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Abstract

We call a digraph D an m-colored digraph if the arcs of D are colored
with m colors. A directed path (or a directed cycle) is called monochromatic
if all of its arcs are colored alike. A subdigraph H in D is called rainbow if
all of its arcs have different colors. A set N C V(D) is said to be a kernel
by monochromatic paths of D if it satisfies the two following conditions:

(i) for every pair of different vertices u,v € N there is no monochromatic
path in D between them, and

(ii) for every vertex z € V(D) — N there is a vertex y € N such that
there is an xy-monochromatic path in D.

A ~-cycle in D is a sequence of different vertices v = (ug, u1, - . ., Un, Ug)
such that for every i € {0,1,...,n}:

(i) there is a u;u;41-monochromatic path, and

(ii) there is no w;41u;-monochromatic path.

The addition over the indices of the vertices of ~y is taken modulo (n+1).
If D is an m-~colored digraph, then the closure of D, denoted by €(D), is the
m-colored multidigraph defined as follows: V(&€(D)) = V(D), A(€(D)) =
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A(D) U {(u,v) with color 7| there exists a uv-monochromatic path colored
i contained in D}.

In this work, we prove the following result. Let D be a finite m-colored
digraph which satisfies that there is a partition C' = Cy U Cs of the set of
colors of D such that:

~

(1) DI[C;] (the subdigraph spanned by the arcs with colors in C;) contains
no y-cycles for i € {1,2};
(2) If €(D) contains a rainbow Cs5 = (zg, z, w,xo) involving colors of C;
and Cs, then (zg,w) € A(€(D)) or (z,x0) € A(€(D));
(3) If €(D) contains a rainbow P35 = (u, z,w, zg) involving colors of Cy and
(>, then at least one of the following pairs of vertices is an arc in €(D):
(u, w), (w,u), (xo,u), (u, o), (xg,w), (z,u), (z,x0).
Then D has a kernel by monochromatic paths.
This theorem can be applied to all those digraphs that contain no ~-
cycles. Generalizations of many previous results are obtained as a direct
consequence of this theorem.

Keywords: digraph, kernel, kernel by monochromatic paths, v-cycle.
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1. INTRODUCTION

For general concepts we refer the reader to [1]. Let D be a digraph, and let
V(D) and A(D) denote the sets of vertices and arcs of D, respectively. We recall
that a subdigraph D; of D is a spanning subdigraph if V(D1) = V(D). If S is a
nonempty subset of V(D), then the subdigraph induced by S, denoted by D[S],
is the digraph having vertex set .S, and whose arcs are all those arcs of D joining
vertices of S. An arc ujug of D will be called an S153-arc of D whenever u; € Sy
and ug € Ss.

A set I C V(D) is independent if A(D[I]) = 0. A kernel N of D is an
independent set of vertices such that for each z € V(D) — N there exists a zN-arc
in D, that is, an arc from z toward some vertex in N. A digraph D is a kernel-
prefect digraph when every induced subdigraph of D has a kernel. Sufficient
conditions for the existence of kernels in digraphs have been investigated by
several authors, von Neumann and Morgenstern [17]; Richardson [18, 19]; Duchet
and Meyniel [4]; Duchet [2, 3]; Galeana-Sénchez and Neumann-Lara [9, 10]. The
concept of kernel is very useful in applications.

We call the digraph D an m-colored digraph if the arcs of D are colored with
m colors. Along this paper, all the paths and cycles will be directed paths and
directed cycles. A path is monochromatic if all of its arcs are colored alike. A
cycle is called a quasi-monochromatic cycle if with at most one exception all of
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its arcs are colored alike. A subdigraph H of D is rainbow if all its arcs have
distinct colors. A set N of vertices of D is a kernel by monochromatic paths if
for every pair of vertices of N there is no monochromatic path between them
and for every vertex v not in N there is a monochromatic path from v to some
vertex in N. If D is an m-colored digraph, then the closure of D, denoted
by €(D), is the m-colored multidigraph defined as follows: V(&€(D)) = V(D),
A(€(D)) = A(D) U {(u,v) with color i| there exists a uv-monochromatic path
colored i contained in D}. Notice that for any digraph D, €(€(D)) = €(D), and
D has a kernel by monochromatic paths if and only if €(D) has a kernel.

In [22] Sands, Sauer and Woodrow proved that any 2-colored digraph D has
a set S of vertices such that: (i) for any z,y € S, there is no monochromatic
path between them, and (ii) for every vertex x ¢ S, there is a monochromatic
path from x to a vertex of S (i.e., D has a kernel by monochromatic paths, a
concept that was introduced later by Galeana-Sanchez [5]). In particular, they
proved that any 2-colored tournament 7" has a kernel by monochromatic paths.
They also raised the following problem: Let T be a 3-colored tournament such
that every cycle of length 3 is a quasi-monochromatic cycle; must T have a
kernel by monochromatic paths? This question still remains open. In [21] Shen
Minggang proved that if T is an m-colored tournament such that every cycle
of length 3 is a quasi-monochromatic cycle, and every transitive tournament of
order 3 is quasi-monochromatic, then 7" has a kernel by monochromatic paths.
He also proved that this result is the best possible for m-colored tournaments
with m > 5. In fact, he proved that for each m > 5 there exists an m-colored
tournament 7" such that every cycle of length 3 is quasi-monochromatic and T'
has no kernel by monochromatic paths. Also for every m > 3 there exists an
m-~colored tournament 7’ such that every transitive tournament of order 3 is
quasi-monochromatic and 7" has no kernel by monochromatic paths. In 2004
[11] Galeana-Sénchez and Rojas-Monroy presented a 4-colored tournament T
such that every cycle of order 3 is quasi-monochromatic, but 7" has no kernel
by monochromatic paths. The known sufficient conditions for the existence of
kernel by monochromatic paths in m-colored (m > 3) tournaments (or nearly
tournaments), ask for the monochromaticity or quasi-monochromaticity of certain
subdigraphs. More information on m-colored digraphs can be found in [5, 6, 7,
23, 24].

If C = (20, 21,---,2n,20) is a cycle, we will denote by ¢(C) its length, and if
zi,zj € V(C) with i < j, then we denote by (z;,C, z;) the z;z;-path contained in
C. A sequence of different vertices v = (uq, ..., un,ug) is a y-cycle if for every
i € {0,1,...,n} there is a u;u;+1-monochromatic path, and there is no w;4ju;-
monochromatic path. The addition over the indices of the vertices of v is taken
modulo (n + 1).

In this paper we prove that if D is a finite m-colored digraph, and if there
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exists a partition C' = Cy U Cy of the set of colors of D such that:

(1) D[@] contains no 7-cycles for i € {1,2}, (@ denotes the set of arcs of D
with colors in C});

(2) If €(D) contains a rainbow Cs = (x¢, 2, w, zg) involving colors of C; and Cs,
then (zg,w) € A(€(D)) or (z,x0) € A(E(D));

(3) If €(D) contains a rainbow P3 = (u, z,w, zg) involving colors of C7 and Cy,
then at least one of the following pairs of vertices is an arc in €(D): (u,w),
(w7 u)> ($Oa u)7 (’LL, 51:0)7 ({L‘o, w)7 (Za U), (Z> l’o)-

Then D has a kernel by monochromatic paths.
We will need the following results.

Assertion 1.1. Let D be a finite or infinite digraph and u,v € V(D). FEvery
wv-walk in D contains a uv-path.

Assertion 1.2. Let D be a finite or infinite digraph. FEvery closed walk in D
contains a cycle.

Assertion 1.3. Let D be a finite digraph. If every vertex v € V(D) fulfills that
65 (v) > 1 (05 (v) > 1), then D contains a cycle.

Theorem 1.4 (Duchet [2]). If D is a finite digraph such that every cycle of D
has at least one symmetrical arc, then D has a kernel.

Theorem 1.5 (Rojas-Monroy, Villarreal-Valdés [20]). Let D be a finite or infinite
digraph. If every cycle and every infinite outward path has a symmetrical arc,
then there exists © € V(D) which satisfies (x,u) € A(D) implies (u,x) € A(D).

The following lemma has been important to obtain many results on the ex-
istence of kernels by monochromatic paths in finite m-colored digraphs [5, 6, 8,
12, 13, 14, 15, 16].

Lemma 1.6. Let D be a finite or infinite m-colored digraph and €(D) its closure.
Then D contains no y-cycles if and only if every cycle in €(D) has at least one
symmetrical arc.

It follows from Lemma 1.6 and Theorem 1.5 that if D is a finite m-colored
digraph which contains no y-cycles, then D has a kernel by monochromatic paths.

2. ~«-CYCLES AND MONOCHROMATIC PATHS IN ARC-COLORED DIGRAPHS

The following three lemmas are about m-colored digraphs containing no y-cycles,
and they are useful to prove our main result.
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Lemma 2.1. Let D be a finite m-colored digraph, and suppose that D contains
no y-cycles. There exists xo € V(D) such that for every z € V(D) — {xzo} if
there exists an xgz-monochromatic path contained in D, then there exists a zxg-
momnochromatic path contained in D.

Proof. Assume, for a contradiction, that D is a digraph as in the hypothesis of
the Lemma 2.1, and that there is no vertex x( satisfying the assertion of Lemma
2.1.

Let zp € V(D), it follows from our assumptions that there is x; € V(D) —
{zo} such that there is an xgz;-monochromatic path contained in D and there
is no xjxrg-monochromatic path contained in D. Again from our assumptions
there is zg € V(D) — {x1} such that there is an x;ze-monochromatic path con-
tained in D and there is no xox1-monochromatic path contained in D. Once
chosen zg,x1,...,Ty; given our supposition we can choose z,+1 € V(D) — {x,}
in such a way that there is an z,z,41-monochromatic path in D and there
is no x,41x,-monochromatic path in D. Thus, we obtain a sequence of ver-
tices (zo,x1,%2,x3,...) such that for every i € {0,1,2,...} there is an x;x;11-
monochromatic path contained in D and there is no x;;x;-monochromatic path
contained in D. Since D is a finite digraph, there is {i,7} C N U {0} with
i < j such that z; = x;. Let jo = min{j | z; = x;for some i < j}, and let
ip € {0,1,...,70 — 1} such that x;, = z;, (notice that ig is unique because of
the definition of jg). Without loss of generality suppose that ioc = 0 and jo = n.
Thus, C = (zg,21,...,Tn—1,Tn = Zo) is a sequence of n different vertices such
that for every i € {0,...,n—1} there is an x;x;;-monochromatic path contained
in D and there is no z;+1x;-monochromatic path contained in D (the indices of
the vertices will be taken modulo n). Therefore, C = (z¢, 21, ..., Tn—1,Tn = To)
is a y-cycle, which contradicts the hypothesis. [

Let D be an m-colored digraph and let H be a subdigraph of D. We will say
that S C V(D) is a semikernel by monochromatic paths modulo H of D if S is
independent by monochromatic paths in D and for every z € V(D) — S, if there is
a Sz-monochromatic path contained in D — H, then there is a zS-monochromatic
path contained in D.

Lemma 2.2. Let D be a finite m-colored digraph. Suppose that there is a parti-
tion C = C1 U Cy of the set of colors of D such that D[C1] contains no y-cycles.
Then there exists xo € V(D) such that {zo} is a semikernel by monochromatic

paths (mod D[Ch)) of D.
Proof. Tt follows by applying Lemma 2.1 to D — 62. [

Let D be a finite m-colored digraph. Suppose that there is a partition C' =
C1 U Cy of the set of colors of D and D[C}] contains no vy-cycles.
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Denote by
S={5|S+#0 and S is a semikernel by monochromatic paths (mod D[Cs]) of D}.

Notice that by Lemma 2.2, there exists a semikernel by monochromatic paths
(mod D|[Cy]) of D, and thus S # 0.

Whenever § # (), we will denote by Dgs the loopless digraph defined as
follows:

(1) V(Ds) =S (i.e, for every element of S we put a vertex in Dg), and

(2) (S1,52) € A(Ds) if and only if for every s; € Sy there exists s € Sz such
that s; = sg or there exists an s; se-monochromatic path contained in D[C]
and there is no s9.S7-monochromatic path contained in D.

Lemma 2.3. Let D be a finite m-colored digraph. Suppose that there is a par-
tition C' = C1 U Cy of the set of colors of D and DI[C;] contains no y-cycles for
i € {1,2}. Then Dgs is an acyclic digraph.

Proof. Observg that by Lemma 2.2, there exists a semikernel by monochromatic
paths (mod D[C5]) of D and therefore S # (). Thus, we can consider the digraph
Dgs. Suppose, for a contradiction, that the digraph Ds contains some cycle, say
C = (S0,S51,...,5n-1,50) of length n > 2. Since C is a cycle in Dg, we have that
S; # S; whenever i # j.

Claim 1. There exists igp € {0,1,2,...,n — 1} such that for some z € S;,,
2 & Sip+1 (mod n).

Proof. Otherwise, for every i € {0,1,...,n — 1} and every z € S; we have that
z € Siy1, and then S; = S; for all 4,5 € {0,1,...,n —1}. So, C = (Sp), which is
a contradiction, since the digraph is loopless. 0O

Claim 2. If there ezists ig € {0,1,...,n — 1} such that for some z € S;, and
some w € Sj,+1 (mod n) there exists a zw-monochromatic path, then there exists
Jo # i, jo € {0,1,...,n — 1}, such that w € S;, and w & Sjy+1(mod n).

Proof. Suppose without loss of generality that ig = 0. First, observe that w ¢
Sy = Sy, since otherwise we have a zw-monochromatic path with {z,w} C Sy,
contradicting that Sy is independent by monochromatic paths. Since w € S,
let jo = max{i € {0,1,...,n — 1} | w € S;} (notice that for both previous
observations j is well defined). So, w € Sj, and w & Sj;41. 0

It follows from Claim 1 that there exist igp € {0,...,n— 1} and ty € S;, such
that to € Siy+1. It follows from the fact that (S;,,Si,+1) € A(Ds) that there
exisAts t1 € Sip+1 such that there exists a fopt;-monochromatic path contained in
D[C5] and there is no t;.S;,-monochromatic path contained in D. From Claim 2,
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it follows that there exists an index i; € {0,...,n — 1} such that ¢; € S;; and
t1 & Si,41. Since (S, Si,+1) € A(Ds) it follows that there exists t2 € Sj, 41
such that there is a t;f5-monochromatic path contained in D[Cg] and there is no
t25;,-monochromatic path contained in D. Since D is finite, we obtain a sequence
of vertices (to,t1,t2,...,tm—1,%0) such that there exists a t;t;;-monochromatic
path contained in D[6'2] and there is no ¢;41t;-monochromatic path contained in
D for each i € {0,1,2,...,m — 1} (mod m). But this contradicts that D[C5]
contains no ~y-cycles. ]

3. THE MAIN RESULT

The idea of the proof of our main theorem is to select S € V(Dg) such that
6]'55 (S) = 0 (such S exists since Dg is acyclic) and prove that S is a kernel by
monochromatic paths of D.

Theorem 3.1. Let D be a finite m-colored digraph. If there exists a partition
C = C1UCy of the set of colors of D such that:

(1) D[C'\Z] contains no y-cycles for i € {1,2};

(2) If €(D) contains a rainbow Cs=(xq, z,w, o) involving colors of C1 and Cs,
then (zg,w) € A(€(D)) or (z,z0) € A(C(D));

(3) If €(D) contains a rainbow Ps=(u, z,w,xzq) involving colors of Cy and Cs,
then at least one of the following pairs of vertices is an arc in €(D): (u,w),
(w,u), (xo,u), (u,x0), (zo,w), (2,u), (z,x0).

Then D has a kernel by monochromatic paths.

Proof. Consider the digraph Dg of the digraph D. Since Dg is a finite digraph,
and from Lemma 2.3 it contains no cycles, it follows that Dg has at least one
vertex of zero outdegree. Let S € V(Dg) be such that 5;55 (S) = 0. We will prove
that S is a kernel by monochromatic paths of D.

Suppose, for a contradiction, that S is not a kernel by monochromatic paths
of D. Since S € V(Ds), we have that S is independent by monochromatic paths.

Let X = {z € V(D) | there is no zS-monochromatic path in D}. It follows
from our assumption that X # (). Consider D — C, and its closure ¢(D — Cg)
Note that D[C}] is a subdigraph of D — C, which satisfies A(D[C}]) = A(D—Ch).
Since D[al] contains no y-cycles, we have that D —C contains no ~v-cycles either.
Lemma 1.6 implies that every cycle in €(D — 62) has at least one symmetrical
arc. Let H = ¢(D — C5)[X] be the subdigraph of (D — C3) induced by X.
We have that H also satisfies that every cycle has at least one symmetrical arc,
by Theorem 1.5 there is a vertex xp which satisfies that (xg,u) € A(H) implies
(u,z0) € A(H).
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Let T = {z € S | there is no zzp-monochromatic path in D[@g]} From
the definition of T', we have that for every z € (S — T) there exists a zzo-
monochromatic path contained in D[Ch].

Claim 1. T U {zg} is independent by monochromatic paths.

Proof. Since T' C S with S € § and zg € X, it remains to prove that there is
no wxg-monochromatic path in D[@l] for w € T. Suppose that such path there
exists. Since S is a semikernel by monochromatic paths (mod D[GQ]), there is an
xoS-monochromatic path in D, but this is a contradiction with the definition of
X. 0

Claim 2. For each z € V(D) —(TU{zo}), if there exists a (T'U{xo})z-monochro-
matic path contained in D[C4], then there exists a z(T U {xo})-monochromatic
path contained in D.

Proof. Casel. There exists a T'z-monochromatic path contained in D[al]. Since
T C Sand S €8, it follows that there exists a z5-monochromatic path contained
in D. We may suppose that there exists a z(S—T')-monochromatic path contained
in D (otherwise we are done). Let a; be a uz-monochromatic path contained in
D[C}] with u € T, and let oy be a zw-monochromatic path with w € (S — T)
contained in D. Since w € (S —T), it follows from the definition of 7" that there
exists a wrg-monochromatic path ag contained in D[GQ].

Moreover, color(ai) # color(as) (color(a) denotes the color used in the arcs
of ), otherwise there exists a uw-monochromatic path contained in oy Ucvg, with
{u,w} C S, in contradiction with the fact that S is independent by monochro-
matic paths. In addition, we will suppose that color(as) # color(as), since
when color(ay) = color(ag) we have as U a3 contains a zxg-monochromatic
path and Claim 2 is proved. Also color(a;) # color(as) as color(a;) € C; and
color(ag) € Cs.

So, we obtain that (u,z,w, ) is a rainbow Pz in (D) involving colors of
both C7 and Cs, and by the hypothesis there exists at least one of the following
monochromatic paths in D: from u to w; from w to w; from xy to u; from u to
xg; from zg to w; from z to u; from z to xg. If there exists a zu-monochromatic
path or a zzg-monochromatic path in D, then Claim 2 is proved. So, we will
demonstrate that is not possible the existence of the other paths.

(i) There is no uw-monochromatic path in D, since {u,w} C S and S is a
semikernel by monochromatic paths (mod D[C5]) of D.

(ii) There is no wu-monochromatic path in D, (the same reason as in (i)).

(iii) There is no zpu-monochromatic path in D as T'U {z¢} is independent
by monochromatic paths in D.

(iv) There is no uzg-monochromatic path in D (the same reason as in (iii)).
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(v) There is no zgw-monochromatic path in D, since g € X and w € S.

Case 2. There exists an zgz-monochromatic path contained in D[él]. Let
a1 be such a path. Suppose that z € X, then (zg,z) is an arc in H (recall
H = ¢(D — Cy)[X]). The choice of z implies that (z,z0) € A(H). By the
definition of the closure of an m-colored digraph and the fact that H is an induced
subdigraph of €(D — 62) we conclude that there is a zzg-monochromatic path
in D — 62, and this path is a zzg-monochromatic path in D. Now, assume
that z € X. It follows from the definition of X that there exists some zS-
monochromatic path contained in D, let as be such a path, say that as ends in
w. We will suppose that w € (S —T). Since w € (S —T'), by the definition of T
we have that there exists a wzo-monochromatic path contained in D[CA'Q], let a3
be such a path.

Again, we have that color(a;) # color(as), otherwise there exists an xow-
monochromatic path contained in D, contradicting that zop € X and w € S.
In addition, we may suppose that color(ay) # color(ag), since if color(ag) =
color(as), then D contains a zzg-monochromatic path and Claim 2 is proved.
Also color(a) # color(as), since aq € D[C)] and as C D[Cy).

Then (zo, 2z, w,zo) is a rainbow C3 in €(D) which involves colors of both
C1 and C9, and from hypothesis there exist an zgw-monochromatic path or a
zxg-monochromatic path in D. Since xp € X and w € S, it follows directly from
the definitions of X and S that there is no xgw-monochromatic path in D. Then
there is a zzg-monochromatic path in D, and Claim 2 is proved. 0O

We conclude from Claims 1 and 2 that TU{zo} € S and therefore TU{x¢} €
V(Ds). We have that (S,T U {zo}) € A(Ds), since T C T U {zp}, and for each
s € § —T there exists an sro-monochromatic path contained in D[@g], and there
is no xgS-monochromatic path contained in D. But this contradicts the fact that
553 (S) = 0. Therefore S is a kernel by monochromatic paths in D and Theorem
3.1 is proved. [

Remark 3.2. Theorem 3.1 can be applied to all those digraphs that contain
no ~y-cycles. Generalizations of many previous results are obtained as a direct
consequence of this theorem.

Now, we give some definitions and next we give a list of digraphs that contains
no y-cycles.

Definition. A digraph D is n-quasitransitive if for every {u,v} C V(D) such that
there is a uv-directed path of length n, we have (u,v) € A(D) or (v,u) € A(D).

Definition. We denote by A1 (u) the set of arcs of D that have u as the initial
end-point, and AT (u) is monochromatic if all of its elements have the same color.
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Definition. We denote by 7Ty the digraph such that V(T4) = {u,v,w,x} and
A(Ty) = {(u,v), (v,z), (z,w), (u,w)}, see Figure 1.

o<«———@
W X

Figure 1. Ty.

Definition. A digraph D is called a bipartite tournament if its set of vertices
can be partitioned into two sets V; and V3 such that: (i) every arc of D has an
end-point in Vj, and the other end-point in Vs, and (ii) for every x; € V; and
every xg € Vi, we have |{(z1,z2), (z2,21)} N A(D)| = 1.

Definition. TG is the bipartite tournament defined as follows:
L. V(Tﬁ) = {’U,, v, W, ,Y, Z}u

2' A(f6) = {(u7 w)’ (U? w)7 (w7 x)? (w7 Z)? ('1‘7 y)? (y7 u)? (y? U)’ (Z7 y)}?
with { (u, w), (w, @), (3, ), (2,y)} coloured 1 and { (v, w), (w, 2), (2, ), (y,v)} col-
ored 2, see Figure 2.

% X I

z
NS A4

W ¥

Figure 2. T@.

Definition. If v is a vertex of an m-coloured tournament 7', we denote by £(v)
the set of colours assigned to the arcs with v as an end-point.

Definition. Ty is the digraph defined as follows:
1' V(T8) = {8’ t? u7 U7 w7 x? y? Z}’
2. A(Ty) = {(s,1), (s,2), (¢, u), (£, ), (u, v), (u, 2), (v, w), (v, 5), (w, z), (w, 1),
(,9), (z,u), (y, 2), (4, 0), (2, 5), (2, W)},
and each other arc in Ty colored 2, see Figure 3.
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Figure 3. Tg.

A list of theorems proving the existence of digraphs without 7y-cycles.

Theorem 3.3 (Galeana-Sénchez, Gaytén-Gomez, Rojas-Monroy [8]). Let D be
a finite m-colored digraph such that every cycle in D is monochromatic. Then D
contains no y-cycle.

Theorem 3.4 ( Galeana-Sénchez, Rojas-Monroy, Zavala [16]). Let D be a finite
m-colored 3-quasitransitive digraph such that for every vertex u of D, AT (u) is
monochromatic. If every C3, Cy and Ty contained in D is quasi-monochromatic,
then there is no ~y-cycles in D.

Theorem 3.5 ( Galeana-Sénchez [5]). Let T' be a finite m-colored tournament. If
each directed cycle contained in T and of length at most 4 is a quasi-monochroma-
tic cycle, then there is no y-cycles in T.

Theorem 3.6 ( Galeana-Sanchez [6]). Let D be a finite m-colored digraph result-
ing from the deletion of a single arc (z,y) of some m-colored tournament T (i.e.,
D =T — (x,y)). If every directed cycle contained in D of length at most 4 is
quasi-monochromatic, then there is no y-cycles in D.

Theorem 3.7 (Galeana-Séanchez and Rojas-Monroy [14]). Let T' be a finite m-
colored bipartite tournament. Assume that every directed cycle of length 4 is
quasi-monochromatic, every directed cycle of length 6 is monochromatic, and T
has no subtournament isomorphic to Tvﬁ. Then there s no y-cycles in T.

Theorem 3.8 (Galeana-Sanchez and Rojas-Monroy [12]). Let T' be a finite m-
colored bipartite tournament. If every directed cycle of length 4 in T is monochro-
matic, then there is no y-cycles in T'.
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Theorem 3.9 (Galeana-Sanchez and Rojas-Monroy [13]). Let T be a finite 3-
colored tournament such that every directed cycle of length 3 is quasi-monochro-
matic, and for each v € V(T') we have |£(v)| < 2, then there is no y-cycles in T

Theorem 3.10 (Galeana-Sanchez and Rojas-Monroy [15]). Let T' be a finite m-
colored bipartite tournament such that, every Cy is quasi-monochromatic, every
Ty is quasi-monochromatic, and T has no induced subdigraph isomorphic to Ts.
Then T has no y-cycles.
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