ON SPECTRA OF VARIANTS OF THE CORONA OF TWO GRAPHS AND SOME NEW EQUIENERGETIC GRAPHS

Chandrashekar Adiga and B.R. Rakshith
Department of Studies in Mathematics
University of Mysore, Manasagangothri
Mysore - 570 006, India
e-mail: c_adiga@hotmail.com
ranmsc08@yahoo.co.in

Abstract

Let G and H be two graphs. The join $G \vee H$ is the graph obtained by joining every vertex of G with every vertex of H. The corona $G \circ H$ is the graph obtained by taking one copy of G and $|V(G)|$ copies of H and joining the i-th vertex of G to every vertex in the i-th copy of H. The neighborhood corona $G \star H$ is the graph obtained by taking one copy of G and $|V(G)|$ copies of H and joining the neighbors of the i-th vertex of G to every vertex in the i-th copy of H. The edge corona $G \diamond H$ is the graph obtained by taking one copy of G and $|E(G)|$ copies of H and joining each terminal vertex of i-th edge of G to every vertex in the i-th copy of H. Let G_{1}, G_{2}, G_{3} and G_{4} be regular graphs with disjoint vertex sets. In this paper we compute the spectrum of $\left(G_{1} \vee G_{2}\right) \cup\left(G_{1} \star G_{3}\right),\left(G_{1} \vee G_{2}\right) \cup\left(G_{2} \star G_{3}\right) \cup\left(G_{1} \star G_{4}\right)$, $\left(G_{1} \vee G_{2}\right) \cup\left(G_{1} \circ G_{3}\right),\left(G_{1} \vee G_{2}\right) \cup\left(G_{2} \circ G_{3}\right) \cup\left(G_{1} \circ G_{4}\right),\left(G_{1} \vee G_{2}\right) \cup\left(G_{1} \diamond G_{3}\right)$, $\left(G_{1} \vee G_{2}\right) \cup\left(G_{2} \diamond G_{3}\right) \cup\left(G_{1} \diamond G_{4}\right),\left(G_{1} \vee G_{2}\right) \cup\left(G_{2} \circ G_{3}\right) \cup\left(G_{1} \star G_{3}\right)$, $\left(G_{1} \vee G_{2}\right) \cup\left(G_{2} \circ G_{3}\right) \cup\left(G_{1} \diamond G_{4}\right)$ and $\left(G_{1} \vee G_{2}\right) \cup\left(G_{2} \star G_{3}\right) \cup\left(G_{1} \diamond G_{4}\right)$. As an application, we show that there exist some new pairs of equienergetic graphs on n vertices for all $n \geq 11$.

Keywords: spectrum, corona, neighbourhood corona, edge corona, energy of a graph, equienergetic graphs.
2010 Mathematics Subject Classification: 05C50.

1. Introduction

Throughout this paper we consider only undirected simple graphs (i.e., graphs with no loops and multiple edges). Let G be a graph on n vertices. The eigenvalues of the adjacency matrix of G, denoted by $\lambda_{i}(G), i=1,2, \ldots, n$, are
the eigenvalues of the graph G and $\sigma(G)=\left(\lambda_{1}(G), \lambda_{2}(G), \ldots, \lambda_{n}(G)\right)$, where $\lambda_{1}(G) \geq \lambda_{2}(G) \geq \cdots \geq \lambda_{n}(G)$ is the adjacency spectrum of G [8]. The energy $E(G)$ is the sum of all absolute values of eigenvalues of G. The concept of energy of a graph was introduced by Gutman [12] with an application to chemistry (Huckel molecular orbital approximation for the total π-electron energy [14]). The energy and various forms of energy of a graph G has been extensively studied by many mathematicians and some of their works can be found in $[1,2,3,5,13,15,19,21,28,27]$ and references therein. Two graphs G_{1} and G_{2} of the same order are said to be equienergetic if $E\left(G_{1}\right)=E\left(G_{2}\right)$. Graphs of the same order are cospectral if they have the same spectrum. Thus, two cospectral graphs are obviously equienergetic. For connected graphs, there are no equienergetic graphs of order $n \leq 5$. In [18] Indulal and Vijayakumar have constructed a pair of equienergetic graphs on n vertices for $n=6,14,18$ and for all $n \geq 20$. Later Liu et al. [22] and Ramane, Walikar [26] have independently proved that there exists a pair of equienergetic graphs on n vertices for all $n \geq 9$. Studies on equienergetic graphs can be found in $[6,11,18,20,22,25,26,29]$ and references therein.

The corona of two graphs was first introduced by Frucht and Harary in [10]. Barik et al. [4] provided a complete description of the spectrum of corona $G_{1} \circ G_{2}$ using the spectrum of G_{1} and G_{2}. More about the spectrum of corona can be found in $[4,7,10,24]$. The neighborhood corona and edge corona was introduced in [17] and in [16], respectively. Complete description of the spectrum of neighborhood corona and edge corona of two graphs are given in [17, 23] and [16], respectively.

Motivated by the above works, in this paper we compute the spectrum of $\left(G_{1} \vee G_{2}\right) \cup\left(G_{1} \star G_{3}\right),\left(G_{1} \vee G_{2}\right) \cup\left(G_{2} \star G_{3}\right) \cup\left(G_{1} \star G_{4}\right),\left(G_{1} \vee G_{2}\right) \cup\left(G_{1} \circ G_{3}\right)$, $\left(G_{1} \vee G_{2}\right) \cup\left(G_{2} \circ G_{3}\right) \cup\left(G_{1} \circ G_{4}\right),\left(G_{1} \vee G_{2}\right) \cup\left(G_{1} \diamond G_{3}\right),\left(G_{1} \vee G_{2}\right) \cup\left(G_{2} \diamond G_{3}\right) \cup$ $\left(G_{1} \diamond G_{4}\right),\left(G_{1} \vee G_{2}\right) \cup\left(G_{2} \circ G_{3}\right) \cup\left(G_{1} \star G_{3}\right),\left(G_{1} \vee G_{2}\right) \cup\left(G_{2} \circ G_{3}\right) \cup\left(G_{1} \diamond G_{4}\right)$ and $\left(G_{1} \vee G_{2}\right) \cup\left(G_{2} \star G_{3}\right) \cup\left(G_{1} \diamond G_{4}\right)$, when G_{1}, G_{2}, G_{3} and G_{4} are regular graphs. Here the graphs G_{1}, G_{2}, G_{3} and G_{4} have disjoint vertex sets. As an application of our results we construct some new pairs of equienergetic graphs on n vertices for all $n \geq 11$. Our method of construction and proofs are entirely different from the methods given in [18, 22, 26].

2. Preliminaries

In this section, we give some definitions and lemmas which are useful to prove our main results.

Definition [10]. Let G_{1} and G_{2} be two graphs on n and m vertices, respectively. The corona $G_{1} \circ G_{2}$ of G_{1} and G_{2} is defined as the graph obtained by taking one
copy of G_{1} and n copies of G_{2}, and then joining the i-th vertex of G_{1} to every vertex in the i-th copy of G_{2}.

Definition [16]. Let G_{1} and G_{2} be two graphs on n_{1} and n_{2} vertices, m_{1} and m_{2} edges, respectively. The edge corona $G_{1} \diamond G_{2}$ of G_{1} and G_{2} is defined as the graph obtained by taking one copy of G_{1} and m_{1} copies of G_{2}, and then joining two end vertices of the i-th edge of G_{1} to every vertex in the i-th copy of G_{2}.

Definition [17]. Let G_{1} and G_{2} be two graphs on n and m vertices, respectively. The neighborhood corona $G_{1} \star G_{2}$ of G_{1} and G_{2} is defined as the graph obtained by taking one copy of G_{1} and n copies of G_{2}, and then joining each neighbor of i-th vertex of G_{1} to every vertex in the i-th copy of G_{2}.

Definition [8]. Let $A=\left(a_{i j}\right)$ be an $n \times m$ matrix, $B=\left(b_{i j}\right)$ be a $p \times q$ matrix. Then the Kronecker product $A \otimes B$ of A and B is the $n p$ by $m q$ matrix obtained by replacing each entry $a_{i j}$ of A by $a_{i j} B$.

Lemma 1 [8]. If M, N, P, Q are matrices with M being a non-singular matrix, then

$$
\left|\begin{array}{cc}
M & N \tag{1}\\
P & Q
\end{array}\right|=|M|\left|Q-P M^{-1} N\right| .
$$

Lemma 2 [26]. Let N_{1} and N_{2} be two graphs as shown in Figure 1. Then the line graph $L\left(N_{1}\right)$ of N_{1} and the line graph $L\left(N_{2}\right)$ of N_{2} are non cospectral and equienergetic.

Figure 1

Lemma 3 [8]. The following cubic regular graphs with ten vertices are equienergetic.

Figure 2
3. Spectra of $\left(G_{1} \vee G_{2}\right) \cup\left(G_{1} \star G_{3}\right)$ and $\left(G_{1} \vee G_{2}\right) \cup\left(G_{2} \star G_{3}\right) \cup\left(G_{1} \star G_{4}\right)$

In this section, we compute the spectrum of $\left(G_{1} \vee G_{2}\right) \cup\left(G_{1} \star G_{3}\right)$ and $\left(G_{1} \vee G_{2}\right) \cup$ $\left(G_{2} \star G_{3}\right) \cup\left(G_{1} \star G_{4}\right)$, where G_{1}, G_{2}, G_{3} and G_{4} are regular graphs on n, m, l and p vertices, respectively.

Theorem 4. Let G_{i} be r_{i}-regular graphs $(i=1,2,3)$. Suppose $\sigma\left(G_{1}\right)=\left(\lambda_{1}=\right.$ $\left.r_{1}, \lambda_{2}, \ldots, \lambda_{n}\right), \sigma\left(G_{2}\right)=\left(\mu_{1}=r_{2}, \mu_{2}, \ldots, \mu_{m}\right)$ and $\sigma\left(G_{3}\right)=\left(\gamma_{1}=r_{3}, \gamma_{2}, \ldots, \gamma_{l}\right)$ are the adjacency spectrum of G_{1}, G_{2} and G_{3}, respectively. Then the adjacency spectrum of $G=\left(G_{1} \vee G_{2}\right) \cup\left(G_{1} \star G_{3}\right)$ is

$$
\sigma(G)=\left(\begin{array}{cc}
\gamma_{i} & \mu_{j} \\
n & 1
\end{array}\left(\lambda_{k}+r_{3} \pm \sqrt{4 l \lambda_{k}^{2}+\left(\lambda_{k}-r_{3}\right)^{2}}\right) / 2 \quad x_{t}\right)
$$

where $i=2$ to $l, j=2$ to $m, k=2$ to $n, t=1,2,3$. Also, the entries in the first row are the eigenvalues with multiplicity written below, and x_{t} 's are the roots of the polynomial $\left(x-r_{2}\right)\left(\left(x-r_{1}\right)\left(x-r_{3}\right)-l r_{1}^{2}\right)-n m\left(x-r_{3}\right)$.

Proof. With suitable labelling of the vertices of G, the adjacency matrix $A(G)$ can be formulated as follows:

$$
A(G)=\left(\begin{array}{ccc}
I_{n} \otimes A\left(G_{3}\right) & 0 & A\left(G_{1}\right) \otimes e \\
0 & A\left(G_{2}\right) & J \\
A\left(G_{1}\right) \otimes e^{T} & J^{T} & A\left(G_{1}\right)
\end{array}\right)
$$

where $e^{T}=\overbrace{(1,1, \ldots, 1)}^{l \text { times }}, I_{n}$ is the identity matrix of order n and J is the $m \times n$ matrix with all its entries are 1.

Since $A\left(G_{3}\right)$ is a real symmetric matrix, $A\left(G_{3}\right)$ is orthogonally diagonalizable. Let $A\left(G_{3}\right)=P D P^{T}$, where $P P^{T}=I_{l}$ and $D=\operatorname{diag}\left(\gamma_{1}, \ldots, \gamma_{l}\right)$. Then

$$
\begin{aligned}
A(G) & =\left(\begin{array}{ccc}
I_{n} \otimes P D P^{T} & 0 & A\left(G_{1}\right) \otimes e \\
0 & A\left(G_{2}\right) & J \\
A\left(G_{1}\right) \otimes e^{T} & J^{T} & A\left(G_{1}\right)
\end{array}\right) \\
& =\left(\begin{array}{ccc}
I_{n} \otimes P & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
I_{n} \otimes D & 0 & A\left(G_{1}\right) \otimes P^{T} e \\
0 & A\left(G_{2}\right) & J \\
A\left(G_{1}\right) \otimes e^{T} P & J^{T} & A\left(G_{1}\right)
\end{array}\right)\left(\begin{array}{ccc}
I_{n} \otimes P^{T} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
I_{n} \otimes P & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
I_{n} \otimes D & 0 & A\left(G_{1}\right) \otimes \sqrt{l} e_{1} \\
0 & A\left(G_{2}\right) & J \\
A\left(G_{1}\right) \otimes \sqrt{l} e_{1}^{T} & J^{T} & A\left(G_{1}\right)
\end{array}\right)\left(\begin{array}{ccc}
I_{n} \otimes P^{T} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right),
\end{aligned}
$$

where $e_{1}^{T}=(1,0, \ldots, 0)$.

$$
\text { Let } B=\left(\begin{array}{ccc}
I_{n} \otimes D & 0 & A\left(G_{1}\right) \otimes \sqrt{l} e_{1} \\
0 & A\left(G_{2}\right) & J \\
A\left(G_{1}\right) \otimes \sqrt{l} e_{1}^{T} & J^{T} & A\left(G_{1}\right)
\end{array}\right)
$$

Then by the above equation we have

$$
\begin{equation*}
|x I-A(G)|=|x I-B| \tag{2}
\end{equation*}
$$

Expanding $|x I-B|$ by Laplace's method [9] along $(l i+2),(l i+3), \ldots,(l i+l)^{t h}$ columns, for $i=0,1, \ldots, n-1$, we see that the only non zero $(l-1) n \times(l-1) n$ minor is

$$
\begin{equation*}
M=\left|I_{n} \otimes \operatorname{diag}\left(x-\gamma_{2}, \ldots, x-\gamma_{l}\right)\right| \tag{3}
\end{equation*}
$$

The complementary minor of M is

$$
M_{1}=\left|\begin{array}{ccc}
\left(x-r_{3}\right) I_{n} & 0 & -\sqrt{l} A\left(G_{1}\right) \\
0 & x I_{m}-A\left(G_{2}\right) & -J \\
-\sqrt{l} A\left(G_{1}\right) & -J^{T} & x I_{n}-A\left(G_{1}\right)
\end{array}\right| .
$$

Again as $A\left(G_{1}\right)$ and $A\left(G_{2}\right)$ are orthogonally diagonalizable, one can easily see that the M_{1} is the same as
(4) $\quad M_{1}^{\prime}=\left|\begin{array}{ccc}\left(x-r_{3}\right) I_{n} & 0 & -\sqrt{l} \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \\ 0 & \operatorname{diag}\left(x-\mu_{1}, \ldots, x-\mu_{m}\right) & -\sqrt{m n} J^{\prime} \\ -\sqrt{l} \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) & -\sqrt{m n} J^{\prime} T & \operatorname{diag}\left(x-\lambda_{1}, \ldots, x-\lambda_{n}\right)\end{array}\right|$,
where J^{\prime} is the matrix obtained by replacing every entries of J except the first diagonal entry by 0 . Now by (1), we have

$$
\begin{aligned}
& M_{1}^{\prime}=\left(x-r_{3}\right)^{n} \\
& (5) \times\left|\begin{array}{cc}
\operatorname{diag}\left(x-r_{2}, x-\mu_{2}, \ldots, x-\mu_{m}\right) & -\sqrt{m n} J^{\prime} \\
-\sqrt{m n} J^{\prime T} & \operatorname{diag}\left(x-\lambda_{1}-l \lambda_{1}^{2} /\left(x-r_{3}\right), \ldots, x-\lambda_{n}-l \lambda_{n}^{2} /\left(x-r_{3}\right)\right)
\end{array}\right|
\end{aligned}
$$

Applying Laplace method along $2, \ldots, m, m+2, \ldots, m+n$ columns in the above determinant we see that the only non zero $m+n-2 \times m+n-2$ minor is $\operatorname{diag}\left(x-\mu_{2}, \ldots, x-\mu_{m}, x-\lambda_{2}-l \lambda_{2}^{2} /\left(x-r_{3}\right), \ldots, x-\lambda_{n}-l \lambda_{n}^{2} /\left(x-r_{3}\right)\right)$ and the complementary minor is

$$
M_{1}=\left|\begin{array}{cc}
x-\mu_{2} & -\sqrt{m n} \\
-\sqrt{m n} & x-\lambda_{2}-l \lambda_{2}^{2} /\left(x-r_{3}\right)
\end{array}\right|
$$

And so by (2), (3), (4), (5) and from the above equation the result follows.
Corollary 5. Let G_{i} be r_{i}-regular graphs $(i=1,2)$. Then

$$
E\left(G_{1} \vee G_{2} \cup G_{1} \star l K_{1}\right)=\sqrt{4 l+1} E\left(G_{1}\right)+E\left(G_{2}\right)-r_{1}(\sqrt{4 l+1}-1)-2 x_{0}
$$

where x_{0} is the negative root of the polynomial $\left(x-r_{2}\right)\left(\left(x-r_{1}\right) x-l r_{1}^{2}\right)-n m x$.
Remark 6. Corollary 5 is a generalization of Theorem 1 in [18]. In fact putting $r_{1}=r, n=p, r_{2}=0, m=k, r_{3}=0, l=1$ in Corollary 5, we obtain Theorem 1 due to Indulal and Vijayakumar [18].

Corollary 7. Let $G_{i}(i=1,2)$ be equienergetic regular graphs of the same degree and $H_{i}(i=1,2)$ be equienergetic regular graphs of the same degree. Then

$$
E\left(G_{1} \vee H_{1} \cup G_{1} \star l K_{1}\right)=E\left(G_{2} \vee H_{2} \cup G_{2} \star l K_{1}\right)
$$

Now we construct some new pairs of equienergetic graphs using Corollary 7.
Theorem 8. There exists a pair of equienergetic graphs on n vertices for all $n \geq 18$.

Proof. From Lemma 2 we have the line graphs $L\left(N_{1}\right)$ and $L\left(N_{2}\right)$ are equienergetic. Now by Corollary 7 it is clear that the graphs $\left(L\left(N_{1}\right) \vee K_{m}\right) \cup\left(L\left(N_{1}\right) \star K_{1}\right)$ and $\left(L\left(N_{2}\right) \vee K_{m}\right) \cup\left(L\left(N_{2}\right) \star K_{1}\right)$, both of order $18+m(m=0,1, \ldots)$, are equienergetic. This completes the proof of the theorem.

Theorem 9. There exists a pair of equienergetic graphs on n vertices for all $n \geq 20$.

Proof. From Lemma 3 and Corollary 7 it is clear that the graphs $\left(T_{1} \vee K_{m}\right) \cup$ $\left(T_{1} \star K_{1}\right)$ and $\left(T_{2} \vee K_{m}\right) \cup\left(T_{2} \star K_{1}\right)$, both of order $20+m(m=0,1, \ldots)$, are equienergetic.

Theorem 10. There exists a pair of equienergetic graphs on n vertices for all $n \geq 13$.

Proof. Case 1. $n=9+2 m(m=2,3, \ldots)$. For $n=9+2 m(m=2,3, \ldots)$, the graphs $\left(K_{m} \vee L\left(N_{1}\right)\right) \cup\left(K_{m} \star K_{1}\right)$ and $\left(K_{m} \vee L\left(N_{2}\right)\right) \cup\left(K_{m} \star K_{1}\right)$ both are of order $9+2 m(m=2,3, \ldots)$. Now, Corollary 7 implies that these two graphs are equienergetic.

Case 2. $n=10+2 m(m=2,3, \ldots)$. For $n=10+2 m(m=2,3, \ldots)$, the graphs $\left(K_{m} \vee T_{1}\right) \cup\left(K_{m} \star K_{1}\right)$ and $\left(K_{m} \vee T_{2}\right) \cup\left(K_{m} \star K_{1}\right)$ both are of order $10+2 m(m=2,3, \ldots)$. Now, Corollary 7 implies that these two graphs are equienergetic.

As the proof of the following theorem is similar to that of Theorem 4, we omit the details.

Theorem 11. Let G_{i} be r_{i}-regular graphs $(i=1,2,3,4)$. Suppose $\sigma\left(G_{1}\right)=\left(\lambda_{1}=\right.$ $\left.r_{1}, \lambda_{2}, \ldots, \lambda_{n}\right), \sigma\left(G_{2}\right)=\left(\mu_{1}=r_{2}, \mu_{2}, \ldots, \mu_{m}\right), \sigma\left(G_{3}\right)=\left(\gamma_{1}=r_{3}, \gamma_{2}, \ldots, \gamma_{l}\right)$ and $\sigma\left(G_{4}\right)=\left(\eta_{1}=r_{4}, \eta_{2}, \ldots, \eta_{p}\right)$ are the adjacency spectrum of G_{1}, G_{2}, G_{3} and G_{4}, respectively. Then the adjacency spectrum of $G=\left(G_{1} \vee G_{2}\right) \cup\left(G_{2} \star G_{3}\right) \cup\left(G_{1} \star G_{4}\right)$ is

$$
\begin{gathered}
\sigma(G)=\left(\begin{array}{ccc}
\gamma_{i} & \eta_{j} & \left(\lambda_{k}+r_{4} \pm \sqrt{4 p \lambda_{k}^{2}+\left(\lambda_{k}-r_{4}\right)^{2}}\right) / 2 \\
m & n & 1
\end{array}\right. \\
\left(\mu_{s}+r_{3} \pm \sqrt{4 l \mu_{s}^{2}+\left(\mu_{s}-r_{3}\right)^{2}}\right) / 2 \\
x_{t} \\
1
\end{gathered}
$$

where $i=2$ to $l, j=2$ to $p, k=2$ to $n, s=2$ to $m, t=1,2,3,4$. Also, the entries in the first row are the eigenvalues with multiplicity written below, and x_{t} 's are the roots of the polynomial

$$
\left(\left(x-r_{1}\right)\left(x-r_{4}\right)-p r_{1}^{2}\right)\left(\left(x-r_{2}\right)\left(x-r_{3}\right)-l r_{2}^{2}\right)-n m\left(x-r_{3}\right)\left(x-r_{4}\right) .
$$

Corollary 12. Let G_{i} be r_{i}-regular graphs $(i=1,2)$. Then

$$
\begin{aligned}
E\left(G_{1} \vee G_{2} \cup G_{2} \star l K_{1} \cup G_{1} \star p K_{1}\right) & =\sqrt{4 p+1} E\left(G_{1}\right)+\sqrt{4 l+1} E\left(G_{2}\right)-r_{2}(\sqrt{4 l+1}-1) \\
& -r_{1}(\sqrt{4 p+1}-1)-2 x_{0}-2 x_{1},
\end{aligned}
$$

where x_{0} and x_{1} are the negative roots of the polynomial
$x^{4}-\left(r_{1}+r_{2}\right) x^{3}+\left(-r 1^{2} p-l r_{2}^{2}+r_{1} r_{2}-m n\right) x^{2}+\left(r_{1}^{2} r_{2} p+r_{1} r_{2}^{2} l\right) x+r_{1}^{2} r_{2}^{2} l p$.
Corollary 13. Let G_{1}, G_{2} be equienergetic regular graphs of the same degree and H_{1}, H_{2} be equienergetic regular graphs of the same degree. Then

$$
E\left(G_{1} \vee H_{1} \cup H_{1} \star l K_{1} \cup G_{1} \star p K_{1}\right)=E\left(G_{2} \vee H_{2} \cup H_{2} \star l K_{1} \cup G_{2} \star p K_{1}\right) .
$$

4. $\operatorname{Spectra}$ of $\left(G_{1} \vee G_{2}\right) \cup\left(G_{1} \circ G_{3}\right)$ AND $\left(G_{1} \vee G_{2}\right) \cup\left(G_{2} \circ G_{3}\right) \cup\left(G_{1} \circ G_{4}\right)$

In this section, we simply state some theorems (as the proofs are quite analogous to the proof of Theorem 4) which gives the spectrum of $\left(G_{1} \vee G_{2}\right) \cup\left(G_{1} \circ G_{3}\right)$ and $\left(G_{1} \vee G_{2}\right) \cup\left(G_{2} \circ G_{3}\right) \cup\left(G_{1} \circ G_{4}\right)$, where G_{1}, G_{2}, G_{3} and G_{4} are regular graphs on n, m, l and p vertices, respectively.

Theorem 14. Let G_{i} be r_{i}-regular graphs $(i=1,2,3)$. Suppose $\sigma\left(G_{1}\right)=\left(\lambda_{1}=\right.$ $\left.r_{1}, \lambda_{2}, \ldots, \lambda_{n}\right), \sigma\left(G_{2}\right)=\left(\mu_{1}=r_{2}, \mu_{2}, \ldots, \mu_{m}\right)$ and $\sigma\left(G_{3}\right)=\left(\gamma_{1}=r_{3}, \gamma_{2}, \ldots, \gamma_{l}\right)$ are the adjacency spectrum of G_{1}, G_{2} and G_{3}, respectively. Then the adjacency spectrum of $G=\left(G_{1} \vee G_{2}\right) \cup\left(G_{1} \circ G_{3}\right)$ is

$$
\sigma(G)=\left(\begin{array}{cccc}
\gamma_{i} & \mu_{j} & \left(\lambda_{k}+r_{3} \pm \sqrt{4 l+\left(\lambda_{k}-r_{3}\right)^{2}}\right) / 2 & x_{t} \\
n & 1 & 1 & 1
\end{array}\right)
$$

where $i=2$ to $l, j=2$ to $m, k=2$ to $n, t=1,2,3$. Also, the entries in the first row are the eigenvalues with multiplicity written below, and x_{t} 's are the roots of the polynomial $\left(x-r_{2}\right)\left(\left(x-r_{1}\right)\left(x-r_{3}\right)-l\right)-n m\left(x-r_{3}\right)$.

Theorem 15. Let G be an r-regular graph of order m. Then

$$
E\left(K_{n} \vee G \cup K_{n} \circ l K_{1}\right)=E(G)+(n-1) \sqrt{4 l+1}-2 x_{0}+n-1,
$$

where x_{0} is the negative root of the polynomial $(x-r)(x(x-(n-1))-l)-n m x$.
Corollary 16. Let G and H be equienergetic regular graphs of the same degree. Then

$$
E\left(K_{n} \vee G \cup K_{n} \circ l K_{1}\right)=E\left(K_{n} \vee H \cup K_{n} \circ l K_{1}\right) .
$$

Theorem 17. Let G be an r-regular graph of order m. Then

$$
E\left(n K_{1} \vee G \cup n K_{1} \circ l K_{1}\right)=E(G)+(n-1) \sqrt{4 l}-2 x_{0}
$$

where x_{0} is the negative root of the polynomial $(x-r)\left(x^{2}-l\right)-n m x$.
Corollary 18. Let G and H be equienergetic regular graphs of the same degree. Then

$$
E\left(n K_{1} \vee G \cup n K_{1} \circ l K_{1}\right)=E\left(n K_{1} \vee H \cup n K_{1} \circ l K_{1}\right)
$$

Now we construct some new pairs of equienergetic graphs using Corollary 16.

Theorem 19. There exists a pair of equienergetic graphs on n vertices for all $n \geq 11$.

Proof. Case 1. $n=9+2 m(m=1,2, \ldots)$. For $n=9+2 m(m=1,2, \ldots)$, the graphs $\left(K_{m} \vee L\left(N_{1}\right)\right) \cup\left(K_{m} \circ K_{1}\right)$ and $\left(K_{m} \vee L\left(N_{2}\right)\right) \cup\left(K_{m} \circ K_{1}\right)$ both are of order $9+2 m(m=1,2, \ldots)$. Now, Corollary 16 implies that these two graphs are equienergetic.

Case 2. $n=10+2 m(m=1,2, \ldots)$. For $n=10+2 m(m=1,2, \ldots)$, the graphs $\left(K_{m} \vee T_{1}\right) \cup\left(K_{m} \circ K_{1}\right)$ and $\left(K_{m} \vee T_{2}\right) \cup\left(K_{m} \circ K_{1}\right)$ both are of order $10+2 m(m=1,2, \ldots)$. Now, Corollary 16 implies that these two graphs are equienergetic.

Theorem 20. Let G_{i} be r_{i}-regular graphs $(i=1,2,3,4)$. Suppose $\sigma\left(G_{1}\right)=\left(\lambda_{1}=\right.$ $\left.r_{1}, \lambda_{2}, \ldots, \lambda_{n}\right), \sigma\left(G_{2}\right)=\left(\mu_{1}=r_{2}, \mu_{2}, \ldots, \mu_{m}\right), \sigma\left(G_{3}\right)=\left(\gamma_{1}=r_{3}, \gamma_{2}, \ldots, \gamma_{l}\right)$ and $\sigma\left(G_{4}\right)=\left(\eta_{1}=r_{4}, \eta_{2}, \ldots, \eta_{p}\right)$ are the adjacency spectrum of G_{1}, G_{2}, G_{3} and G_{4}, respectively. Then the adjacency spectrum of $G=\left(G_{1} \vee G_{2}\right) \cup\left(G_{2} \circ G_{3}\right) \cup\left(G_{1} \circ G_{4}\right)$ is

$$
\begin{gathered}
\sigma(G)=\left(\begin{array}{ccc}
\gamma_{i} & \eta_{j} & \left(\lambda_{k}+r_{4} \pm \sqrt{4 p+\left(\lambda_{k}-r_{4}\right)^{2}}\right) / 2 \\
m & n & 1
\end{array}\right. \\
\left(\begin{array}{cc}
\left.\mu_{s}+r_{3} \pm \sqrt{4 l+\left(\mu_{s}-r_{3}\right)^{2}}\right) / 2 & x_{t} \\
1 & 1
\end{array}\right),
\end{gathered}
$$

where $i=2$ to $l, j=2$ to $p, k=2$ to $n, s=2$ to $m, t=1,2,3,4$. Also, the entries in the first row are the eigenvalues with multiplicity written below, and x_{t} 's are the roots of the polynomial

$$
\left(\left(x-r_{1}\right)\left(x-r_{4}\right)-p\right)\left(\left(x-r_{2}\right)\left(x-r_{3}\right)-l\right)-n m\left(x-r_{3}\right)\left(x-r_{4}\right) .
$$

5. SPECTRA OF $\left(G_{1} \vee G_{2}\right) \cup\left(G_{1} \diamond G_{3}\right)$ AND $\left(G_{1} \vee G_{2}\right) \cup\left(G_{2} \diamond G_{3}\right) \cup\left(G_{1} \diamond G_{4}\right)$

In Theorems 21 and 25 of this section, we compute the spectrum of $\left(G_{1} \vee G_{2}\right) \cup$ $\left(G_{1} \diamond G_{3}\right)$ and $\left(G_{1} \vee G_{2}\right) \cup\left(G_{2} \diamond G_{3}\right) \cup\left(G_{1} \diamond G_{4}\right)$, where G_{1}, G_{2}, G_{3} and G_{4} are regular graphs on n, m, l and p vertices, respectively. Proofs of these theorems are not given as they are similar to the proof of Theorem 4.

Theorem 21. Let G_{i} be r_{i}-regular graphs $(i=1,2,3)$ and $r_{1} \geq 2$. Suppose $\sigma\left(G_{1}\right)=\left(\lambda_{1}=r_{1}, \lambda_{2}, \ldots, \lambda_{n}\right), \sigma\left(G_{2}\right)=\left(\mu_{1}=r_{2}, \mu_{2}, \ldots, \mu_{m}\right)$ and $\sigma\left(G_{3}\right)=\left(\gamma_{1}=\right.$ $\left.r_{3}, \gamma_{2}, \ldots, \gamma_{l}\right)$ are the adjacency spectrum of G_{1}, G_{2} and G_{3}, respectively. Then the adjacency spectrum of $G=\left(G_{1} \vee G_{2}\right) \cup\left(G_{1} \diamond G_{3}\right)$ is
$\sigma(G)=\left(\begin{array}{cccc}\gamma_{i} & r_{3} & \mu_{j} & \left(\lambda_{k}+r_{3} \pm \sqrt{4 l\left(\lambda_{k}+r_{1}\right)+\left(\lambda_{k}-r_{3}\right)^{2}}\right) / 2\end{array} x_{t}\right)$,
where $i=2$ to $l, j=2$ to $m, k=2$ to $n, t=1,2,3$. Also, the entries in the first row are the eigenvalues with multiplicity written below, and x_{t} 's are the roots of the polynomial $\left(x-r_{2}\right)\left(\left(x-r_{1}\right)\left(x-r_{3}\right)-2 l r_{1}\right)-n m\left(x-r_{3}\right)$.

Theorem 22. Let G be an r-regular graph of order m. Then

$$
E\left(K_{n} \vee G \cup K_{n} \diamond l K_{1}\right)=E(G)+(n-1)(\sqrt{4 l+n-2}+1)-2 x_{0},
$$

where x_{0} is the negative root of the polynomial

$$
x^{3}-(n-1+r) x^{2}+((n-1) r-2(n-1) l-m n) x+2(n-1) r l .
$$

Corollary 23. Let G and H be equienergetic regular graphs of the same degree. Then

$$
E\left(K_{n} \vee G \cup K_{n} \diamond l K_{1}\right)=E\left(K_{n} \vee H \cup K_{n} \diamond l K_{1}\right) .
$$

Now we construct some new pairs of equienergetic graphs using Corollary 23.
Theorem 24. There exists a pair of equienergetic graphs on n vertices for all $n \geq 15$.

Proof. Case 1. Let $n=9+2 m(m=3,4, \ldots)$ and C_{m} be the cycle of length m. Then, by Corollary 23 and Lemma 2 the graphs $\left(C_{m} \vee L\left(N_{1}\right)\right) \cup\left(C_{m} \diamond K_{1}\right)$ and $\left(C_{m} \vee L\left(N_{2}\right)\right) \cup\left(C_{m} \diamond K_{1}\right)$, both of order $9+2 m(m=3,4, \ldots)$, are equienergetic.

Case 2. $n=10+2 m(m=3,4, \ldots)$. For $n=10+2 m(m=3,4, \ldots)$, the graphs $\left(C_{m} \vee T_{1}\right) \cup\left(C_{m} \diamond K_{1}\right)$ and $\left(C_{m} \vee T_{2}\right) \cup\left(C_{m} \diamond K_{1}\right)$ both are of order $9+2 m(m=3,4, \ldots)$. Now, Corollary 23 and Lemma 3 implies that these two graphs are equienergetic.

Theorem 25. Let G_{i} be r_{i}-regular graphs $(i=1,2,3,4), r_{1} \geq 2$ and $r_{2} \geq 2$. Suppose $\sigma\left(G_{1}\right)=\left(\lambda_{1}=r_{1}, \lambda_{2}, \ldots, \lambda_{n}\right), \sigma\left(G_{2}\right)=\left(\mu_{1}=r_{2}, \mu_{2}, \ldots, \mu_{m}\right), \sigma\left(G_{3}\right)=$ $\left(\gamma_{1}=r_{3}, \gamma_{2}, \ldots, \gamma_{l}\right)$ and $\sigma\left(G_{4}\right)=\left(\eta_{1}=r_{4}, \eta_{2}, \ldots, \eta_{p}\right)$ are the adjacency spectrum of G_{1}, G_{2}, G_{3} and G_{4}, respectively. Then the adjacency spectrum of $G=\left(G_{1} \vee\right.$ $\left.G_{2}\right) \cup\left(G_{2} \diamond G_{3}\right) \cup\left(G_{1} \diamond G_{4}\right)$ is

$$
\begin{gathered}
\sigma(G)=\left(\begin{array}{cccc}
\gamma_{i} & r_{3} & \eta_{j} & r_{4} \\
r_{2} n / 2 & \left(r_{2}-2\right) n / 2 & r_{1} n / 2 & \left(r_{1}-2\right) n / 2 \\
\left(\lambda_{k}+r_{4} \pm \sqrt{4 p\left(\lambda_{k}+r_{1}\right)+\left(\lambda_{k}-r_{4}\right)^{2}}\right) / 2 & \left(\mu_{s}+r_{3} \pm \sqrt{4 l\left(\mu_{s}+r_{2}\right)+\left(\mu_{s}-r_{3}\right)^{2}}\right) / 2 & x_{t} \\
1 & 1 & 1
\end{array}\right)
\end{gathered}
$$

where $i=2$ to $l, j=2$ to $p, k=2$ to $n, s=2$ to $m, t=1,2,3,4$. Also, the entries in the first row are the eigenvalues with multiplicity written below, and x_{t} 's are the roots of the polynomial

$$
\left(\left(x-r_{1}\right)\left(x-r_{4}\right)-2 p r_{1}\right)\left(\left(x-r_{2}\right)\left(x-r_{3}\right)-2 r_{2} l\right)-n m\left(x-r_{3}\right)\left(x-r_{4}\right) .
$$

6. Spectra of $\left(G_{1} \vee G_{2}\right) \cup\left(G_{2} \circ G_{3}\right) \cup\left(G_{1} \star G_{3}\right)$,

$$
\left(G_{1} \vee G_{2}\right) \cup\left(G_{2} \circ G_{3}\right) \cup\left(G_{1} \diamond G_{4}\right) \text { AND }\left(G_{1} \vee G_{2}\right) \cup\left(G_{2} \star G_{3}\right) \cup\left(G_{1} \diamond G_{4}\right)
$$

In this section we just give the spectrum of $\left(G_{1} \vee G_{2}\right) \cup\left(G_{2} \circ G_{3}\right) \cup\left(G_{1} \star G_{3}\right)$, $\left(G_{1} \vee G_{2}\right) \cup\left(G_{2} \circ G_{3}\right) \cup\left(G_{1} \diamond G_{4}\right)$ and $\left(G_{1} \vee G_{2}\right) \cup\left(G_{2} \star G_{3}\right) \cup\left(G_{1} \diamond G_{4}\right)$, where G_{1}, G_{2}, G_{3} and G_{4} are regular graphs on n, m, l and p vertices, respectively. Proofs of Theorems 26-28 are similar to the proof of Theorem 4.

Theorem 26. Let G_{i} be r_{i}-regular graphs $(i=1,2,3,4)$. Suppose $\sigma\left(G_{1}\right)=\left(\lambda_{1}=\right.$ $\left.r_{1}, \lambda_{2}, \ldots, \lambda_{n}\right), \sigma\left(G_{2}\right)=\left(\mu_{1}=r_{2}, \mu_{2}, \ldots, \mu_{m}\right), \sigma\left(G_{3}\right)=\left(\gamma_{1}=r_{3}, \gamma_{2}, \ldots, \gamma_{l}\right)$ and $\sigma\left(G_{4}\right)=\left(\eta_{1}=r_{4}, \eta_{2}, \ldots, \eta_{p}\right)$ are the adjacency spectrum of G_{1}, G_{2}, G_{3} and G_{4}, respectively. Then the adjacency spectrum of $G=\left(G_{1} \vee G_{2}\right) \cup\left(G_{2} \circ G_{3}\right) \cup\left(G_{1} \star G_{4}\right)$ is

$$
\begin{gathered}
\sigma(G)=\left(\begin{array}{ccc}
\gamma_{i} & \eta_{j} & \left(\lambda_{k}+r_{4} \pm \sqrt{4 p \lambda_{k}^{2}+\left(\lambda_{k}-r_{4}\right)^{2}}\right) / 2 \\
n & m & 1 \\
\left(\mu_{s}+r_{3} \pm \sqrt{4 l+\left(\mu_{s}-r_{3}\right)^{2}}\right) / 2 & x_{t} \\
1 & 1
\end{array}\right)
\end{gathered}
$$

where $i=2$ to $l, j=2$ to $p, k=2$ to n, $s=2$ to $m, t=1,2,3,4$. Also, the entries in the first row are the eigenvalues with multiplicity written below, and x_{t} 's are the roots of the polynomial

$$
\left(\left(x-r_{2}\right)\left(x-r_{3}\right)-l\right)\left(\left(x-r_{1}\right)\left(x-r_{4}\right)-p r_{1}^{2}\right)-n m\left(x-r_{3}\right)\left(x-r_{4}\right) .
$$

Theorem 27. Let G_{i} be r_{i}-regular graphs $(i=1,2,3,4)$ and $r_{1} \geq 2$. Suppose $\sigma\left(G_{1}\right)=\left(\lambda_{1}=r_{1}, \lambda_{2}, \ldots, \lambda_{n}\right), \sigma\left(G_{2}\right)=\left(\mu_{1}=r_{2}, \mu_{2}, \ldots, \mu_{m}\right), \sigma\left(G_{3}\right)=\left(\gamma_{1}=\right.$ $\left.r_{3}, \gamma_{2}, \ldots, \gamma_{l}\right)$ and $\sigma\left(G_{4}\right)=\left(\eta_{1}=r_{4}, \eta_{2}, \ldots, \eta_{p}\right)$ are the adjacency spectrum of G_{1}, G_{2}, G_{3} and G_{4}, respectively. Then the adjacency spectrum of $G=\left(G_{1} \vee G_{2}\right) \cup$ $\left(G_{2} \circ G_{3}\right) \cup\left(G_{1} \diamond G_{4}\right)$ is

$$
\begin{gathered}
\sigma(G)=\left(\begin{array}{cccc}
\gamma_{i} & \eta_{j} & r_{4} & \left(\lambda_{k}+r_{4} \pm \sqrt{4 p\left(\lambda_{k}+r_{1}\right)+\left(\lambda_{k}-r_{4}\right)^{2}}\right) / 2 \\
n & m & \left(r_{1}-2\right) n / 2 & 1
\end{array}\right. \\
\left(\mu_{s}+r_{3} \pm \sqrt{4 l+\left(\mu_{s}-r_{3}\right)^{2}}\right) / 2 \\
x_{t} \\
1
\end{gathered}
$$

where $i=2$ to $l, j=2$ to $p, k=2$ to $n, s=2$ to $m, t=1,2,3,4$. Also, the entries in the first row are the eigenvalues with multiplicity written below, and x_{t} 's are the roots of the polynomial

$$
\left(\left(x-r_{1}\right)\left(x-r_{4}\right)-2 p r_{1}\right)\left(\left(x-r_{2}\right)\left(x-r_{3}\right)-l\right)-n m\left(x-r_{3}\right)\left(x-r_{4}\right) .
$$

Theorem 28. Let G_{i} be r_{i}-regular graphs $(i=1,2,3,4)$ and $r_{1} \geq 2$. Suppose $\sigma\left(G_{1}\right)=\left(\lambda_{1}=r_{1}, \lambda_{2}, \ldots, \lambda_{n}\right), \sigma\left(G_{2}\right)=\left(\mu_{1}=r_{2}, \mu_{2}, \ldots, \mu_{m}\right), \sigma\left(G_{3}\right)=\left(\gamma_{1}=\right.$ $\left.r_{3}, \gamma_{2}, \ldots, \gamma_{l}\right)$ and $\sigma\left(G_{4}\right)=\left(\eta_{1}=r_{4}, \eta_{2}, \ldots, \eta_{p}\right)$ are the adjacency spectrum of G_{1}, G_{2}, G_{3} and G_{4}, respectively. Then the adjacency spectrum of $G=\left(G_{1} \vee G_{2}\right) \cup$ $\left(G_{2} \star G_{3}\right) \cup\left(G_{1} \diamond G_{4}\right)$ is

$$
\begin{gathered}
\sigma(G)=\left(\begin{array}{cccc}
\gamma_{i} & \eta_{j} & r_{4} & \left(\lambda_{k}+r_{4} \pm \sqrt{4 p\left(\lambda_{k}+r_{1}\right)+\left(\lambda_{k}-r_{4}\right)^{2}}\right) / 2 \\
n & m & \left(r_{1}-2\right) n / 2 & 1
\end{array}\right. \\
\\
\left(\mu_{s}+r_{3} \pm \sqrt{4 l \mu_{s}^{2}+\left(\mu_{s}-r_{3}\right)^{2}}\right) / 2 \\
1
\end{gathered}
$$

where $i=2$ to $l, j=2$ to $p, k=2$ to $n, s=2$ to $m, t=1,2,3,4$. Also, the entries in the first row are the eigenvalues with multiplicity written below, and x_{t} 's are the roots of the polynomial

$$
\left(\left(x-r_{1}\right)\left(x-r_{4}\right)-2 p r_{1}\right)\left(\left(x-r_{2}\right)\left(x-r_{3}\right)-l r_{1}^{2}\right)-n m\left(x-r_{3}\right)\left(x-r_{4}\right) .
$$

Acknowledgement

The authors are thankful to the referee for useful suggestions. The first author is thankful to the University Grants Commission, Government of India, for the financial support under Grant F.510/2/SAP-DRS/2011. The second author is thankful to UGC, New Delhi, for UGC-JRF, under which this work has been done.

References

[1] C. Adiga, R. Balakrishnan and W. So, The skew energy of a digraph, Linear Algebra Appl. 432 (2010) 1825-1835. doi:10.1016/j.laa.2009.11.034
[2] R. Balakrishnan, The energy of a graph, Linear Algebra Appl. 387 (2004) 287-295. doi:10.1016/j.laa.2004.02.038
[3] R.B. Bapat, Energy of a graph is never an odd integer, Bull. Kerala Math. Assoc. 1 (2004) 129-132.
[4] S. Barik, S. Pati and B.K. Sarma, The spectrum of the corona of two graphs, SIAM J. Discrete Math. 21 (2007) 47-56. doi:10.1137/050624029
[5] S.B. Bozkurt, A.D. Gungor and I. Gutman, Note on distance energy of graphs, MATCH. Commun. Math. Comput. Chem. 64 (2010) 129-134.
[6] V. Brankov, D. Stevanović and I. Gutman, Equienergetic chemical trees, J. Serb. Chem. Soc. 69 (2004) 549-553. doi:10.2298/JSC0407549B
[7] S.-Y. Cui and G.-X. Tian, The spectrum and the signless Laplacian spectrum of coronae, Linear Algebra Appl. 437 (2012) 1692-1703. doi:10.1016/j.laa.2012.05.019
[8] D. Cvetković, M. Doob and H. Sachs, Spectra of Graphs: Theory and Application (Academic Press, New York, 1980).
[9] W.L. Ferrar, A Text-Book of Determinants, Matrices and Algebraic Forms (Oxford University Press, 1953).
[10] R. Frucht and F. Harary, On the corona of two graphs, Aequationes Math. 4 (1970) 322-325. doi:10.1007/BF01844162
[11] S. Gong, X. Li, G. Xu, I. Gutman and B. Furtula, Borderenergetic graphs, MATCH Commun. Math. Comput. Chem. 74 (2015) 321-332.
[12] I. Gutman, The energy of a graph, Ber. Math.-Statist. Sekt. Forschungsz. Graz 103 (1978) 1-22.
[13] I. Gutman, The energy of a graph: old and new results, in: Algebraic Combinatorics and Applications, A. Betten, A. Kohnert, R. Laue and A. Wassermann (Ed(s)), (Berlin, Springer, 2000) 196-211.
[14] I. Gutman, Topology and stability of conjugated hydrocarbons. The dependence of total π-electron energy on molecular topology, J. Serb. Chem. Soc. 70 (2005) 441-456.
doi:10.2298/JSC0503441G
[15] I. Gutman, D. Kiani, M. Mirzakhah and B. Zhou, On incidence energy of a graph, Linear Algebra Appl. 431 (2009) 1223-1233.
doi:10.1016/j.laa.2009.04.019
[16] Y. Hou and W.-C. Shiu, The spectrum of the edge corona of two graphs, Electron. J. Linear Algebra 20 (2010) 586-594. doi:10.13001/1081-3810.1395
[17] G. Indulal, The spectrum of neighborhood corona of graphs, Kragujevac J. Math. 35 (2011) 493-500.
[18] G. Indulal and A. Vijayakumar, On a pair of equienergetic graphs, MATCH. Commun. Math. Comput. Chem. 55 (2006) 83-90.
[19] X. Li, Y. Shi and I. Gutman, Graph Energy (Springer, New York, 2012). doi:10.1007/978-1-4614-4220-2
[20] X. Li, M. Wei and S. Gong, A computer search for the borderenergetic graphs of order 10, MATCH Commun. Math. Comput. Chem. 74 (2015) 333-342.
[21] B. Liu, Y. Huang and Z. You, A survey on the Laplacian-energy-like invariant, MATCH. Commun. Math. Comput. Chem. 66 (2011) 713-730.
[22] J. Liu and B. Liu, On a pair of equienergetic graphs, MATCH. Commun. Math. Comput. Chem. 59 (2008) 275-278.
[23] X. Liu and S. Zhou, Spectra of the neighbourhood corona of two graphs, Linear Multilinear Algebra 62 (2014) 1205-1219. doi:10.1080/03081087.2013.816304
[24] C. McLeman and E. McNicholas, Spectra of coronae, Linear Algebra Appl. 435 (2011) 998-1007. doi:10.1016/j.laa.2011.02.007
[25] H.S. Ramane, I. Gutman, H.B. Walikar and S.B. Halkarni, Equienergetic complement graphs, Kragujevac J. Sci. 27 (2005) 67-74.
[26] H.S. Ramane and H.B. Walikar, Construction of equienergetic graphs, MATCH Commun. Math. Comput. Chem. 57 (2007) 203-210.
[27] D. Stevanović, Energy and NEPS of graphs, Linear Multilinear Algebra 53 (2005) 67-74.
doi:10.1080/03081080410001714705
[28] D. Stevanović and I. Stanković, Remarks on hyperenergetic circulant graphs, Linear Algebra Appl. 400 (2005) 345-348. doi:10.1016/j.laa.2005.01.001
[29] L. Xu and Y. Hou, Equienergetic bipartite graphs, MATCH Commun. Math. Comput. Chem. 57 (2007) 363-370.

