∈ N−

2 (b)

must be valid.

Replacing (2) by (3) and “+” by “∗”, the rest of the proof can be taken over
word by word and we obtain

El
1 = {π1(e) | e ∈ El

∗
∧ e ∩ Sj 6= ∅} = {π1(e) | e ∈ El

+ ∧ e ⊆ Sj}.

Now we consider an example, where (3) does not hold and the reconstruction
of El

1 described at the end of the proof of Theorem 14 fails.

Example 15. Let D1=(V1= {1, 2}, A1= {(1, 2), (2, 1)}) and D2=(V2={1, 2},
A2 = {(1, 2)}). Then

D1 ∗D2 = (V1 × V2, A∗ = {((1, 1), (1, 2)), ((1, 1), (2, 1)), ((1, 1), (2, 2)),

((1, 2), (2, 2)), ((2, 1), (1, 1)), ((2, 1), (1, 2)), ((2, 1), (2, 2)), ((2, 2), (1, 2))}),

El
∗
= {{(1, 1)}, {(2, 1)}, {(1, 1), (1, 2)}, {(1, 1), (2, 1)}, {(1, 1), (2, 2)},

{(1, 2), (2, 1)}, {(2, 1), (2, 2)}},

but

{π1(e) | e ∈ El
∗
∧ e ∩ S1 6= ∅} = {{1}, {2}, {1, 2}}

= {π1(e) | e ∈ El
∗
∧e ⊆ S1} 6= {{1}, {2}} = El

1.

Moreover,

{π1(e) | e ∈ El
∗
∧ e ∩ S2 6= ∅} = {{1}, {2}, {1, 2}}

6= ∅ = {π1(e) | e ∈ El
∗
∧ e ⊆ S2} 6= El

1.

3.4. The lexicographic product D1 · D2

Note that if (i, i′) ∈ A1, then it holds ((i, j), (i′, j′)) ∈ A· (for all j, j
′ ∈ V2) and,

consequently, P2(Zi) := {{(i, j), (i, j′)} | j, j′ ∈ V2 ∧ j 6= j′} ⊆ E·.
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(Conversely, this means that P2(Zi) \ E· 6= ∅ includes N+
1 (i) = ∅.)

Hence, the existence of a vertex i ∈ V1 having the outdegree 0 in D1 is
necessary to get some information on El

2 from CGl(D1 ·D2); this will be used in
(a) of our next theorem.

Concerning the reconstruction of CG(D1) we discuss (3) from Theorem 14.

Replacing El
∗
by El

·
in (3), for β = 2 (i.e. Rβ

j is the column Sj) the condition (3)
makes no sense for the lexicographic product, because in the case (i, i′′) ∈ A1 the
vertex (i′′, j) ∈ V1×V2 has predecessors (i, j

′) in all columns Sj′ (j
′ ∈ {1, . . . , r2}).

Hence, for j′ ∈ {1, . . . , r2} \ {j}, we get {(i, j), (i, j′)} ∈ E·, i.e. there are a lot of
edges e ∈ E· fulfilling e ∩ Sj 6= ∅ and e 6⊆ Sj .

Therefore, for the lexicographic product we have to make use of another
condition ((5), see below), which implies that there are no “horizontal arcs”
((i, j), (i, j′)) ∈ A· in D1 ·D2 (for all j′ ∈ {1, . . . , r2} \ {j}).

Whereas (5) will be proven to allow the reconstruction of CG(D1) from
CG(D1 · D2), our next example shows that, in general, in the case of the l-
competition graph the corresponding reconstruction is impossible.

Example 16. Let D1 = (V1 = {1, 2, 3}, A1 = {(1, 2), (1, 3), (3, 2)}), D′

1 = (V1,
A′

1 = {(1, 2), (3, 2)}) and D2 = (V2 = {1, 2}, A2 = ∅). Obviously, A(D′

1 ·D2) ⊆
A(D1 · D2) and E(CGl(D′

1 · D2)) ⊆ E(CGl(D1 · D2)). On the other hand, the
only edge e ∈ E(CGl(D1 · D2)) which is induced by the arc (1, 3) ∈ A1 \ A′

1

is e = N−

CGl(D1·D2)
((3, 1)) = N−

CGl(D1·D2)
((3, 2)) = {(1, 1), (1, 2)}. Because of

e ⊆ N−

CGl(D′

1
·D2)

((2, 1)), it follows e ∈ E(CGl(D′

1·D2)) and, therefore, E(CGl(D′

1·

D2)) = E(CGl(D1 ·D2)).
Consequently, E(CGl(D1)) = {{1}, {1, 3}} 6= {{1, 3}} = E(CGl(D′

1)) cannot
be reconstructed from CGl(D1 ·D2) = CGl(D′

1 ·D2).

Theorem 17. For the lexicographic product D1 ·D2 it holds:

(a) If

(4) ∃i ∈ {1, . . . , r1} : P2(Zi) \ E· 6= ∅,
then CG(D2) can be reconstructed from CG(D1 ·D2).

(b) If D1 contains an isolated vertex i ∈ V1, then CGl(D2) can be reconstructed

from CGl(D1 ·D2).

(c) If

(5) ∃j ∈ {1, . . . , r2} : N+
2 (j) = ∅,

then CG(D1) can be reconstructed from CG(D1 ·D2).

(d) In general, the l-competition graph CGl(D1) cannot be reconstructed from

CGl(D1 ·D2).

Proof. (a) Let i ∈ {1, . . . , r1} with P2(Zi) \ E· 6= ∅, i.e. N+
1 (i) = ∅. Further let

e ∈ P2(Zi)∩E· be an edge in CG(D1 ·D2) containing only vertices of the row Zi.
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Since i ∈ V1 has no successor in D1, there is a vertex (i, j′′) ∈ Zi with
e ⊆ N−

·
((i, j′′)). Therefore, for e = {(i, j), (i, j′)} it follows {j, j′} ⊆ N−

2 (j′′), i.e.
π2(e) ∈ E2. Consequently, we obtain E2 = {π2(e) | e ∈ E· ∧ e ⊆ Zi}.

(Note that in the case of the l-competition graphs CGl(D1 ·D2) and CGl(D2)
the following problem occurs: if i′ ∈ V1 is a predecessor of the vertex i and
N−

2 (j′′) = {j} is a loop in CGl(D2), then {(i, j), (i′, j′′)} ⊆ N−

·
((i, j′′)) and

therefore there is no edge e ∈ El
·
with e ⊆ Zi and π2(e) = {j}. In other words,

there is no loop e = {(i, j)} in El
·
.)

(b) Now let i ∈ V1 be an isolated vertex in D1 (i.e. N−

1 (i) = N+
1 (i) = ∅).

Further let j, j′′ ∈ V2 such that N−

2 (j′′) = {j} is a loop in CGl(D2). Since
N−

1 (i) = ∅, e = {(i, j)} = N−

·
((i, j′′)) ∈ El

·
is a loop in CGl(D1 ·D2) with e ⊆ Zi

and π2(e) = {j}. This way, all loops in CGl(D2) can be reconstructed. Because
of N+

1 (i) = ∅, the reconstruction of the edges e ∈ E2 can be done analogously to
part (a) of the proof and we have El

2 = {π2(e) | e ∈ El
·
∧ e ⊆ Zi}.

(c) Let j fulfil the condition in (5) and consider an edge {(i, j), (i′, j)} ∈ E·.
Then, in D1 · D2 for all successors (i′′, j′′) of the vertices (i, j), (i′, j) the vertex
i′′ must be a common successor of the vertices i and i′, since j′′ /∈ N+

2 (j) = ∅.
Consequently, {i, i′} ⊆ N−

1 (i′′) and {i, i′} ∈ E1. On the other hand, for all
{i, i′} ∈ E1, even in the subgraph 〈Sj〉CG(D1·D2) = (Sj , {e | e ∈ E· ∧ e ⊆ Sj}) of
CG(D1 ·D2), we find the edge e = {(i, j), (i′, j)} with π1(e) = {i, i′}. Therefore,
we get E1 = {π1(e) | e ∈ E· ∧ e ⊆ Sj}.

(d) In Example 16, the digraph D2 fulfills condition (5), but for the l-
competition hypergraphs we have CGl(D1 ·D2) = CGl(D′

1 ·D2) whereas CGl(D1)
6= CGl(D′

1) holds.

3.5. The disjunction D1 ∨ D2

In analogy with Theorem 17, (c) and (d), we obtain a corresponding result
for the disjunction.

Theorem 18. Let {α, β} = {1, 2}. For the disjunction D1 ∨D2 it holds:

(a) If

(6) ∃j ∈ {1, . . . , rβ} : N+
β (j) = ∅,

then CG(Dα) can be reconstructed from CG(D1 ∨D2).

(b) In general, the l-competition graph CGl(Dα) cannot be reconstructed from

CGl(D1 ∨D2).

Proof. Owing to D1 ∨D2 ≃ D2 ∨D1 it is sufficient to consider the case α = 1
and β = 2.

Then, replacing D1 · D2 by D1 ∨ D2, the argumentation from the proof of
Theorem 17 (parts (c) and (d)) as well as the counterexample (Example 16) can
be used without any changes.
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