γ-CYCLES IN ARC-COLORED DIGRAPHS

Hortensia Galeana-SÁnchez ${ }^{1}$
Guadalupe Gaytán-Gómez
Instituto de Matemáticas
Universidad Nacional Autónoma de México
Ciudad Universitaria, México, D.F. 04510, México
e-mail: hgaleana@matem.unam.mx
ggg_19808@hotmail.com
AND
Rocío Rojas-Monroy
Facultad de Ciencias
Universidad Autónoma del Estado de México
Instituto Literario No. 100, Centro 50000
Toluca, Edo. de México, México
e-mail: mrrm@uaemex.mx

Abstract

We call a digraph D an m-colored digraph if the arcs of D are colored with m colors. A directed path (or a directed cycle) is called monochromatic if all of its arcs are colored alike. A subdigraph H in D is called rainbow if all of its arcs have different colors. A set $N \subseteq V(D)$ is said to be a kernel by monochromatic paths of D if it satisfies the two following conditions: (i) for every pair of different vertices $u, v \in N$ there is no monochromatic path in D between them, and (ii) for every vertex $x \in V(D)-N$ there is a vertex $y \in N$ such that there is an $x y$-monochromatic path in D.

A γ-cycle in D is a sequence of different vertices $\gamma=\left(u_{0}, u_{1}, \ldots, u_{n}, u_{0}\right)$ such that for every $i \in\{0,1, \ldots, n\}$: (i) there is a $u_{i} u_{i+1}$-monochromatic path, and (ii) there is no $u_{i+1} u_{i}$-monochromatic path.

The addition over the indices of the vertices of γ is taken modulo $(n+1)$. If D is an m-colored digraph, then the closure of D, denoted by $\mathfrak{C}(D)$, is the m-colored multidigraph defined as follows: $V(\mathfrak{C}(D))=V(D), A(\mathfrak{C}(D))=$

[^0]$A(D) \cup\{(u, v)$ with color $i \mid$ there exists a $u v$-monochromatic path colored i contained in $D\}$.

In this work, we prove the following result. Let D be a finite m-colored digraph which satisfies that there is a partition $C=C_{1} \cup C_{2}$ of the set of colors of D such that:
(1) $D\left[\widehat{C}_{i}\right]$ (the subdigraph spanned by the arcs with colors in C_{i}) contains no γ-cycles for $i \in\{1,2\}$;
(2) If $\mathfrak{C}(D)$ contains a rainbow $C_{3}=\left(x_{0}, z, w, x_{0}\right)$ involving colors of C_{1} and C_{2}, then $\left(x_{0}, w\right) \in A(\mathfrak{C}(D))$ or $\left(z, x_{0}\right) \in A(\mathfrak{C}(D))$;
(3) If $\mathfrak{C}(D)$ contains a rainbow $P_{3}=\left(u, z, w, x_{0}\right)$ involving colors of C_{1} and C_{2}, then at least one of the following pairs of vertices is an arc in $\mathfrak{C}(D)$: $(u, w),(w, u),\left(x_{0}, u\right),\left(u, x_{0}\right),\left(x_{0}, w\right),(z, u),\left(z, x_{0}\right)$.
Then D has a kernel by monochromatic paths.
This theorem can be applied to all those digraphs that contain no γ cycles. Generalizations of many previous results are obtained as a direct consequence of this theorem.
Keywords: digraph, kernel, kernel by monochromatic paths, γ-cycle.
2010 Mathematics Subject Classification: 05C20.

1. Introduction

For general concepts we refer the reader to [1]. Let D be a digraph, and let $V(D)$ and $A(D)$ denote the sets of vertices and arcs of D, respectively. We recall that a subdigraph D_{1} of D is a spanning subdigraph if $V\left(D_{1}\right)=V(D)$. If S is a nonempty subset of $V(D)$, then the subdigraph induced by S, denoted by $D[S]$, is the digraph having vertex set S, and whose arcs are all those arcs of D joining vertices of S. An arc $u_{1} u_{2}$ of D will be called an $S_{1} S_{2^{-}}$arc of D whenever $u_{1} \in S_{1}$ and $u_{2} \in S_{2}$.

A set $I \subseteq V(D)$ is independent if $A(D[I])=\emptyset$. A kernel N of D is an independent set of vertices such that for each $z \in V(D)-N$ there exists a $z N$-arc in D, that is, an arc from z toward some vertex in N. A digraph D is a kernelprefect digraph when every induced subdigraph of D has a kernel. Sufficient conditions for the existence of kernels in digraphs have been investigated by several authors, von Neumann and Morgenstern [17]; Richardson [18, 19]; Duchet and Meyniel [4]; Duchet [2, 3]; Galeana-Sánchez and Neumann-Lara [9, 10]. The concept of kernel is very useful in applications.

We call the digraph D an m-colored digraph if the arcs of D are colored with m colors. Along this paper, all the paths and cycles will be directed paths and directed cycles. A path is monochromatic if all of its arcs are colored alike. A cycle is called a quasi-monochromatic cycle if with at most one exception all of
its arcs are colored alike. A subdigraph H of D is rainbow if all its arcs have distinct colors. A set N of vertices of D is a kernel by monochromatic paths if for every pair of vertices of N there is no monochromatic path between them and for every vertex v not in N there is a monochromatic path from v to some vertex in N. If D is an m-colored digraph, then the closure of D, denoted by $\mathfrak{C}(D)$, is the m-colored multidigraph defined as follows: $V(\mathfrak{C}(D))=V(D)$, $A(\mathfrak{C}(D))=A(D) \cup\{(u, v)$ with color $i \mid$ there exists a $u v$-monochromatic path colored i contained in $D\}$. Notice that for any digraph $D, \mathfrak{C}(\mathfrak{C}(D)) \cong \mathfrak{C}(D)$, and D has a kernel by monochromatic paths if and only if $\mathfrak{C}(D)$ has a kernel.

In [22] Sands, Sauer and Woodrow proved that any 2-colored digraph D has a set S of vertices such that: (i) for any $x, y \in S$, there is no monochromatic path between them, and (ii) for every vertex $x \notin S$, there is a monochromatic path from x to a vertex of S (i.e., D has a kernel by monochromatic paths, a concept that was introduced later by Galeana-Sánchez [5]). In particular, they proved that any 2 -colored tournament T has a kernel by monochromatic paths. They also raised the following problem: Let T be a 3 -colored tournament such that every cycle of length 3 is a quasi-monochromatic cycle; must T have a kernel by monochromatic paths? This question still remains open. In [21] Shen Minggang proved that if T is an m-colored tournament such that every cycle of length 3 is a quasi-monochromatic cycle, and every transitive tournament of order 3 is quasi-monochromatic, then T has a kernel by monochromatic paths. He also proved that this result is the best possible for m-colored tournaments with $m \geq 5$. In fact, he proved that for each $m \geq 5$ there exists an m-colored tournament T such that every cycle of length 3 is quasi-monochromatic and T has no kernel by monochromatic paths. Also for every $m \geq 3$ there exists an m-colored tournament T^{\prime} such that every transitive tournament of order 3 is quasi-monochromatic and T^{\prime} has no kernel by monochromatic paths. In 2004 [11] Galeana-Sánchez and Rojas-Monroy presented a 4-colored tournament T such that every cycle of order 3 is quasi-monochromatic, but T has no kernel by monochromatic paths. The known sufficient conditions for the existence of kernel by monochromatic paths in m-colored ($m \geq 3$) tournaments (or nearly tournaments), ask for the monochromaticity or quasi-monochromaticity of certain subdigraphs. More information on m-colored digraphs can be found in $[5,6,7$, $23,24]$.

If $\mathcal{C}=\left(z_{0}, z_{1}, \ldots, z_{n}, z_{0}\right)$ is a cycle, we will denote by $\ell(\mathcal{C})$ its length, and if $z_{i}, z_{j} \in V(\mathcal{C})$ with $i \leq j$, then we denote by $\left(z_{i}, \mathcal{C}, z_{j}\right)$ the $z_{i} z_{j}$-path contained in \mathcal{C}. A sequence of different vertices $\gamma=\left(u_{0}, \ldots, u_{n}, u_{0}\right)$ is a γ-cycle if for every
 monochromatic path. The addition over the indices of the vertices of γ is taken modulo $(n+1)$.

In this paper we prove that if D is a finite m-colored digraph, and if there
exists a partition $C=C_{1} \cup C_{2}$ of the set of colors of D such that:
(1) $D\left[\widehat{C}_{i}\right]$ contains no γ-cycles for $i \in\{1,2\},\left(\widehat{C}_{i}\right.$ denotes the set of arcs of D with colors in C_{i};
(2) If $\mathfrak{C}(D)$ contains a rainbow $C_{3}=\left(x_{0}, z, w, x_{0}\right)$ involving colors of C_{1} and C_{2}, then $\left(x_{0}, w\right) \in A(\mathfrak{C}(D))$ or $\left(z, x_{0}\right) \in A(\mathfrak{C}(D))$;
(3) If $\mathfrak{C}(D)$ contains a rainbow $P_{3}=\left(u, z, w, x_{0}\right)$ involving colors of C_{1} and C_{2}, then at least one of the following pairs of vertices is an arc in $\mathfrak{C}(D):(u, w)$, $(w, u),\left(x_{0}, u\right),\left(u, x_{0}\right),\left(x_{0}, w\right),(z, u),\left(z, x_{0}\right)$.
Then D has a kernel by monochromatic paths.
We will need the following results.
Assertion 1.1. Let D be a finite or infinite digraph and $u, v \in V(D)$. Every uv-walk in D contains a uv-path.

Assertion 1.2. Let D be a finite or infinite digraph. Every closed walk in D contains a cycle.

Assertion 1.3. Let D be a finite digraph. If every vertex $v \in V(D)$ fulfills that $\delta_{D}^{-}(v) \geq 1\left(\delta_{D}^{+}(v) \geq 1\right)$, then D contains a cycle.

Theorem 1.4 (Duchet [2]). If D is a finite digraph such that every cycle of D has at least one symmetrical arc, then D has a kernel.

Theorem 1.5 (Rojas-Monroy, Villarreal-Valdés [20]). Let D be a finite or infinite digraph. If every cycle and every infinite outward path has a symmetrical arc, then there exists $x \in V(D)$ which satisfies $(x, u) \in A(D)$ implies $(u, x) \in A(D)$.

The following lemma has been important to obtain many results on the existence of kernels by monochromatic paths in finite m-colored digraphs $[5,6,8$, $12,13,14,15,16]$.

Lemma 1.6. Let D be a finite or infinite m-colored digraph and $\mathfrak{C}(D)$ its closure. Then D contains no γ-cycles if and only if every cycle in $\mathfrak{C}(D)$ has at least one symmetrical arc.

It follows from Lemma 1.6 and Theorem 1.5 that if D is a finite m-colored digraph which contains no γ-cycles, then D has a kernel by monochromatic paths.

2. γ-Cycles and Monochromatic Paths in Arc-Colored Digraphs

The following three lemmas are about m-colored digraphs containing no γ-cycles, and they are useful to prove our main result.

Lemma 2.1. Let D be a finite m-colored digraph, and suppose that D contains no γ-cycles. There exists $x_{0} \in V(D)$ such that for every $z \in V(D)-\left\{x_{0}\right\}$ if there exists an $x_{0} z$-monochromatic path contained in D, then there exists a $z x_{0}$ monochromatic path contained in D.

Proof. Assume, for a contradiction, that D is a digraph as in the hypothesis of the Lemma 2.1, and that there is no vertex x_{0} satisfying the assertion of Lemma 2.1.

Let $x_{0} \in V(D)$, it follows from our assumptions that there is $x_{1} \in V(D)-$ $\left\{x_{0}\right\}$ such that there is an $x_{0} x_{1}$-monochromatic path contained in D and there is no $x_{1} x_{0}$-monochromatic path contained in D. Again from our assumptions there is $x_{2} \in V(D)-\left\{x_{1}\right\}$ such that there is an $x_{1} x_{2}$-monochromatic path contained in D and there is no $x_{2} x_{1}$-monochromatic path contained in D. Once chosen $x_{0}, x_{1}, \ldots, x_{n}$; given our supposition we can choose $x_{n+1} \in V(D)-\left\{x_{n}\right\}$ in such a way that there is an $x_{n} x_{n+1}$-monochromatic path in D and there is no $x_{n+1} x_{n}$-monochromatic path in D. Thus, we obtain a sequence of vertices $\left(x_{0}, x_{1}, x_{2}, x_{3}, \ldots\right)$ such that for every $i \in\{0,1,2, \ldots\}$ there is an $x_{i} x_{i+1-}$ monochromatic path contained in D and there is no $x_{i+1} x_{i}$-monochromatic path contained in D. Since D is a finite digraph, there is $\{i, j\} \subseteq \mathbb{N} \cup\{0\}$ with $i<j$ such that $x_{j}=x_{i}$. Let $j_{0}=\min \left\{j \mid x_{j}=x_{i}\right.$ for some $\left.i<j\right\}$, and let $i_{0} \in\left\{0,1, \ldots, j_{0}-1\right\}$ such that $x_{i_{0}}=x_{j_{0}}$ (notice that i_{0} is unique because of the definition of j_{0}). Without loss of generality suppose that $i_{0}=0$ and $j_{0}=n$. Thus, $C=\left(x_{0}, x_{1}, \ldots, x_{n-1}, x_{n}=x_{0}\right)$ is a sequence of n different vertices such that for every $i \in\{0, \ldots, n-1\}$ there is an $x_{i} x_{i+1}$-monochromatic path contained in D and there is no $x_{i+1} x_{i}$-monochromatic path contained in D (the indices of the vertices will be taken modulo n). Therefore, $C=\left(x_{0}, x_{1}, \ldots, x_{n-1}, x_{n}=x_{0}\right)$ is a γ-cycle, which contradicts the hypothesis.

Let D be an m-colored digraph and let H be a subdigraph of D. We will say that $S \subseteq V(D)$ is a semikernel by monochromatic paths modulo H of D if S is independent by monochromatic paths in D and for every $z \in V(D)-S$, if there is a $S z$-monochromatic path contained in $D-H$, then there is a $z S$-monochromatic path contained in D.

Lemma 2.2. Let D be a finite m-colored digraph. Suppose that there is a partition $C=C_{1} \cup C_{2}$ of the set of colors of D such that $D\left[\widehat{C}_{1}\right]$ contains no γ-cycles. Then there exists $x_{0} \in V(D)$ such that $\left\{x_{0}\right\}$ is a semikernel by monochromatic paths $\left(\bmod D\left[\widehat{C}_{2}\right]\right)$ of D.
Proof. It follows by applying Lemma 2.1 to $D-\widehat{C}_{2}$.
Let D be a finite m-colored digraph. Suppose that there is a partition $C=$ $C_{1} \cup C_{2}$ of the set of colors of D and $D\left[\widehat{C}_{1}\right]$ contains no γ-cycles.

Denote by
$\mathcal{S}=\left\{S \mid S \neq \emptyset\right.$ and S is a semikernel by monochromatic paths $\left(\bmod D\left[\widehat{C}_{2}\right]\right)$ of $\left.D\right\}$.
Notice that by Lemma 2.2, there exists a semikernel by monochromatic paths $\left(\bmod D\left[\widehat{C}_{2}\right]\right)$ of D, and thus $\mathcal{S} \neq \emptyset$.

Whenever $\mathcal{S} \neq \emptyset$, we will denote by $D_{\mathcal{S}}$ the loopless digraph defined as follows:
(1) $V\left(D_{\mathcal{S}}\right)=\mathcal{S}$ (i.e, for every element of \mathcal{S} we put a vertex in $D_{\mathcal{S}}$), and
(2) $\left(S_{1}, S_{2}\right) \in A\left(D_{\mathcal{S}}\right)$ if and only if for every $s_{1} \in S_{1}$ there exists $s_{2} \in S_{2}$ such that $s_{1}=s_{2}$ or there exists an $s_{1} s_{2}$-monochromatic path contained in $D\left[\widehat{C}_{2}\right]$ and there is no $s_{2} S_{1}$-monochromatic path contained in D.

Lemma 2.3. Let D be a finite m-colored digraph. Suppose that there is a partition $C=C_{1} \cup C_{2}$ of the set of colors of D and $D\left[\widehat{C}_{i}\right]$ contains no γ-cycles for $i \in\{1,2\}$. Then $D_{\mathcal{S}}$ is an acyclic digraph.

Proof. Observe that by Lemma 2.2, there exists a semikernel by monochromatic paths $\left(\bmod D\left[\widehat{C}_{2}\right]\right)$ of D and therefore $\mathcal{S} \neq \emptyset$. Thus, we can consider the digraph $D_{\mathcal{S}}$. Suppose, for a contradiction, that the digraph $D_{\mathcal{S}}$ contains some cycle, say $\mathcal{C}=\left(S_{0}, S_{1}, \ldots, S_{n-1}, S_{0}\right)$ of length $n \geq 2$. Since \mathcal{C} is a cycle in $D_{\mathcal{S}}$, we have that $S_{i} \neq S_{j}$ whenever $i \neq j$.
Claim 1. There exists $i_{0} \in\{0,1,2, \ldots, n-1\}$ such that for some $z \in S_{i_{0}}$, $z \notin S_{i_{0}+1}(\bmod n)$.

Proof. Otherwise, for every $i \in\{0,1, \ldots, n-1\}$ and every $z \in S_{i}$ we have that $z \in S_{i+1}$, and then $S_{i}=S_{j}$ for all $i, j \in\{0,1, \ldots, n-1\}$. So, $\mathcal{C}=\left(S_{0}\right)$, which is a contradiction, since the digraph is loopless.

Claim 2. If there exists $i_{0} \in\{0,1, \ldots, n-1\}$ such that for some $z \in S_{i_{0}}$ and some $w \in S_{i_{0}+1}(\bmod n)$ there exists a zw-monochromatic path, then there exists $j_{0} \neq i_{0}, j_{0} \in\{0,1, \ldots, n-1\}$, such that $w \in S_{j_{0}}$ and $w \notin S_{j_{0}+1}(\bmod n)$.

Proof. Suppose without loss of generality that $i_{0}=0$. First, observe that $w \notin$ $S_{n}=S_{0}$, since otherwise we have a $z w$-monochromatic path with $\{z, w\} \subseteq S_{0}$, contradicting that S_{0} is independent by monochromatic paths. Since $w \in S_{1}$, let $j_{0}=\max \left\{i \in\{0,1, \ldots, n-1\} \mid w \in S_{i}\right\}$ (notice that for both previous observations j_{0} is well defined). So, $w \in S_{j_{0}}$ and $w \notin S_{j_{0}+1}$.

It follows from Claim 1 that there exist $i_{0} \in\{0, \ldots, n-1\}$ and $t_{0} \in S_{i_{0}}$ such that $t_{0} \notin S_{i_{0}+1}$. It follows from the fact that $\left(S_{i_{0}}, S_{i_{0}+1}\right) \in A\left(D_{\mathcal{S}}\right)$ that there exists $t_{1} \in S_{i_{0}+1}$ such that there exists a $t_{0} t_{1}$-monochromatic path contained in $D\left[\widehat{C}_{2}\right]$ and there is no $t_{1} S_{i_{0}}$-monochromatic path contained in D. From Claim 2,
it follows that there exists an index $i_{1} \in\{0, \ldots, n-1\}$ such that $t_{1} \in S_{i_{1}}$ and $t_{1} \notin S_{i_{1}+1}$. Since $\left(S_{i_{1}}, S_{i_{1}+1}\right) \in A\left(D_{\mathcal{S}}\right)$ it follows that there exists $t_{2} \in S_{i_{1}+1}$ such that there is a $t_{1} t_{2}$-monochromatic path contained in $D\left[\widehat{C}_{2}\right]$ and there is no $t_{2} S_{i_{1}}$-monochromatic path contained in D. Since D is finite, we obtain a sequence of vertices $\left(t_{0}, t_{1}, t_{2}, \ldots, t_{m-1}, t_{0}\right)$ such that there exists a $t_{i} t_{i+1}$-monochromatic path contained in $D\left[\widehat{C}_{2}\right]$ and there is no $t_{i+1} t_{i}$-monochromatic path contained in D for each $i \in\{0,1,2, \ldots, m-1\}(\bmod m)$. But this contradicts that $D\left[\widehat{C}_{2}\right]$ contains no γ-cycles.

3. The Main Result

The idea of the proof of our main theorem is to select $S \in V\left(D_{\mathcal{S}}\right)$ such that $\delta_{D_{\mathcal{S}}}^{+}(S)=0$ (such S exists since $D_{\mathcal{S}}$ is acyclic) and prove that S is a kernel by monochromatic paths of D.

Theorem 3.1. Let D be a finite m-colored digraph. If there exists a partition $C=C_{1} \cup C_{2}$ of the set of colors of D such that:
(1) $D\left[\widehat{C}_{i}\right]$ contains no γ-cycles for $i \in\{1,2\}$;
(2) If $\mathfrak{C}(D)$ contains a rainbow $C_{3}=\left(x_{0}, z, w, x_{0}\right)$ involving colors of C_{1} and C_{2}, then $\left(x_{0}, w\right) \in A(\mathfrak{C}(D))$ or $\left(z, x_{0}\right) \in A(\mathfrak{C}(D))$;
(3) If $\mathfrak{C}(D)$ contains a rainbow $P_{3}=\left(u, z, w, x_{0}\right)$ involving colors of C_{1} and C_{2}, then at least one of the following pairs of vertices is an arc in $\mathfrak{C}(D):(u, w)$, $(w, u),\left(x_{0}, u\right),\left(u, x_{0}\right),\left(x_{0}, w\right),(z, u),\left(z, x_{0}\right)$.
Then D has a kernel by monochromatic paths.
Proof. Consider the digraph $D_{\mathcal{S}}$ of the digraph D. Since $D_{\mathcal{S}}$ is a finite digraph, and from Lemma 2.3 it contains no cycles, it follows that $D_{\mathcal{S}}$ has at least one vertex of zero outdegree. Let $S \in V\left(D_{\mathcal{S}}\right)$ be such that $\delta_{D_{\mathcal{S}}}^{+}(S)=0$. We will prove that S is a kernel by monochromatic paths of D.

Suppose, for a contradiction, that S is not a kernel by monochromatic paths of D. Since $S \in V\left(D_{\mathcal{S}}\right)$, we have that S is independent by monochromatic paths.

Let $X=\{z \in V(D) \mid$ there is no $z S$-monochromatic path in $D\}$. It follows from our assumption that $X \neq \emptyset$. Consider $D-\widehat{C}_{2}$ and its closure $\mathfrak{C}\left(D-\widehat{C}_{2}\right)$. Note that $D\left[\widehat{C}_{1}\right]$ is a subdigraph of $D-\widehat{C}_{2}$ which satisfies $A\left(D\left[\widehat{C}_{1}\right]\right)=A\left(D-\widehat{C}_{2}\right)$. Since $D\left[\widehat{C}_{1}\right]$ contains no γ-cycles, we have that $D-\widehat{C}_{2}$ contains no γ-cycles either. Lemma 1.6 implies that every cycle in $\mathfrak{C}\left(D-\widehat{C}_{2}\right)$ has at least one symmetrical arc. Let $H=\mathfrak{C}\left(D-\widehat{C}_{2}\right)[X]$ be the subdigraph of $\mathfrak{C}\left(D-\widehat{C}_{2}\right)$ induced by X. We have that H also satisfies that every cycle has at least one symmetrical arc, by Theorem 1.5 there is a vertex x_{0} which satisfies that $\left(x_{0}, u\right) \in A(H)$ implies $\left(u, x_{0}\right) \in A(H)$.

Let $T=\left\{z \in S \mid\right.$ there is no $z x_{0}$-monochromatic path in $\left.D\left[\widehat{C}_{2}\right]\right\}$. From the definition of T, we have that for every $z \in(S-T)$ there exists a $z x_{0^{-}}$ monochromatic path contained in $D\left[\widehat{C}_{2}\right]$.

Claim 1. $T \cup\left\{x_{0}\right\}$ is independent by monochromatic paths.
Proof. Since $T \subseteq S$ with $S \in \mathcal{S}$ and $x_{0} \in X$, it remains to prove that there is no $w x_{0}$-monochromatic path in $D\left[\widehat{C}_{1}\right]$ for $w \in T$. Suppose that such path there exists. Since S is a semikernel by monochromatic paths $\left(\bmod D\left[\widehat{C}_{2}\right]\right)$, there is an $x_{0} S$-monochromatic path in D, but this is a contradiction with the definition of X.

Claim 2. For each $z \in V(D)-\left(T \cup\left\{x_{0}\right\}\right)$, if there exists a $\left(T \cup\left\{x_{0}\right\}\right) z$-monochromatic path contained in $D\left[\widehat{C}_{1}\right]$, then there exists a $z\left(T \cup\left\{x_{0}\right\}\right)$-monochromatic path contained in D.

Proof. Case 1. There exists a $T z$-monochromatic path contained in $D\left[\widehat{C}_{1}\right]$. Since $T \subseteq S$ and $S \in \mathcal{S}$, it follows that there exists a $z S$-monochromatic path contained in D. We may suppose that there exists a $z(S-T)$-monochromatic path contained in D (otherwise we are done). Let α_{1} be a $u z$-monochromatic path contained in $D\left[\widehat{C}_{1}\right]$ with $u \in T$, and let α_{2} be a $z w$-monochromatic path with $w \in(S-T)$ contained in D. Since $w \in(S-T)$, it follows from the definition of T that there exists a $w x_{0}$-monochromatic path α_{3} contained in $D\left[\widehat{C}_{2}\right]$.

Moreover, color $\left(\alpha_{1}\right) \neq \operatorname{color}\left(\alpha_{2}\right)$ (color (α) denotes the color used in the arcs of α), otherwise there exists a $u w$-monochromatic path contained in $\alpha_{1} \cup \alpha_{2}$, with $\{u, w\} \subseteq S$, in contradiction with the fact that S is independent by monochromatic paths. In addition, we will suppose that $\operatorname{color}\left(\alpha_{2}\right) \neq \operatorname{color}\left(\alpha_{3}\right)$, since when color $\left(\alpha_{2}\right)=\operatorname{color}\left(\alpha_{3}\right)$ we have $\alpha_{2} \cup \alpha_{3}$ contains a $z x_{0}$-monochromatic path and Claim 2 is proved. Also color $\left(\alpha_{1}\right) \neq \operatorname{color}\left(\alpha_{3}\right)$ as $\operatorname{color}\left(\alpha_{1}\right) \in C_{1}$ and $\operatorname{color}\left(\alpha_{3}\right) \in C_{2}$.

So, we obtain that $\left(u, z, w, x_{0}\right)$ is a rainbow P_{3} in $\mathfrak{C}(D)$ involving colors of both C_{1} and C_{2}, and by the hypothesis there exists at least one of the following monochromatic paths in D : from u to w; from w to u; from x_{0} to u; from u to x_{0}; from x_{0} to w; from z to u; from z to x_{0}. If there exists a $z u$-monochromatic path or a $z x_{0}$-monochromatic path in D, then Claim 2 is proved. So, we will demonstrate that is not possible the existence of the other paths.
(i) There is no $u w$-monochromatic path in D, since $\{u, w\} \subseteq S$ and S is a semikernel by monochromatic paths $\left(\bmod D\left[\widehat{C}_{2}\right]\right)$ of D.
(ii) There is no $w u$-monochromatic path in D, (the same reason as in (i)).
(iii) There is no $x_{0} u$-monochromatic path in D as $T \cup\left\{x_{0}\right\}$ is independent by monochromatic paths in D.
(iv) There is no $u x_{0}$-monochromatic path in D (the same reason as in (iii)).
(v) There is no $x_{0} w$-monochromatic path in D, since $x_{0} \in X$ and $w \in S$.

Case 2. There exists an $x_{0} z$-monochromatic path contained in $D\left[\widehat{C}_{1}\right]$. Let α_{1} be such a path. Suppose that $z \in X$, then $\left(x_{0}, z\right)$ is an arc in H (recall $\left.H=\mathfrak{C}\left(D-\widehat{C}_{2}\right)[X]\right)$. The choice of x_{0} implies that $\left(z, x_{0}\right) \in A(H)$. By the definition of the closure of an m-colored digraph and the fact that H is an induced subdigraph of $\mathfrak{C}\left(D-\widehat{C}_{2}\right)$ we conclude that there is a $z x_{0}$-monochromatic path in $D-\widehat{C}_{2}$, and this path is a $z x_{0}$-monochromatic path in D. Now, assume that $z \notin X$. It follows from the definition of X that there exists some $z S$ monochromatic path contained in D, let α_{2} be such a path, say that α_{2} ends in w. We will suppose that $w \in(S-T)$. Since $w \in(S-T)$, by the definition of T, we have that there exists a $w x_{0}$-monochromatic path contained in $D\left[\widehat{C}_{2}\right]$, let α_{3} be such a path.

Again, we have that $\operatorname{color}\left(\alpha_{1}\right) \neq \operatorname{color}\left(\alpha_{2}\right)$, otherwise there exists an $x_{0} w$ monochromatic path contained in D, contradicting that $x_{0} \in X$ and $w \in S$. In addition, we may suppose that $\operatorname{color}\left(\alpha_{2}\right) \neq \operatorname{color}\left(\alpha_{3}\right)$, since if $\operatorname{color}\left(\alpha_{2}\right)=$ color $\left(\alpha_{3}\right)$, then D contains a $z x_{0}$-monochromatic path and Claim 2 is proved. Also color $\left(\alpha_{1}\right) \neq \operatorname{color}\left(\alpha_{3}\right)$, since $\alpha_{1} \subseteq D\left[\widehat{C}_{1}\right]$ and $\alpha_{3} \subseteq D\left[\widehat{C}_{2}\right]$.

Then $\left(x_{0}, z, w, x_{0}\right)$ is a rainbow C_{3} in $\mathfrak{C}(D)$ which involves colors of both C_{1} and C_{2}, and from hypothesis there exist an $x_{0} w$-monochromatic path or a $z x_{0}$-monochromatic path in D. Since $x_{0} \in X$ and $w \in S$, it follows directly from the definitions of X and S that there is no $x_{0} w$-monochromatic path in D. Then there is a $z x_{0}$-monochromatic path in D, and Claim 2 is proved.

We conclude from Claims 1 and 2 that $T \cup\left\{x_{0}\right\} \in \mathcal{S}$ and therefore $T \cup\left\{x_{0}\right\} \in$ $V\left(D_{\mathcal{S}}\right)$. We have that $\left(S, T \cup\left\{x_{0}\right\}\right) \in A\left(D_{\mathcal{S}}\right)$, since $T \subseteq T \cup\left\{x_{0}\right\}$, and for each $s \in S-T$ there exists an $s x_{0}$-monochromatic path contained in $D\left[\widehat{C}_{2}\right]$, and there is no $x_{0} S$-monochromatic path contained in D. But this contradicts the fact that $\delta_{D_{S}}^{+}(S)=0$. Therefore S is a kernel by monochromatic paths in D and Theorem 3.1 is proved.

Remark 3.2. Theorem 3.1 can be applied to all those digraphs that contain no γ-cycles. Generalizations of many previous results are obtained as a direct consequence of this theorem.

Now, we give some definitions and next we give a list of digraphs that contains no γ-cycles.

Definition. A digraph D is n-quasitransitive if for every $\{u, v\} \subseteq V(D)$ such that there is a $u v$-directed path of length n, we have $(u, v) \in A(D)$ or $(v, u) \in A(D)$.

Definition. We denote by $A^{+}(u)$ the set of arcs of D that have u as the initial end-point, and $A^{+}(u)$ is monochromatic if all of its elements have the same color.

Definition. We denote by T_{4} the digraph such that $V\left(T_{4}\right)=\{u, v, w, x\}$ and $A\left(T_{4}\right)=\{(u, v),(v, x),(x, w),(u, w)\}$, see Figure 1 .

Figure 1. T_{4}.

Definition. A digraph D is called a bipartite tournament if its set of vertices can be partitioned into two sets V_{1} and V_{2} such that: (i) every arc of D has an end-point in V_{1}, and the other end-point in V_{2}, and (ii) for every $x_{1} \in V_{1}$ and every $x_{2} \in V_{2}$, we have $\left|\left\{\left(x_{1}, x_{2}\right),\left(x_{2}, x_{1}\right)\right\} \cap A(D)\right|=1$.

Definition. \widetilde{T}_{6} is the bipartite tournament defined as follows:

1. $V\left(\widetilde{T}_{6}\right)=\{u, v, w, x, y, z\}$,
2. $A\left(\widetilde{T}_{6}\right)=\{(u, w),(v, w),(w, x),(w, z),(x, y),(y, u),(y, v),(z, y)\}$,
with $\{(u, w),(w, x),(y, u),(z, y)\}$ coloured 1 and $\{(v, w),(w, z),(x, y),(y, v)\}$ colored 2, see Figure 2.

Figure 2. \widetilde{T}_{6}.

Definition. If v is a vertex of an m-coloured tournament T, we denote by $\xi(v)$ the set of colours assigned to the arcs with v as an end-point.

Definition. \widetilde{T}_{8} is the digraph defined as follows:

1. $V\left(\widetilde{T}_{8}\right)=\{s, t, u, v, w, x, y, z\}$,
2. $A\left(\widetilde{T}_{8}\right)=\{(s, t),(s, x),(t, u),(t, y),(u, v),(u, z),(v, w),(v, s),(w, x),(w, t)$, $(x, y),(x, u),(y, z),(y, v),(z, s),(z, w)\}$,
and each other arc in \widetilde{T}_{8} colored 2 , see Figure 3.

Figure 3. $\widetilde{T_{8}}$.
A list of theorems proving the existence of digraphs without γ-cycles.
Theorem 3.3 (Galeana-Sánchez, Gaytán-Gómez, Rojas-Monroy [8]). Let D be a finite m-colored digraph such that every cycle in D is monochromatic. Then D contains no γ-cycle.

Theorem 3.4 (Galeana-Sánchez, Rojas-Monroy, Zavala [16]). Let D be a finite m-colored 3-quasitransitive digraph such that for every vertex u of $D, A^{+}(u)$ is monochromatic. If every C_{3}, C_{4} and T_{4} contained in D is quasi-monochromatic, then there is no γ-cycles in D.

Theorem 3.5 (Galeana-Sánchez [5]). Let T be a finite m-colored tournament. If each directed cycle contained in T and of length at most 4 is a quasi-monochromatic cycle, then there is no γ-cycles in T.

Theorem 3.6 (Galeana-Sánchez [6]). Let D be a finite m-colored digraph resulting from the deletion of a single arc (x, y) of some m-colored tournament T (i.e., $D \cong T-(x, y))$. If every directed cycle contained in D of length at most 4 is quasi-monochromatic, then there is no γ-cycles in D.

Theorem 3.7 (Galeana-Sánchez and Rojas-Monroy [14]). Let T be a finite m colored bipartite tournament. Assume that every directed cycle of length 4 is quasi-monochromatic, every directed cycle of length 6 is monochromatic, and T has no subtournament isomorphic to \widetilde{T}_{6}. Then there is no γ-cycles in T.

Theorem 3.8 (Galeana-Sánchez and Rojas-Monroy [12]). Let T be a finite m colored bipartite tournament. If every directed cycle of length 4 in T is monochromatic, then there is no γ-cycles in T.

Theorem 3.9 (Galeana-Sánchez and Rojas-Monroy [13]). Let T be a finite 3colored tournament such that every directed cycle of length 3 is quasi-monochromatic, and for each $v \in V(T)$ we have $|\xi(v)| \leq 2$, then there is no γ-cycles in T.

Theorem 3.10 (Galeana-Sánchez and Rojas-Monroy [15]). Let T be a finite m colored bipartite tournament such that, every C_{4} is quasi-monochromatic, every T_{4} is quasi-monochromatic, and T has no induced subdigraph isomorphic to \widetilde{T}_{8}. Then T has no γ-cycles.

Acknowledgement

The authors would like to emphatically thank the anonymous referees for many suggestions which improved substantially the rewriting of this paper.

References

[1] C. Berge, Graphs (North-Holland, Amsterdam, 1985).
[2] P. Duchet, Graphes Noyau-Parfaits, Ann. Discrete Math. 9 (1980) 93-101. doi:10.1016/S0167-5060(08)70041-4
[3] P. Duchet, Classical perfect graphs: An introduction with emphasis on triangulated and interval graphs, Ann. Discrete Math. 21 (1984) 67-96.
[4] P. Duchet and H. Meyniel, A note on kernel-critical graphs, Discrete Math. 33 (1981) 103-105. doi:10.1016/0012-365X(81)90264-8
[5] H. Galeana-Sánchez, On monochromatic paths and monochromatics cycles in edge colored tournaments, Discrete Math. 156 (1996) 103-112. doi:10.1016/0012-365X(95)00036-V
[6] H. Galeana-Sánchez, Kernels in edge-coloured digraphs, Discrete Math. 184 (1998) 87-99. doi:10.1016/S0012-365X(97)00162-3
[7] H. Galeana-Sánchez and J.J. García-Ruvalcaba, Kernels in the closure of coloured digraphs, Discuss. Math. Graph Theory 20 (2000) 243-254. doi:10.7151/dmgt. 1123
[8] H. Galeana-Sánchez, G. Gaytán-Gómez and R. Rojas-Monroy, Monochromatic cycles and monochromatic paths in arc-colored digraphs, Discuss. Math. Graph Theory 31 (2011) 283-292. doi:10.7151/dmgt. 1545
[9] H. Galeana-Sánchez and V. Neumann-Lara, On kernels and semikernels of digraphs, Discrete Math. 48 (1984) 67-76. doi:10.1016/0012-365X(84)90131-6
[10] H. Galeana-Sánchez and V. Neumann-Lara, On kernel-perfect critical digraphs, Discrete Math. 59 (1986) 257-265.
doi:10.1016/0012-365X(86)90172-X
[11] H. Galeana-Sánchez and R. Rojas-Monroy, A counterexample to a conjecture on edge-coloured tournaments, Discrete Math. 282 (2004) 275-276.
doi:10.1016/j.disc.2003.11.015
[12] H. Galeana-Sánchez and R. Rojas-Monroy, On monochromatic paths and monochromatic 4-cycles in edge coloured bipartite tournaments, Discrete Math. 285 (2004) 313-318.
doi:10.1016/j.disc.2004.03.005
[13] H. Galeana-Sánchez and R. Rojas-Monroy, Monochromatic paths and at most 2coloured arc sets in edge-coloured tournaments, Graphs Combin. 21 (2005) 307-317. doi:10.1007/s00373-005-0618-z
[14] H. Galeana-Sánchez and R. Rojas-Monroy, Monochromatic paths and quasimonochromatic cycles in edge-coloured bipartite tournaments, Discuss. Math. Graph Theory 28 (2008) 285-306. doi:10.7151/dmgt. 1406
[15] H. Galeana-Sánchez and R. Rojas-Monroy, Independent domination by monochromatic paths in arc coloured bipartite tournaments, AKCE Int. J. Graphs Comb. 6 (2009) 267-285.
[16] H. Galeana-Sánchez, R. Rojas-Monroy and B. Zavala, Monochromatic paths and monochromatic sets of arcs in 3-quasitransitive digraphs, Discuss. Math. Graph Theory 29 (2009) 337-347. doi:10.7151/dmgt. 1450
[17] J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior (Princeton University Press, Princeton, 1944).
[18] M. Richardson, Solutions of irreflexive relations, Ann. of Math. 58 (1953) 573-590. doi:10.2307/1969755
[19] M. Richardson, Extension theorems for solutions of irreflexive relations, Proc. Natl. Acad. Sci. USA 39 (1953) 649-655. doi:10.1073/pnas.39.7.649
[20] R. Rojas-Monroy and J.I. Villarreal-Valdés, Kernels in infinite diraphs, AKCE Int. J. Graphs Comb. 7 (2010) 103-111.
[21] Shen Minggang, On monochromatic paths in m-coloured tournaments, J. Combin. Theory Ser. B 45 (1988) 108-111. doi:10.1016/0095-8956(88)90059-7
[22] B. Sands, N. Sauer and R. Woodrow, On monochromatic paths edge-coloured digraphs, J. Combin. Theory Ser. B 33 (1982) 271-275.
doi:10.1016/0095-8956(82)90047-8
[23] I. Włoch, On imp-sets and kernels by monochromatic paths of the duplication, Ars Combin. 83 (2007) 93-99.
[24] I. Włoch, On kernels by monochromatic paths in the corona of digraphs, Cent. Eur. J. Math. 6 (2008) 537-542.
doi:10.2478/s11533-008-0044-6

[^0]: ${ }^{1}$ This work was partially supported by CONACYT 219840-2013 and PAPIIT IN106613.

