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Abstract

A graph G is called supermagic if it admits a labelling of the edges by
pairwise different consecutive integers such that the sum of the labels of the
edges incident with a vertex is independent of the particular vertex. In this
paper we will introduce some constructions of supermagic labellings of some
graphs generalizing double graphs. Inter alia we show that the double graphs
of regular Hamiltonian graphs and some circulant graphs are supermagic.
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1. INTRODUCTION

We consider finite graphs without loops and isolated vertices. If G is a graph,
then V(G) and E(G) stand for the vertex set and edge set of G, respectively.
Cardinalities of these sets are called the order and size of G. The subgraph of
a graph G induced by Z C E(G) is denoted by G[Z]. For integers p, ¢ we denote
by [p, g the set of all integers z satisfying p < z < g.

Let a graph G and a mapping f from F(G) into positive integers be given.
The index-mapping of f is the mapping f* from V(G) into positive integers
defined by

(1) ) = Z n(v,e)f(e) for every v € V(G),
e€E(GQ)

where n(v,e) is equal to 1 when e is an edge incident with a vertex v, and 0
otherwise. An injective mapping f from E(G) into positive integers is called
a magic labelling of G for an index X if its index-mapping f* satisfies

(2) ff(v) =X forallve V(G).
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A magic labelling f of G is called a supermagic labelling if the set {f(e) : e €
E(G)} consists of consecutive positive integers. We say that a graph G is super-
magic (magic) whenever there exists a supermagic (magic) labelling of G.

A bijection f from E(G) into [1,|E(G)|] is called a degree-magic labelling (or
only d-magic labelling) of a graph G if its index-mapping f* satisfies

(3) ffv) = 1+|2E(G)| deg(v) for all v € V(G).
We say that a graph G is degree-magic (or only d-magic) when there exists a
d-magic labelling of G.

The concept of magic graphs was introduced by Sedldcek [11]. Supermagic
graphs were introduced by Stewart [13]. There is by now a considerable number
of papers published on magic and supermagic graphs; we single out [8, 9] as being
more particularly relevant to the present paper, and refer the reader to [6] for
comprehensive references. The concept of degree-magic graphs was introduced in
[1]. Degree-magic graphs extend supermagic regular graphs because the following
result holds.

Proposition 1 ([1]). Let G be a regular graph. Then G is supermagic if and
only if it is degree-magic.

Suppose that ¢ > 2 is an integer. A spanning subgraph H of a graph G is
called a %—factor of G whenever deg(v) = degq(v)/q for every vertex v € V(G).
A bijection f from E(G) onto [1,|E(G)|] is called g-gradual if the set

Fy(f;1) :=A{e € E(G) : (i = D|E(G)|/q < f(e) <ilE(G)]/q}

induces a %—factor of G for each i € [1,¢q]. A graph G is called balanced degree-
magic if there exists a 2-gradual d-magic labelling of G. Some properties of
balanced d-magic graphs were described in [1] and [2]. However, the notion of

g-gradual labelling seems to be useful also for ¢ > 2.

Observation 1. Let f : E(G) — [1,|E(G)|] be a g-gradual bijection and let o
be a permutation of [1,q]. Then g: E(G) — [1,|E(G)|] defined by

[E(G)]
q

gle) = fle) + (a(i) — 1) when e € Fy(f;1),

is a g-gradual bijection satisfying
(i) g*(v) = f*(v), for every vertex v € V(G),
(1) Fylgs (i) = Fy(f3i), for cachi € [1,q]
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The graph obtained by replacing each edge uv of a graph G with 2 edges
joining u and v is denoted by 2G. Therefore, V(?G) = V(G) and E(*G) =
Ueer@{(e 1), (e,2)}, where an edge (e, i), i € {1,2}, is incident with a vertex v
in 2G whenever e is incident with v in G. In this case, E;(%Q) := Ueere{(e 1)}
Evidently, the subgraph of 2G induced by E;(%G) is isomorphic to G.

In this paper we will introduce some constructions of supermagic (and degree-
magic) labellings of some graphs generalizing double graphs.

2. GENERALIZED DOUBLE GRAPHS

Let G be a graph. Suppose that U C V(G) and Z C E(G). Define a graph
D =D(G;Z,U) by

V(D): U {’anvl}

veV(G)
and
E(D) = U {v%u”, v'u'} U U {0%u!, vt} U U {uPul}.
VUEZ vweE(G)-Z uelU

Note, that D(G; E(G), () consists of two disjoint copies of G, i.e., it is iso-
morphic to 2G. The graph D(G; E(G),V(G)) is the Cartesian product of G and
K,. The graph D(G;0,0) is the categorical product of G and Kj, also called
the bipartite double graph of a graph G. Similarly, D(?G; E1(%G),0) is the lexi-
cographic product (or composition) of G and Ko, also called the double graph of
a graph G (see [10]). Therefore, the graph D(G; Z,U) is a generalization of the
double graph of a graph G.

Now we prove crucial results of the paper.

Lemma 1. Let G be a graph such that deg(v) = 0 (mod 2) for every vertex
v € V(G). Suppose that the subgraph of G induced by Z C E(G) has a %—factor.
Then for any bijection f : E(G) — [1,|E(G)|] there exists a 2-gradual bijection
g:E(D(G;Z,0)) — [1,2|E(G)|] such that for every vertez v € V(G) it holds

g (") = g"(v") = f*(v) + %\E(G)I deg(v).

Proof. The subgraph G[Z] of a graph G induced by Z C E(G) has a %—factor.
Then there is a set Z; C Z such that the subgraph of G[Z] induced by Z; is
a -factor of G[Z]. Clearly, the subgraph of G[Z] induced by Z» = Z — Z; is also
a 3-factor of G[Z]. Moreover, the degree of each vertex of G[Z] is even. Similarly,
the degree of each vertex of H = G[E(G) — Z] is even. Thus, every component

of H is Eulerian. Therefore, there is a digraph H which we get from H by an
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orientation of its edges such that the outdegree of every vertex of H is equal to
its indegree. By [u,v] we denote an arc of H and by A(H) the set of all arcs
of H.

Put m := |E(G)| and D := D(G; Z,0). Consider the bijection g : E(D) —
[1,2m] given by

f(uv) if i=0,j=1,I[uv]€AH),
flww)+m if i=1,5=0, [u,v] € A(ﬁ),
i f(uv) if i=7=0,uve Zy,
g(u'v’) = oo
flw)+m if i=j5=1uv € 7,
f(uv) if i=j5=1,uve 2y,
fluw)+m if i=3j=0,uv € Zs.

For its index-mapping we have

g @)= > g%+ D g+ D g(u®)+ D g’

[v,w]EA(H) [w,v]€ A(H) vweZy vwe Zo
= Y fw)+ D (fwo)+m)+ Y flow) + Y (flow) +m)
[v,w]€A(H) [w,w]€A(H) vwEZ] VWE Zy
1 1
= Z flow) +m - 3 deg(v) = f*(v) + o™ deg(v)
vweE(G)

for every vertex v € V(D). Similarly, we get ¢g*(v') = f*(v) + %m deg(v) for
every vertex v! € V(D). Since the outdegree of every vertex of H is equal to

its indegree and the sets Z; and Z5 induce %—factors of G[Z], the sets Fa(g;1) =

{u! : [u,v] € A(l_ﬁ?)} U{u®? :ww € Z1} U {ulv! : uwv € Zo} and Fy(g;2) =
{uld : [u,v] € A(H)} U {ulv' : uwv € Z;} U {u®? : wo € Z5} induce i-factors
of D. ]

Lemma 2. Let g > 2 be a positive integer and let G be a graph such that deg(v) =
0 (mod 2q) for every vertex v € V(G). Then for any q-gradual bijection f :
E(G) — [1,|E(G)]|] there exists a 2q-gradual bijection g : E(D(G;0,0)) —
[1,2|E(G)|] such that for every vertez v € V(G) it holds

g(0%) = g (") = f*(0) + 5| B(G)]| des(o).

Proof. Since deg(v) =0 (mod 2q) for every vertex v € V(G), the degree of each
vertex of H; = G[F,(f;i)], i € [1,q|, is even. Therefore, there is a digraph H;
which we get from H; by an orientation of its edges such that the outdegree of
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every vertex of ﬁ is equal to 1ts indegree. Let H be an orientation of G such
that the set A(H) of all arcs of H is equal to 1 9 A(H).

Put m := |E(G)|, D := D(G;0,0) and COIlSldeI' the bijection g from E(D)
onto [1,2m] given by

o(uiv) = {f(uv) if i=0,7=1, [uv] € AH),
fluv)+m if i=1,5=0, [u,v] € A(H).

Analogously as in the proof of Lemma 1 we can prove that g*(v%) = g*(v!) =
f*(v) + $mdeg(v) for every vertex v € V(G). Moreover, the outdegree of every
vertex of H; is equal to its indegree, and thus the sets Foy(g;i) = {u®v! : [u,v] €
A(H;)} and Foy(g;q+1i) = {ulo® : [u,v] € A(H;)} induce 2—1(1-fact0rs of D. |

Lemma 3. Let ¢ > 3 be an odd positive integer. Then for any q-gradual bijection
[+ E(G) — [1,|E(G)|] there exists a bijection

g1 E(D(G; E(G),0) — [1,[E@G)[] U |1+ L5 1|E< G)l, 2“ LE@)
such that for every vertex v € V(G) it holds
(@) = " (@W") = f*(v) + ‘”ﬂE( G)| deg(v).

Proof. Put m := |E(G)| and D := D(G; E(G), (). Consider the mapping ¢ from
E(D) into the set of integers given by

fuv) +2m if 1 =0, ww € Fy(f;1),
f(uv) if i=1,uve F(f;1),
f(uw) if 1 =0, uv e Fy(f;2),

i q fluv)+m if i =1, uww € Fy(f;2),

gu'v') = e . B

f(uv) if i=0,uve Fy(f;j),3<j=1 (mod 2),
fluv)+m if i=1,uwv € Fy)(f;j),3<j=1 (mod 2),
fluw)+m if i =0, uwv € Fy(f;7),3<j=0 (mod 2),
f(uv) if i=1,uve Fy(f;j),3<j=0 (mod 2)

Evidently, g : E(D) — [1,m]U [1 + q+1 2q+1m] is a bijection. Moreover,
for its index-mapping we have

q q
. +1 deg(v
FE=Y Y ) => Y e+ T Y
=1 vweFy(f;5) J=Lowely(f;4)

* q+1
- Z f(v +7mdeg() f(U)—l—Tqmdeg(v)

vweE(G)
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for every vertex v € V(D). Similarly, we get g*(v') = f*(v) + q;r—l

5 mdeg(v) for
every vertex vl € V(D). ]

We say that a g-gradual bijection f : E(G) — [1,|E(G)|] respects a set Z
(Z C E(G)) if for each i € [1,q| either F,(f;i) C Z or F,(f;i) € E(G) — Z.
Evidently, a ¢g-gradual bijection f respects a set Z if and only if there exists a
subset I C [1,¢q] such that Z = J;c; Fo(f;1).

Lemma 4. Let g > 2 be a positive integer and let G be a graph such that deg(v) =
0 (mod 2q) for every vertex v € V(G). Let f be a q-gradual bijection from E(Q)
onto [1,|E(G)|] which respects a set Z C E(G). If |E(G)|/q < |Z] < |E(G)],
then there ezists a bijection g from E(D(G; Z,0)) onto [1,2|E(G)|] such that for
every verter v € V(Q) it holds

g (") =g"(v') = f*(v) + %\E(G)\ deg(v).

Proof. As f respects the set Z, according to Observation 1, we can assume
that there is an integer k € [1,q] such that Z = Ule F,(f;i). Moreover, since
E(G)|/a < |Z] < |E@G)], k€ 2.q—1].

Since deg(v) = 0 (mod 2q) for every vertex v € V(G), the degree of each
vertex of G is even. If k is even, then the spanning subgraph of G induced by
UZ 21 Fy(f;4) is a 3-factor of G[Z]. According to Lemma 1, there exists a desired
bijection g : E(D(G; Z,0)) — [1,2|E(G)]].

Now, suppose that &k is odd. Put m := |FE(G)|/q and d(v) := deg(v)/q for
every v € V(G). Clearly, the subgraph G[F(f;4)], i € [1,q], has m edges and
each its vertex v has degree d(v). Denote by H; the subgraph of G induced by
Z C E(G) (i.e., Hi = G[Z]). The size of H, is |Z| = km. Evidently, the mapping
hi: E(Hy) — [1, km], given by

hi(e) := f(e) for every e € E(Hy),
is a k-gradual bijection. By Lemma 3, there exists a bijection
g1: E(D(Hy1;Z,0)) — [1,km] U [1 + (k+ 1)m, (2k + 1)m]
such that for every vertex v € V(Hq) it holds

N . . k+1 . k+1
gi(0") = g (v') = hi(v) + =5~ 12| degp, (v) = hi(v) + —5—mkd(v).

Similarly, denote by Hjy the subgraph of G induced by E(G) — Z (i.e., Hy =
G[E(G) — Z]). The size of Hy is (¢ — k)m. The mapping hy : E(Hy) —
[1, (¢ — k)m], given by

ha(e) := f(e) — km for every e € E(Ha2),
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is a (¢ — k)-gradual bijection. By Lemma 2 (Lemma 1, if ¢ — k = 1), there exists
a 2(q — k)-gradual bijection go : E(D(H2;0,0)) — [1,2(¢ — k)m] such that for
every vertex v € V(Hs) it holds

G50%) = g5 (") = h5(0) + 3 |E(H) | degypy (v) = R3(0) + Smlq — R)d(v).
Evidently, E(D(G; Z,0)) = E(D(Hy; Z,0)) U E(D(Hs2;0,0)). Consider the
mapping g : E(D(G; Z, V))) [1,2¢gm] given by

gl(e) if GEE( (Hl,Z,(Z)))
gle) = { g2(e) +km if e € Fyip(g23 1),
92(6) +2km if e€ E( (HQ, @,@ ) FZ(q k)(QQ, 1)

Since |Fy(q—r)(92;1)| = 2|E(H2)|/(2(¢—k)) = m, the mapping g is a bijection.
Moreover, for i € {0,1} and every vertex v € V(G) we have

0" () = 6 09) + g30") + b 4 2km(2(g — k) 1)

= Gi(0) + g3(0) + (dg — 4k — ",

d(v)
2

because the degree of v’ in a subgraph of D(Ha; 0, ) (and also D(G; Z, 0)) induced
by Foq—1)(92:7), j € [1,2(q¢ — k)], is d(v)/2. Thus,
) kE+1 1
0 = (i) + k(o)) + (k5(0) + Gmla - 0Pd0))

2 2
d(v)

+ (g - 4k = km ™ = hi(0) 4 B30 + (62 + 20k - 22 2.

As degy, (v) = (¢ — k)d(v), we have hi(v) + h3(v) = f*(v) — km(q — k)d(v) and

g (0") = (f*(v) = km(q = k)d(v)) + (¢* + 2qk — 2/<;2)md(2”)
= f(v) + %qqu(v) = f*(v) + %]E(G)] deg(v).

Therefore, g is a desired bijection. [

3. Macic GRAPHS

In this section we present some sufficient conditions for generalized double graphs
D(G; Z,0) to be degree-magic.
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Theorem 1. Let G be a degree-magic graph such that deg(v) = 0 (mod 2) for
every vertexr v € V(QG). If the subgraph of G induced by a set Z C E(G) has
a % factor, then the graph D(G; Z,0) is balanced degree-magic.

Proof. As G is a d-magic graph, there is a d-magic labelling f from E(G)
onto [1,|E(G)|]. According to Lemma 1, there exists a 2-gradual bijection
g: E(D(G;Z,0)) — [1,2|E(G)]] satisfying

g(0%) = g°(0") = f*(0) + 5| B(G)] des(v)

for every vertex v € V(G). Since f is a d-magic labelling, f*(v) = (1 + |E(G)|)
deg(v)/2. Hence

§'(0%) = g (0") = 51+ |B(G)]) deg(v) + 5 |B(G)| deg()

1 1
= 5 (1 +2|E(G)]) deg(v) = 5 (1 + |E(D(G; Z,0))]) deg(v)-
Therefore, g is a 2-gradual d-magic labelling of D(G; Z,0). |

Combining Proposition 1 and Theorem 1 we immediately have

Corollary 2. Let G be a supermagic reqular graph of even degree. If the subgraph
of G induced by a set Z C E(G) has a y-factor, then the graph D(G;Z,0) is
supermagic.

Corollary 2 provides a copious method to construct supermagic graphs. For
example, the complete graph K7 is supermagic ([14]). One can see that Ky
contains 26 non-isomorphic subgraphs having a %—factor. By Corollary 2, the
graph D(K7; E(H), () is supermagic for each such subgraph H.

A totally disconnected graph has a %—factor and so we get

Corollary 3. Let G be a supermagic reqular graph of even degree. Then the
bipartite double graph D(G;0,0) of a graph G is supermagic.

As the graph 2G is isomorphic to D(G; E(G),0), we have the next corollary.

Corollary 4. ([7]) Let G be a supermagic reqular graph of degree 2d which has
a d-factor. Then the graph 2G is supermagic.

For double graphs we get the next corollary.

Corollary 5. Let G be a graph having a %—factor. Then the double graph
D(%G; E1(%G),0) of a graph G is balanced degree-magic.
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Proof. Let h be a bijection from E(G) onto [1,|E(G)|]. Consider the mapping
f+E(*G) — [1,2|E(G)|] given by

h(e) if j=1,

f((e’j)):{1+2|E(G)|—h(€) if j=2.

Evidently, f is a bijection. Moreover, f((e,1)) + f((e,2)) = 1+ 2|E(G)], for any
edge e € E(G). Therefore,

degog(v)

F1(v) = (14 2| E(G)]) degg(v) = (1 + [ECG))—

Thus, f is a degree-magic labelling of 2G. As the subgraph of 2G induced by
E1(%G) is isomorphic to G, it contains a 3-factor. By Theorem 1, D(’G; E1(°G), 0)
is a balanced d-magic graph. [

Combining Proposition 1 and Corollary 5 we immediately have

Corollary 6. Let G be a reqular graph having a %—factor. Then the double graph
D(%G; E1(%G),0) of a graph G is supermagic.

Theorem 1 can be only used for subsets Z of even cardinality. The following
result can be used also for subsets of odd cardinality.

Theorem 2. Let ¢ > 2 be a positive integer and let G be a graph such that
deg(v) =0 (mod 2q) for every vertex v € V(G). Let Z be a subset of E(G) such
that |E(G)|/q < |Z| < |E(G)|. If G admits a q-gradual degree-magic labelling
which respects Z, then the graph D(G; Z,0) is degree-magic.

Proof. Suppose that f is a g-gradual d-magic labelling of G which respects a set

Z. According to Lemma 4, there exists a bijection g from E(D(G;Z,()) onto
[1,2|E(G)|] satisfying

g0 = " (") = J*(0) + 1 B(G)] deg(v),

for every vertex v € V(G). Since f is a d-magic labelling, f*(v) = (1 + |E(G)|)
deg(v)/2. Hence

§°(%) = g (1) = 3(1+ [B(G))) deg(v) + 5 B(G)] deg(v)
= L1+ 2|B(@))) deg(v) = 5 (1 +|B(D(G: Z,0)]) deg(v).

Therefore, g is a d-magic labelling of D(G; Z,0). |
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For double graphs we have the following result.

Corollary 7. Let G be a graph such that deg(v) =0 (mod 2) for every vertex v €
V(G) and let ¢ > 2 be a positive integer. If G can be decomposed into q pairwise
edge-disjoint %-factors, then the double graph D(?G; E1(%G),0) of a graph G is
degree-magic.

Proof. 1If q is even, then the union of ¢/2 edge-disjoint %—factors induces a %—

factor of G and the result follows from Corollary 5. Therefore, next we suppose
that ¢ is odd. Evidently, deg(v) = 0 (mod 2q) for every vertex v of G in this
case. Let Hy, Ho, ..., H, be pairwise edge-disjoint %—factors of a graph G. Put
m := |E(G)|/q. Clearly, the subgraph H;, i € [1,¢|, has m edges. Suppose that
h; is a bijection from E(H;) onto [1,m], for i € [1,q]. Consider the mapping

f: BE(*G) — [1,2qm] given by

hi(e) + (i — 1)m if j=1 and e € E(H,),

f((e,j))z{1+(1+2q_i)m_hi(e) if j=2 and e€ E(H;).

Evidently, f((e,1)) + f((e,2)) = 1+ 2gm, for any edge e € E(G). Therefore,

degzg(v)

f*(v) = (1 +2qm) deg(v) = (1 + |E(*G)|) 5

Moreover, for i € [1, ], we have

Foq(fi) ={(e,1) € E(’G):ec E(H;)} and
Fag(fri+aq) ={(e,2) € B(’G) : e € E(H114-)}-
Thus, the mapping f is a 2¢g-gradual degree-magic labelling of %G’ which respects
the set E1(%G). According to Theorem 2, D(%G; E1(%G),0) is a d-magic graph.
|

As any regular graph of even degree d is decomposable into d/2 pairwise
edge-disjoint 2-factors (i.e., ﬁ-factors), we immediately get

Corollary 8. Let G be a regular graph of degree d, where 4 < d = 0 (mod 2).
Then the double graph D(?G; E1(?G),0) of a graph G is supermagic.

4. ANTIMAGIC GRAPHS

Bodendiek and Walther [3] introduced the special case of antimagic graphs. For
positive integers a, d, a graph G is said to be (a, d)-antimagic if it admits a bi-
jection f from E(G) onto [1,|E(G)|] such that

{ff(v) v eV(G)} ={a,a+d,...,a+ (|V(G)| —1)d}.
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The mapping f is then called an (a,d)-antimagic labelling of G. Obviously,

a= |E(G)||x(/|%ﬁ)l+l) — IV@I=1d i) this case.

2
In this section we will deal with (a, 1)-antimagic graphs and their connection

with supermagic generalized double graphs.

There is known an effective method to construct an (a’, 1)-antimagic labelling
of a supergraph of an (a, 1)-antimagic graph (see [9]). The following assertion is
a purpose overwriting of this method.

Lemma 5. Let Hy,Ho,...,H, be pairwise edge-disjoint 2-factors which form
a decomposition of a graph G. If Hy is an (a, 1)-antimagic graph, then there exists
a g-gradual (a,1)-antimagic labelling f of G such that Fy(f;i) = E(H;) for each
i€l,q.

Proof. For k € [1,q] we define a graph Gy by V(Gy) = V(G) and E(Gy) =
Ule E(H;). Evidently, G} is a 2k-regular graph, G; = H; and G, = G. Put
n = |V(G)|. Then |E(Hy)| = n and |E(Gj)| = kn. Using induction on k we
prove that there is a k-gradual (ag,1)-antimagic labelling f of Gy such that
Fi(fx;i) = E(H;) for each i € [1,k].

If kK =1, then G; = H; is an (a1, 1)-antimagic graph and so there is a (1-
gradual) (aj, 1)-antimagic labelling of G such that Fy(f1;1) = E(Hy).

Now assume that there is a (k—1)-gradual (ax_1, 1)-antimagic labelling fj_;
of Gi—1 such that Fy_1(frx—1;7) = E(H;) for each ¢ € [1,k — 1]. Let ﬁk be
a digraph which we get from Hj by an orientation of its edges such that the
outdegree of every vertex of H k is equal to 1. By [u,v] we denote an arc of H k
and by A(H}) the set of all arcs of Hy,. Consider a mapping fi : E(Gy) — [1, kn]
defined by

f (6) _ fkfl(e) ifee E(kal),
g ag—1+kn— fi_y(u) ife=wuv e E(Hy) and [u,v] € A(Hy).

It is easy to see that f, is a bijection and f}(v) = ax—1 +nk+ fi(uv), where [u,v]
is an arc of Hy. As {fi(e) : e € E(Hy)} = [(k — 1)n + 1,nk], the labelling f;, is
(ak, 1)-antimagic, where ay = ax—1 + kn + (k — 1)n + 1. Moreover, Fj(fx;i) =
Fk—l(fk—l;i) = E(HZ) for each i € [1, k— 1] and Fk(fk, k‘) = E(Gk) —E(Gk_l) =

As any regular graph of even degree 2r is decomposable into r pairwise edge-
disjoint 2-factors and the cycle C), of odd order n is (a, 1)-antimagic (see [4]), we
immediately get

Corollary 9. FEvery 2r-reqular Hamiltonian graph of odd order admits an r-
gradual (a,1)-antimagic labelling.
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In [9] there is proved that the graph G™ = D(G;0,V(G)) is supermagic
for every (a,l)-antimagic 2r-regular graph G, and that the Cartesian product
GUOK,; = D(G; E(G),V(G)) is supermagic for every (a,1)-antimagic 2r-regular
graph G with an r-factor. The following theorem generalizes these results.

Theorem 3. Let G be an (a,1)-antimagic 2r-regular graph. If the subgraph of
G induced by a set Z C E(G) has a 3-factor, then the graph D(G;Z,V(G)) is

supermagic.

Proof. Put n := |V(G)|. Since G is a 2r-regular graph, |E(G)| = rn. As G
is an (a, 1)-antimagic graph, there is an (a, 1)-antimagic labelling f from E(G)
onto [1,7n]. According to Lemma 1, there exists a bijection g : E(D(G; Z,0)) —
[1,2rn] satisfying

g (%) = g*(v') = f*(v) +1*n,

for every vertex v € V(G). Since f is an (a,1)-antimagic labelling, the set
{f*(v) : v € V(G)} consists of consecutive integers. It means that the bijection
h:E(D(G;Z,V(G))) — [1,(2r + 1)n], given by

~ Ja(e) if e € E(D(G; Z,0)),
h(e) = x e 01
2r+1)n+a— f*(v) ife=20"" forve V(Q),

is a supermagic labelling of D(G; Z,V(Q)). [

One can see that Theorem 3 (similarly as, Corollary 2) provides a copious
method to construct supermagic graphs.

In the same manner as above (using Lemma 2 instead of Lemma 1) we can
prove the following result.

Theorem 4. Let G be a 2r-regular graph. If G admits an r-gradual (a,1)-
antimagic labelling, then the graph D(G;0,V(G)) admits a (2r + 1)-gradual su-
permagic labelling.

Combining Corollary 9 and Theorem 4 we obtain

Corollary 10. Let G be a 2r-regular Hamiltonian graph of odd order. Then the
graph D(G;0,V(G)) admits a (2r + 1)-gradual supermagic labelling.

The following assertion uses a gradual (a, 1)-antimagic labelling.
Theorem 5. Let G be a 2r-reqular graph, where r > 2. Let Z be a subset

of E(G) such that |Z| > |E(G)|/r. If G admits an r-gradual (a,1)-antimagic
labelling which respects Z, then the graph D(G; Z,V(Q)) is supermagic.
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Proof. Put n := |V(G)|. Clearly, |E(G)| = rn. Suppose that f is an r-gradual
(a, 1)-antimagic labelling of G which respects a set Z.

According to Lemma 4 (if |Z] < |E(G)|) or Lemma 1 (if |Z| = |E(G)| and r
is even), there exists a bijection g1 from E(D(G; Z,0)) onto [1, 2rn] satisfying

gi(v") = gi (v') = f*(v) +r?n,

for every vertex v € V(G). Since f is an (a,1)-antimagic labelling, the set
{f*(v) : v € V(G)} consists of consecutive integers. It means that the bijection
hi: E(D(G; Z,V(Q))) — [1,(2r 4+ 1)n], given by

ha(e) = gi(e) if e € E(D(G; Z,0)),
! (2r +)n+a— f*(v) if e=v"%! for v e V(G),

is a supermagic labelling of D(G; Z,V (G)).
Finally, if |Z| = |E(G)| and r is odd, then by Lemma 3 there is a bijection
g2 from E(D(G;Z,0)) onto [1,rn] U [1 4+ (r + 1)n, (2r + 1)n] satisfying

g (%) = g3 (v') = f*(v) + (r + L)rn,

for every vertex v € V(G). Since f is an (a,l)-antimagic labelling, the set
{f*(v) : v € V(G)} consists of consecutive integers. It means that the bijection
he : E(D(G; Z,V(Q@))) — [1, (2r 4+ 1)n], given by

o) = 2 it e € B(D(G: Z,0)),
? (r4+1Dn+a— f*(v) ife=12%"!forve V(Q),
is a supermagic labelling of D(G; Z,V (G)). |

In [9] it is proved that the Cartesian product GOK2 = D(G; E(G), V(G)) is
supermagic for every 4r-regular Hamiltonian graph G of odd order. Combining
Theorem 5 and Corollary 9, we have

Corollary 11. Let G be a 2r-regular Hamiltonian graph of odd order, where
r > 2. Then the Cartesian product GLKs is a supermagic graph.

Let n, mand 1 < 51 < -+ < s < L%J be positive integers. A graph
Cn(s1,...,8m) with the vertex set {vo,...,v,-1} and the edge set {v;viis; : 0 <
i <n-—1,1<j<m}, the indices are being taken modulo n, is called a circulant
graph. It is easy to see that the circulant graph Cy,(s1, ..., sp) is a regular graph
of degree r, where r = 2m — 1 when s, = n/2, and r = 2m otherwise. The
circulant graph Cy,(s1, ..., $m) has d = ged(sy,. .., $m,n) connected components
(see [5]), which are isomorphic to C,/4(s1/d, ..., sm/d).
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If n is odd, then Cy(s1), Cn(s2),...,Cn(sm) are pairwise edge-disjoint 2-
factors which form a decomposition of Cy,(s1,...,Sm). Moreover, Cy,(s;) is iso-
morphic to dC), /4, where d = ged(s;, n) and n/d are odd integers. As odd number
of copies of a cycle of odd order is an (a, 1)-antimagic graph (see [9]), the graph
Ch(s;) is (a, 1)-antimagic.

Semanicové [12] proved that Cor(si,. .., Sm, k) is not supermagic when k is
even and that a 3-regular circulant graph Co(s, k) is supermagic if and only if
both of k£ and s are odd. Using Theorem 5 we get the following result.

Corollary 12. Let m and 1 < s1 < --+ < Sy, be positive integers such that
{j € [1,m] : s; = 0 (mod 2)}| # 1. Then Cox(s1,...,Sm,k) is a supermagic
graph for every odd integer k > s,.

Proof. Denote by vg, v1,...,v,—1 the vertices of Cox(s1,...,Sm, k) and by ug,
U, ..., ux_1 the vertices of Cx(1,2,...,(k—1)/2). For every i € [1, m] put
{(si, 1) if s; < k/2,
(ti,0:) = .
(k—s4,2) if s; > k/2.
Evidently, the pairs (¢;,0;), i € [1,m], are pairwise different.

For every i € [1,m] let H; be a 2-factor of 2Cy(1,2,...,(k —1)/2) defined by
E(H;) = {(e,0;) : e € E(Ck(t;)}. Clearly, H; is isomorphic to Cy(t;) and so it is
(a,1)-antimagic. Let G be a 2m-regular spanning subgraph of 2Cy(1,2,..., (k —
1)/2) defined by E(G) = ;2 E(H;). The graphs Hy, Ho,..., Hy, are pairwise
edge-disjoint 2-factors which form a decomposition of G. According to Lemma 5,
there exists an m-gradual (a/, 1)-antimagic labelling f of G such that F,,(f;i) =
E(H;) for each i € [1,m]. Therefore, f respects the set Z :=J;c5 E(H;), where
S={jel,m:s; =0 (mod2)}. By Theorem 5, the graph D(G;Z,V(G))
is supermagic when |S| > 1. Similarly, by Theorem 4, the graph D(G; Z,V(G))
admits a (2m + 1)-gradual supermagic labelling when |S| = 0.

Now consider the mapping ¢ from {vg, vy, ..., ver_1} onto U {uZ ,ut} given
by
u ifi<kandi=0 (mod 2),
)y ifi<kandi=1 (mod 2),
ploe) = wl . ifi>kandi=0 (mod 2),
ul , ifi>kandi=1 (mod 2).

It is not difficult to check that ¢ is an isomorphism from Ca(s) to D(Cy(s); 0, 0)
when s < k/2 is an odd integer. Similarly, ¢ is an isomorphism from Co(s) onto
D(Ci(k—s5);0,0) when s > k/2 is an odd integer. If s is an even integer, then ¢
is an isomorphism from Cay(s) onto D(Cy(s); E(Ck(s)),?) when s < k/2, or onto
D(Ci(k—s); E(Cy(k—s)),0) when s > k/2. Therefore, ¢ is an isomorphism from
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Cok(s1, - - -, Sm, k) onto the supermagic graph D(G; Z, V(G)), which completes the
proof. [
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