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Abstract

A graph G is called supermagic if it admits a labelling of the edges by
pairwise different consecutive integers such that the sum of the labels of the
edges incident with a vertex is independent of the particular vertex. In this
paper we will introduce some constructions of supermagic labellings of some
graphs generalizing double graphs. Inter alia we show that the double graphs
of regular Hamiltonian graphs and some circulant graphs are supermagic.
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1. Introduction

We consider finite graphs without loops and isolated vertices. If G is a graph,
then V (G) and E(G) stand for the vertex set and edge set of G, respectively.
Cardinalities of these sets are called the order and size of G. The subgraph of
a graph G induced by Z ⊆ E(G) is denoted by G[Z]. For integers p, q we denote
by [p, q] the set of all integers z satisfying p ≤ z ≤ q.

Let a graph G and a mapping f from E(G) into positive integers be given.
The index-mapping of f is the mapping f∗ from V (G) into positive integers
defined by

(1) f∗(v) =
∑

e∈E(G)

η(v, e)f(e) for every v ∈ V (G),

where η(v, e) is equal to 1 when e is an edge incident with a vertex v, and 0
otherwise. An injective mapping f from E(G) into positive integers is called
a magic labelling of G for an index λ if its index-mapping f∗ satisfies

(2) f∗(v) = λ for all v ∈ V (G).

1This work was supported by the Slovak VEGA Grant 1/0652/12.
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A magic labelling f of G is called a supermagic labelling if the set {f(e) : e ∈
E(G)} consists of consecutive positive integers. We say that a graph G is super-
magic (magic) whenever there exists a supermagic (magic) labelling of G.

A bijection f from E(G) into
[

1, |E(G)|
]

is called a degree-magic labelling (or
only d-magic labelling) of a graph G if its index-mapping f∗ satisfies

(3) f∗(v) =
1 + |E(G)|

2
deg(v) for all v ∈ V (G).

We say that a graph G is degree-magic (or only d-magic) when there exists a
d-magic labelling of G.

The concept of magic graphs was introduced by Sedláček [11]. Supermagic
graphs were introduced by Stewart [13]. There is by now a considerable number
of papers published on magic and supermagic graphs; we single out [8, 9] as being
more particularly relevant to the present paper, and refer the reader to [6] for
comprehensive references. The concept of degree-magic graphs was introduced in
[1]. Degree-magic graphs extend supermagic regular graphs because the following
result holds.

Proposition 1 ([1]). Let G be a regular graph. Then G is supermagic if and

only if it is degree-magic.

Suppose that q ≥ 2 is an integer. A spanning subgraph H of a graph G is
called a 1

q -factor of G whenever degH(v) = degG(v)/q for every vertex v ∈ V (G).

A bijection f from E(G) onto
[

1, |E(G)|
]

is called q-gradual if the set

Fq(f ; i) := {e ∈ E(G) : (i− 1)|E(G)|/q < f(e) ≤ i|E(G)|/q}

induces a 1
q -factor of G for each i ∈ [1, q]. A graph G is called balanced degree-

magic if there exists a 2-gradual d-magic labelling of G. Some properties of
balanced d-magic graphs were described in [1] and [2]. However, the notion of
q-gradual labelling seems to be useful also for q > 2.

Observation 1. Let f : E(G) −→
[

1, |E(G)|
]

be a q-gradual bijection and let α
be a permutation of [1, q]. Then g : E(G) −→

[

1, |E(G)|
]

defined by

g(e) = f(e) +
(

α(i)− i
) |E(G)|

q
when e ∈ Fq(f ; i),

is a q-gradual bijection satisfying

(i) g∗(v) = f∗(v), for every vertex v ∈ V (G),

(ii) Fq(g;α(i)) = Fq(f ; i), for each i ∈ [1, q].
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The graph obtained by replacing each edge uv of a graph G with 2 edges
joining u and v is denoted by 2G. Therefore, V ( 2G) = V (G) and E( 2G) =
⋃

e∈E(G){(e, 1), (e, 2)}, where an edge (e, i), i ∈ {1, 2}, is incident with a vertex v

in 2G whenever e is incident with v in G. In this case, Ei(
2G) :=

⋃

e∈E(G){(e, i)}.

Evidently, the subgraph of 2G induced by Ei(
2G) is isomorphic to G.

In this paper we will introduce some constructions of supermagic (and degree-
magic) labellings of some graphs generalizing double graphs.

2. Generalized Double Graphs

Let G be a graph. Suppose that U ⊆ V (G) and Z ⊆ E(G). Define a graph
D = D(G;Z,U) by

V (D) =
⋃

v∈V (G)

{v0, v1}

and

E(D) =
⋃

vu∈Z

{v0u0, v1u1} ∪
⋃

vu∈E(G)−Z

{v0u1, v1u0} ∪
⋃

u∈U

{u0u1}.

Note, that D(G;E(G), ∅) consists of two disjoint copies of G, i.e., it is iso-
morphic to 2G. The graph D(G;E(G), V (G)) is the Cartesian product of G and
K2. The graph D(G; ∅, ∅) is the categorical product of G and K2, also called
the bipartite double graph of a graph G. Similarly, D( 2G;E1(

2G), ∅) is the lexi-
cographic product (or composition) of G and K2, also called the double graph of
a graph G (see [10]). Therefore, the graph D(G;Z,U) is a generalization of the
double graph of a graph G.

Now we prove crucial results of the paper.

Lemma 1. Let G be a graph such that deg(v) ≡ 0 (mod 2) for every vertex

v ∈ V (G). Suppose that the subgraph of G induced by Z ⊆ E(G) has a 1
2 -factor.

Then for any bijection f : E(G) −→
[

1, |E(G)|
]

there exists a 2-gradual bijection
g : E(D(G;Z, ∅)) −→

[

1, 2|E(G)|
]

such that for every vertex v ∈ V (G) it holds

g∗(v0) = g∗(v1) = f∗(v) +
1

2
|E(G)| deg(v).

Proof. The subgraph G[Z] of a graph G induced by Z ⊆ E(G) has a 1
2 -factor.

Then there is a set Z1 ⊆ Z such that the subgraph of G[Z] induced by Z1 is
a 1

2 -factor of G[Z]. Clearly, the subgraph of G[Z] induced by Z2 = Z −Z1 is also
a 1

2 -factor of G[Z]. Moreover, the degree of each vertex of G[Z] is even. Similarly,
the degree of each vertex of H = G[E(G) − Z] is even. Thus, every component
of H is Eulerian. Therefore, there is a digraph ~H which we get from H by an
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orientation of its edges such that the outdegree of every vertex of ~H is equal to
its indegree. By [u, v] we denote an arc of ~H and by A( ~H) the set of all arcs
of ~H.

Put m := |E(G)| and D := D(G;Z, ∅). Consider the bijection g : E(D) −→
[1, 2m] given by

g(uivj) =











































f(uv) if i = 0, j = 1, [u, v] ∈ A( ~H),

f(uv) +m if i = 1, j = 0, [u, v] ∈ A( ~H),

f(uv) if i = j = 0, uv ∈ Z1,

f(uv) +m if i = j = 1, uv ∈ Z1,

f(uv) if i = j = 1, uv ∈ Z2,

f(uv) +m if i = j = 0, uv ∈ Z2.

For its index-mapping we have

g∗(v0) =
∑

[v,w]∈A( ~H)

g(v0w1) +
∑

[w,v]∈A( ~H)

g(w1v0) +
∑

vw∈Z1

g(v0w0) +
∑

vw∈Z2

g(v0w0)

=
∑

[v,w]∈A( ~H)

f(vw) +
∑

[w,v]∈A( ~H)

(f(wv) +m) +
∑

vw∈Z1

f(vw) +
∑

vw∈Z2

(f(vw) +m)

=
∑

vw∈E(G)

f(vw) +m ·
1

2
deg(v) = f∗(v) +

1

2
mdeg(v)

for every vertex v0 ∈ V (D). Similarly, we get g∗(v1) = f∗(v) + 1
2mdeg(v) for

every vertex v1 ∈ V (D). Since the outdegree of every vertex of ~H is equal to
its indegree and the sets Z1 and Z2 induce 1

2 -factors of G[Z], the sets F2(g; 1) =

{u0v1 : [u, v] ∈ A( ~H)} ∪ {u0v0 : uv ∈ Z1} ∪ {u1v1 : uv ∈ Z2} and F2(g; 2) =
{u1v0 : [u, v] ∈ A( ~H)} ∪ {u1v1 : uv ∈ Z1} ∪ {u0v0 : uv ∈ Z2} induce 1

2 -factors
of D.

Lemma 2. Let q ≥ 2 be a positive integer and let G be a graph such that deg(v) ≡
0 (mod 2q) for every vertex v ∈ V (G). Then for any q-gradual bijection f :
E(G) −→

[

1, |E(G)|
]

there exists a 2q-gradual bijection g : E(D(G; ∅, ∅)) −→
[

1, 2|E(G)|
]

such that for every vertex v ∈ V (G) it holds

g∗(v0) = g∗(v1) = f∗(v) +
1

2
|E(G)| deg(v).

Proof. Since deg(v) ≡ 0 (mod 2q) for every vertex v ∈ V (G), the degree of each
vertex of Hi = G[Fq(f ; i)], i ∈ [1, q], is even. Therefore, there is a digraph ~Hi

which we get from Hi by an orientation of its edges such that the outdegree of
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every vertex of ~Hi is equal to its indegree. Let ~H be an orientation of G such
that the set A( ~H) of all arcs of ~H is equal to

⋃q
i=1A(

~Hi).
Put m := |E(G)|, D := D(G; ∅, ∅) and consider the bijection g from E(D)

onto [1, 2m] given by

g(uivj) =

{

f(uv) if i = 0, j = 1, [u, v] ∈ A( ~H),

f(uv) +m if i = 1, j = 0, [u, v] ∈ A( ~H).

Analogously as in the proof of Lemma 1 we can prove that g∗(v0) = g∗(v1) =
f∗(v) + 1

2mdeg(v) for every vertex v ∈ V (G). Moreover, the outdegree of every

vertex of ~Hi is equal to its indegree, and thus the sets F2q(g; i) = {u0v1 : [u, v] ∈

A( ~Hi)} and F2q(g; q + i) = {u1v0 : [u, v] ∈ A( ~Hi)} induce 1
2q -factors of D.

Lemma 3. Let q ≥ 3 be an odd positive integer. Then for any q-gradual bijection
f : E(G) −→

[

1, |E(G)|
]

there exists a bijection

g : E(D(G;E(G), ∅)) −→
[

1, |E(G)|
]

∪

[

1 +
q + 1

q
|E(G)|,

2q + 1

q
|E(G)|

]

such that for every vertex v ∈ V (G) it holds

g∗(v0) = g∗(v1) = f∗(v) +
q + 1

2q
|E(G)| deg(v).

Proof. Put m := |E(G)| and D := D(G;E(G), ∅). Consider the mapping g from
E(D) into the set of integers given by

g(uivi) =































































f(uv) + 2m if i = 0, uv ∈ Fq(f ; 1),

f(uv) if i = 1, uv ∈ Fq(f ; 1),

f(uv) if i = 0, uv ∈ Fq(f ; 2),

f(uv) +m if i = 1, uv ∈ Fq(f ; 2),

f(uv) if i = 0, uv ∈ Fq(f ; j), 3 ≤ j ≡ 1 (mod 2),

f(uv) +m if i = 1, uv ∈ Fq(f ; j), 3 ≤ j ≡ 1 (mod 2),

f(uv) +m if i = 0, uv ∈ Fq(f ; j), 3 < j ≡ 0 (mod 2),

f(uv) if i = 1, uv ∈ Fq(f ; j), 3 < j ≡ 0 (mod 2).

Evidently, g : E(D) −→ [1,m]∪
[

1 + q+1
q m, 2q+1

q m
]

is a bijection. Moreover,

for its index-mapping we have

g∗(v0) =

q
∑

j=1

∑

vw∈Fq(f ;j)

g(v0w0) =

q
∑

j=1

∑

vw∈Fq(f ;j)

f(vw) +
q + 1

2
m
deg(v)

q

=
∑

vw∈E(G)

f(vw) +
q + 1

2q
mdeg(v) = f∗(v) +

q + 1

2q
mdeg(v)
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for every vertex v0 ∈ V (D). Similarly, we get g∗(v1) = f∗(v) + q+1
2q mdeg(v) for

every vertex v1 ∈ V (D).

We say that a q-gradual bijection f : E(G) −→
[

1, |E(G)|
]

respects a set Z
(Z ⊆ E(G)) if for each i ∈ [1, q] either Fq(f ; i) ⊆ Z or Fq(f ; i) ⊆ E(G) − Z.
Evidently, a q-gradual bijection f respects a set Z if and only if there exists a
subset I ⊂ [1, q] such that Z =

⋃

i∈I Fq(f ; i).

Lemma 4. Let q ≥ 2 be a positive integer and let G be a graph such that deg(v) ≡
0 (mod 2q) for every vertex v ∈ V (G). Let f be a q-gradual bijection from E(G)
onto

[

1, |E(G)|
]

which respects a set Z ⊆ E(G). If |E(G)|/q < |Z| < |E(G)|,
then there exists a bijection g from E(D(G;Z, ∅)) onto

[

1, 2|E(G)|
]

such that for

every vertex v ∈ V (G) it holds

g∗(v0) = g∗(v1) = f∗(v) +
1

2
|E(G)| deg(v).

Proof. As f respects the set Z, according to Observation 1, we can assume
that there is an integer k ∈ [1, q] such that Z =

⋃k
i=1 Fq(f ; i). Moreover, since

|E(G)|/q < |Z| < |E(G)|, k ∈ [2, q − 1].
Since deg(v) ≡ 0 (mod 2q) for every vertex v ∈ V (G), the degree of each

vertex of G is even. If k is even, then the spanning subgraph of G induced by
⋃k/2

i=1 Fq(f ; i) is a
1
2 -factor of G[Z]. According to Lemma 1, there exists a desired

bijection g : E(D(G;Z, ∅)) −→
[

1, 2|E(G)|
]

.
Now, suppose that k is odd. Put m := |E(G)|/q and d(v) := deg(v)/q for

every v ∈ V (G). Clearly, the subgraph G[Fq(f ; i)], i ∈ [1, q], has m edges and
each its vertex v has degree d(v). Denote by H1 the subgraph of G induced by
Z ⊆ E(G) (i.e., H1 = G[Z]). The size of H1 is |Z| = km. Evidently, the mapping
h1 : E(H1) −→ [1, km], given by

h1(e) := f(e) for every e ∈ E(H1),

is a k-gradual bijection. By Lemma 3, there exists a bijection

g1 : E(D(H1;Z, ∅)) −→ [1, km] ∪ [1 + (k + 1)m, (2k + 1)m]

such that for every vertex v ∈ V (H1) it holds

g∗1(v
0) = g∗1(v

1) = h∗1(v) +
k + 1

2k
|Z| degH1

(v) = h∗1(v) +
k + 1

2
mkd(v).

Similarly, denote by H2 the subgraph of G induced by E(G) − Z (i.e., H2 =
G[E(G) − Z]). The size of H2 is (q − k)m. The mapping h2 : E(H2) −→
[1, (q − k)m], given by

h2(e) := f(e)− km for every e ∈ E(H2),
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is a (q− k)-gradual bijection. By Lemma 2 (Lemma 1, if q− k = 1), there exists
a 2(q − k)-gradual bijection g2 : E(D(H2; ∅, ∅)) −→ [1, 2(q − k)m] such that for
every vertex v ∈ V (H2) it holds

g∗2(v
0) = g∗2(v

1) = h∗2(v) +
1

2
|E(H2)| degH2

(v) = h∗2(v) +
1

2
m(q − k)2d(v).

Evidently, E(D(G;Z, ∅)) = E(D(H1;Z, ∅)) ∪ E(D(H2; ∅, ∅)). Consider the
mapping g : E(D(G;Z, ∅)) −→ [1, 2qm] given by

g(e) =











g1(e) if e ∈ E(D(H1;Z, ∅)),

g2(e) + km if e ∈ F2(q−k)(g2; 1),

g2(e) + 2km if e ∈ E(D(H2; ∅, ∅))− F2(q−k)(g2; 1).

Since |F2(q−k)(g2; 1)| = 2|E(H2)|/(2(q−k)) = m, the mapping g is a bijection.
Moreover, for i ∈ {0, 1} and every vertex v ∈ V (G) we have

g∗(vi) = g∗1(v
i) + g∗2(v

i) + km
d(v)

2
+ 2km

(

2(q − k)− 1
)d(v)

2

= g∗1(v
i) + g∗2(v

i) + (4q − 4k − 1)km
d(v)

2
,

because the degree of vi in a subgraph ofD(H2; ∅, ∅) (and alsoD(G;Z, ∅)) induced
by F2(q−k)(g2; j), j ∈ [1, 2(q − k)], is d(v)/2. Thus,

g∗(vi) =

(

h∗1(v) +
k + 1

2
mkd(v)

)

+

(

h∗2(v) +
1

2
m(q − k)2d(v)

)

+ (4q − 4k − 1)km
d(v)

2
= h∗1(v) + h∗2(v) + (q2 + 2qk − 2k2)m

d(v)

2
.

As degH2
(v) = (q − k)d(v), we have h∗1(v) + h∗2(v) = f∗(v)− km(q − k)d(v) and

so

g∗(vi) =
(

f∗(v)− km(q − k)d(v)
)

+ (q2 + 2qk − 2k2)m
d(v)

2

= f∗(v) +
1

2
qmqd(v) = f∗(v) +

1

2
|E(G)| deg(v).

Therefore, g is a desired bijection.

3. Magic Graphs

In this section we present some sufficient conditions for generalized double graphs
D(G;Z, ∅) to be degree-magic.
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Theorem 1. Let G be a degree-magic graph such that deg(v) ≡ 0 (mod 2) for

every vertex v ∈ V (G). If the subgraph of G induced by a set Z ⊆ E(G) has

a 1
2 -factor, then the graph D(G;Z, ∅) is balanced degree-magic.

Proof. As G is a d-magic graph, there is a d-magic labelling f from E(G)
onto

[

1, |E(G)|
]

. According to Lemma 1, there exists a 2-gradual bijection
g : E(D(G;Z, ∅)) −→

[

1, 2|E(G)|
]

satisfying

g∗(v0) = g∗(v1) = f∗(v) +
1

2
|E(G)| deg(v),

for every vertex v ∈ V (G). Since f is a d-magic labelling, f∗(v) = (1 + |E(G)|)
deg(v)/2. Hence

g∗(v0) = g∗(v1) =
1

2
(1 + |E(G)|) deg(v) +

1

2
|E(G)| deg(v)

=
1

2
(1 + 2|E(G)|) deg(v) =

1

2
(1 + |E(D(G;Z, ∅))|) deg(v).

Therefore, g is a 2-gradual d-magic labelling of D(G;Z, ∅).

Combining Proposition 1 and Theorem 1 we immediately have

Corollary 2. Let G be a supermagic regular graph of even degree. If the subgraph

of G induced by a set Z ⊆ E(G) has a 1
2 -factor, then the graph D(G;Z, ∅) is

supermagic.

Corollary 2 provides a copious method to construct supermagic graphs. For
example, the complete graph K7 is supermagic ([14]). One can see that K7

contains 26 non-isomorphic subgraphs having a 1
2 -factor. By Corollary 2, the

graph D(K7;E(H), ∅) is supermagic for each such subgraph H.

A totally disconnected graph has a 1
2 -factor and so we get

Corollary 3. Let G be a supermagic regular graph of even degree. Then the

bipartite double graph D(G; ∅, ∅) of a graph G is supermagic.

As the graph 2G is isomorphic to D(G;E(G), ∅), we have the next corollary.

Corollary 4. ([7]) Let G be a supermagic regular graph of degree 2d which has

a d-factor. Then the graph 2G is supermagic.

For double graphs we get the next corollary.

Corollary 5. Let G be a graph having a 1
2 -factor. Then the double graph

D( 2G;E1(
2G), ∅) of a graph G is balanced degree-magic.
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Proof. Let h be a bijection from E(G) onto
[

1, |E(G)|
]

. Consider the mapping
f : E( 2G) −→

[

1, 2|E(G)|
]

given by

f((e, j)) =

{

h(e) if j = 1,

1 + 2|E(G)| − h(e) if j = 2.

Evidently, f is a bijection. Moreover, f((e, 1)) + f((e, 2)) = 1 + 2|E(G)|, for any
edge e ∈ E(G). Therefore,

f∗(v) = (1 + 2|E(G)|) degG(v) = (1 + |E( 2G)|)
deg 2G(v)

2
.

Thus, f is a degree-magic labelling of 2G. As the subgraph of 2G induced by
E1(

2G) is isomorphic toG, it contains a 1
2 -factor. By Theorem 1,D( 2G;E1(

2G), ∅)
is a balanced d-magic graph.

Combining Proposition 1 and Corollary 5 we immediately have

Corollary 6. Let G be a regular graph having a 1
2 -factor. Then the double graph

D( 2G;E1(
2G), ∅) of a graph G is supermagic.

Theorem 1 can be only used for subsets Z of even cardinality. The following
result can be used also for subsets of odd cardinality.

Theorem 2. Let q ≥ 2 be a positive integer and let G be a graph such that

deg(v) ≡ 0 (mod 2q) for every vertex v ∈ V (G). Let Z be a subset of E(G) such
that |E(G)|/q < |Z| < |E(G)|. If G admits a q-gradual degree-magic labelling

which respects Z, then the graph D(G;Z, ∅) is degree-magic.

Proof. Suppose that f is a q-gradual d-magic labelling of G which respects a set
Z. According to Lemma 4, there exists a bijection g from E(D(G;Z, ∅)) onto
[

1, 2|E(G)|
]

satisfying

g∗(v0) = g∗(v1) = f∗(v) +
1

2
|E(G)| deg(v),

for every vertex v ∈ V (G). Since f is a d-magic labelling, f∗(v) = (1 + |E(G)|)
deg(v)/2. Hence

g∗(v0) = g∗(v1) =
1

2
(1 + |E(G)|) deg(v) +

1

2
|E(G)| deg(v)

=
1

2
(1 + 2|E(G)|) deg(v) =

1

2
(1 + |E(D(G;Z, ∅))|) deg(v).

Therefore, g is a d-magic labelling of D(G;Z, ∅).
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For double graphs we have the following result.

Corollary 7. Let G be a graph such that deg(v) ≡ 0 (mod 2) for every vertex v ∈
V (G) and let q ≥ 2 be a positive integer. If G can be decomposed into q pairwise

edge-disjoint 1
q -factors, then the double graph D( 2G;E1(

2G), ∅) of a graph G is

degree-magic.

Proof. If q is even, then the union of q/2 edge-disjoint 1
q -factors induces a 1

2 -
factor of G and the result follows from Corollary 5. Therefore, next we suppose
that q is odd. Evidently, deg(v) ≡ 0 (mod 2q) for every vertex v of G in this
case. Let H1, H2, . . . , Hq be pairwise edge-disjoint 1

q -factors of a graph G. Put
m := |E(G)|/q. Clearly, the subgraph Hi, i ∈ [1, q], has m edges. Suppose that
hi is a bijection from E(Hi) onto [1,m], for i ∈ [1, q]. Consider the mapping
f : E( 2G) −→ [1, 2qm] given by

f((e, j)) =

{

hi(e) + (i− 1)m if j = 1 and e ∈ E(Hi),

1 + (1 + 2q − i)m− hi(e) if j = 2 and e ∈ E(Hi).

Evidently, f((e, 1)) + f((e, 2)) = 1 + 2qm, for any edge e ∈ E(G). Therefore,

f∗(v) = (1 + 2qm) deg(v) = (1 + |E( 2G)|)
deg 2G(v)

2
.

Moreover, for i ∈ [1, q], we have

F2q(f ; i) = {(e, 1) ∈ E( 2G) : e ∈ E(Hi)} and

F2q(f ; i+ q) = {(e, 2) ∈ E( 2G) : e ∈ E(H1+q−i)}.

Thus, the mapping f is a 2q-gradual degree-magic labelling of 2G which respects
the set E1(

2G). According to Theorem 2, D( 2G;E1(
2G), ∅) is a d-magic graph.

As any regular graph of even degree d is decomposable into d/2 pairwise
edge-disjoint 2-factors (i.e., 1

d/2 -factors), we immediately get

Corollary 8. Let G be a regular graph of degree d, where 4 ≤ d ≡ 0 (mod 2).
Then the double graph D( 2G;E1(

2G), ∅) of a graph G is supermagic.

4. Antimagic Graphs

Bodendiek and Walther [3] introduced the special case of antimagic graphs. For
positive integers a, d, a graph G is said to be (a, d)-antimagic if it admits a bi-
jection f from E(G) onto [1, |E(G)|] such that

{f∗(v) : v ∈ V (G)} = {a, a+ d, . . . , a+ (|V (G)| − 1)d}.
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The mapping f is then called an (a, d)-antimagic labelling of G. Obviously,

a = |E(G)|(|E(G)|+1)
|V (G)| − (|V (G)|−1)d

2 in this case.

In this section we will deal with (a, 1)-antimagic graphs and their connection
with supermagic generalized double graphs.

There is known an effective method to construct an (a′, 1)-antimagic labelling
of a supergraph of an (a, 1)-antimagic graph (see [9]). The following assertion is
a purpose overwriting of this method.

Lemma 5. Let H1, H2, . . . , Hq be pairwise edge-disjoint 2-factors which form

a decomposition of a graph G. If H1 is an (a, 1)-antimagic graph, then there exists

a q-gradual (a′, 1)-antimagic labelling f of G such that Fq(f ; i) = E(Hi) for each

i ∈ [1, q].

Proof. For k ∈ [1, q] we define a graph Gk by V (Gk) = V (G) and E(Gk) =
⋃k

i=1E(Hi). Evidently, Gk is a 2k-regular graph, G1 = H1 and Gq = G. Put
n := |V (G)|. Then |E(Hk)| = n and |E(Gk)| = kn. Using induction on k we
prove that there is a k-gradual (ak, 1)-antimagic labelling fk of Gk such that
Fk(fk; i) = E(Hi) for each i ∈ [1, k].

If k = 1, then G1 = H1 is an (a1, 1)-antimagic graph and so there is a (1-
gradual) (a1, 1)-antimagic labelling of G1 such that F1(f1; 1) = E(H1).

Now assume that there is a (k−1)-gradual (ak−1, 1)-antimagic labelling fk−1

of Gk−1 such that Fk−1(fk−1; i) = E(Hi) for each i ∈ [1, k − 1]. Let ~Hk be
a digraph which we get from Hk by an orientation of its edges such that the
outdegree of every vertex of ~Hk is equal to 1. By [u, v] we denote an arc of ~Hk

and by A( ~Hk) the set of all arcs of ~Hk. Consider a mapping fk : E(Gk) −→ [1, kn]
defined by

fk(e) =

{

fk−1(e) if e ∈ E(Gk−1),

ak−1 + kn− f∗
k−1(u) if e = uv ∈ E(Hk) and [u, v] ∈ A( ~Hk).

It is easy to see that fk is a bijection and f∗
k (v) = ak−1+nk+fk(uv), where [u, v]

is an arc of ~Hk. As {fk(e) : e ∈ E(Hk)} = [(k − 1)n + 1, nk], the labelling fk is
(ak, 1)-antimagic, where ak = ak−1 + kn + (k − 1)n + 1. Moreover, Fk(fk; i) =
Fk−1(fk−1; i) = E(Hi) for each i ∈ [1, k− 1] and Fk(fk; k) = E(Gk)−E(Gk−1) =
E(Hk).

As any regular graph of even degree 2r is decomposable into r pairwise edge-
disjoint 2-factors and the cycle Cn of odd order n is (a, 1)-antimagic (see [4]), we
immediately get

Corollary 9. Every 2r-regular Hamiltonian graph of odd order admits an r-
gradual (a, 1)-antimagic labelling.
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In [9] there is proved that the graph G⊲⊳ = D(G; ∅, V (G)) is supermagic
for every (a, 1)-antimagic 2r-regular graph G, and that the Cartesian product
G�K2 = D(G;E(G), V (G)) is supermagic for every (a, 1)-antimagic 2r-regular
graph G with an r-factor. The following theorem generalizes these results.

Theorem 3. Let G be an (a, 1)-antimagic 2r-regular graph. If the subgraph of

G induced by a set Z ⊆ E(G) has a 1
2 -factor, then the graph D(G;Z, V (G)) is

supermagic.

Proof. Put n := |V (G)|. Since G is a 2r-regular graph, |E(G)| = rn. As G
is an (a, 1)-antimagic graph, there is an (a, 1)-antimagic labelling f from E(G)
onto [1, rn]. According to Lemma 1, there exists a bijection g : E(D(G;Z, ∅)) −→
[1, 2rn] satisfying

g∗(v0) = g∗(v1) = f∗(v) + r2n,

for every vertex v ∈ V (G). Since f is an (a, 1)-antimagic labelling, the set
{f∗(v) : v ∈ V (G)} consists of consecutive integers. It means that the bijection
h : E(D(G;Z, V (G))) −→ [1, (2r + 1)n], given by

h(e) =

{

g(e) if e ∈ E(D(G;Z, ∅)),

(2r + 1)n+ a− f∗(v) if e = v0v1 for v ∈ V (G),

is a supermagic labelling of D(G;Z, V (G)).

One can see that Theorem 3 (similarly as, Corollary 2) provides a copious
method to construct supermagic graphs.

In the same manner as above (using Lemma 2 instead of Lemma 1) we can
prove the following result.

Theorem 4. Let G be a 2r-regular graph. If G admits an r-gradual (a, 1)-
antimagic labelling, then the graph D(G; ∅, V (G)) admits a (2r + 1)-gradual su-
permagic labelling.

Combining Corollary 9 and Theorem 4 we obtain

Corollary 10. Let G be a 2r-regular Hamiltonian graph of odd order. Then the

graph D(G; ∅, V (G)) admits a (2r + 1)-gradual supermagic labelling.

The following assertion uses a gradual (a, 1)-antimagic labelling.

Theorem 5. Let G be a 2r-regular graph, where r ≥ 2. Let Z be a subset

of E(G) such that |Z| > |E(G)|/r. If G admits an r-gradual (a, 1)-antimagic

labelling which respects Z, then the graph D(G;Z, V (G)) is supermagic.



Supermagic Generalized Double Graphs 223

Proof. Put n := |V (G)|. Clearly, |E(G)| = rn. Suppose that f is an r-gradual
(a, 1)-antimagic labelling of G which respects a set Z.

According to Lemma 4 (if |Z| < |E(G)|) or Lemma 1 (if |Z| = |E(G)| and r
is even), there exists a bijection g1 from E(D(G;Z, ∅)) onto [1, 2rn] satisfying

g∗1(v
0) = g∗1(v

1) = f∗(v) + r2n,

for every vertex v ∈ V (G). Since f is an (a, 1)-antimagic labelling, the set
{f∗(v) : v ∈ V (G)} consists of consecutive integers. It means that the bijection
h1 : E(D(G;Z, V (G))) −→ [1, (2r + 1)n], given by

h1(e) =

{

g1(e) if e ∈ E(D(G;Z, ∅)),

(2r + 1)n+ a− f∗(v) if e = v0v1 for v ∈ V (G),

is a supermagic labelling of D(G;Z, V (G)).

Finally, if |Z| = |E(G)| and r is odd, then by Lemma 3 there is a bijection
g2 from E(D(G;Z, ∅)) onto [1, rn] ∪ [1 + (r + 1)n, (2r + 1)n] satisfying

g∗2(v
0) = g∗2(v

1) = f∗(v) + (r + 1)rn,

for every vertex v ∈ V (G). Since f is an (a, 1)-antimagic labelling, the set
{f∗(v) : v ∈ V (G)} consists of consecutive integers. It means that the bijection
h2 : E(D(G;Z, V (G))) −→ [1, (2r + 1)n], given by

h2(e) =

{

g2(e) if e ∈ E(D(G;Z, ∅)),

(r + 1)n+ a− f∗(v) if e = v0v1 for v ∈ V (G),

is a supermagic labelling of D(G;Z, V (G)).

In [9] it is proved that the Cartesian product G�K2 = D(G;E(G), V (G)) is
supermagic for every 4r-regular Hamiltonian graph G of odd order. Combining
Theorem 5 and Corollary 9, we have

Corollary 11. Let G be a 2r-regular Hamiltonian graph of odd order, where

r ≥ 2. Then the Cartesian product G�K2 is a supermagic graph.

Let n, m and 1 ≤ s1 < · · · < sm ≤
⌊

n
2

⌋

be positive integers. A graph
Cn(s1, . . . , sm) with the vertex set {v0, . . . , vn−1} and the edge set {vivi+sj : 0 ≤
i ≤ n− 1, 1 ≤ j ≤ m}, the indices are being taken modulo n, is called a circulant

graph. It is easy to see that the circulant graph Cn(s1, . . . , sm) is a regular graph
of degree r, where r = 2m − 1 when sm = n/2, and r = 2m otherwise. The
circulant graph Cn(s1, . . . , sm) has d = gcd(s1, . . . , sm, n) connected components
(see [5]), which are isomorphic to Cn/d(s1/d, . . . , sm/d).
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If n is odd, then Cn(s1), Cn(s2), . . . , Cn(sm) are pairwise edge-disjoint 2-
factors which form a decomposition of Cn(s1, . . . , sm). Moreover, Cn(si) is iso-
morphic to dCn/d, where d = gcd(si, n) and n/d are odd integers. As odd number
of copies of a cycle of odd order is an (a, 1)-antimagic graph (see [9]), the graph
Cn(si) is (a, 1)-antimagic.

Semaničová [12] proved that C2k(s1, . . . , sm, k) is not supermagic when k is
even and that a 3-regular circulant graph C2k(s, k) is supermagic if and only if
both of k and s are odd. Using Theorem 5 we get the following result.

Corollary 12. Let m and 1 ≤ s1 < · · · < sm be positive integers such that

|{j ∈ [1,m] : sj ≡ 0 (mod 2)}| 6= 1. Then C2k(s1, . . . , sm, k) is a supermagic

graph for every odd integer k > sm.

Proof. Denote by v0, v1, . . . , v2k−1 the vertices of C2k(s1, . . . , sm, k) and by u0,
u1, . . . , uk−1 the vertices of Ck(1, 2, . . . , (k − 1)/2). For every i ∈ [1,m] put

(ti, oi) =

{

(si, 1) if si < k/2,

(k − si, 2) if si > k/2.

Evidently, the pairs (ti, oi), i ∈ [1,m], are pairwise different.
For every i ∈ [1,m] let Hi be a 2-factor of 2Ck(1, 2, . . . , (k− 1)/2) defined by

E(Hi) = {(e, oi) : e ∈ E(Ck(ti)}. Clearly, Hi is isomorphic to Ck(ti) and so it is
(a, 1)-antimagic. Let G be a 2m-regular spanning subgraph of 2Ck(1, 2, . . . , (k −
1)/2) defined by E(G) =

⋃m
i=1E(Hi). The graphs H1, H2, . . . , Hm are pairwise

edge-disjoint 2-factors which form a decomposition of G. According to Lemma 5,
there exists an m-gradual (a′, 1)-antimagic labelling f of G such that Fm(f ; i) =
E(Hi) for each i ∈ [1,m]. Therefore, f respects the set Z :=

⋃

j∈S E(Hj), where
S = {j ∈ [1,m] : sj ≡ 0 (mod 2)}. By Theorem 5, the graph D(G;Z, V (G))
is supermagic when |S| > 1. Similarly, by Theorem 4, the graph D(G;Z, V (G))
admits a (2m+ 1)-gradual supermagic labelling when |S| = 0.

Now consider the mapping ϕ from {v0, v1, . . . , v2k−1} onto
⋃k−1

i=0 {u
0
i , u

1
i } given

by

ϕ(vi) =























u0i if i < k and i ≡ 0 (mod 2),

u1i if i < k and i ≡ 1 (mod 2),

u0i−k if i ≥ k and i ≡ 0 (mod 2),

u1i−k if i ≥ k and i ≡ 1 (mod 2).

It is not difficult to check that ϕ is an isomorphism from C2k(s) to D
(

Ck(s); ∅, ∅
)

when s < k/2 is an odd integer. Similarly, ϕ is an isomorphism from C2k(s) onto
D
(

Ck(k− s); ∅, ∅
)

when s > k/2 is an odd integer. If s is an even integer, then ϕ
is an isomorphism from C2k(s) onto D

(

Ck(s);E(Ck(s)), ∅
)

when s < k/2, or onto
D
(

Ck(k−s);E(Ck(k−s)), ∅
)

when s > k/2. Therefore, ϕ is an isomorphism from
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C2k(s1, . . . , sm, k) onto the supermagic graphD(G;Z, V (G)), which completes the
proof.
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