
Discussiones Mathematicae
Graph Theory 36 (2016) 103–116
doi:10.7151/dmgt.1848

γ-CYCLES IN ARC-COLORED DIGRAPHS

Hortensia Galeana-Sánchez1

Guadalupe Gaytán-Gómez
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e-mail: mrrm@uaemex.mx

Abstract

We call a digraph D an m-colored digraph if the arcs of D are colored
with m colors. A directed path (or a directed cycle) is called monochromatic
if all of its arcs are colored alike. A subdigraph H in D is called rainbow if
all of its arcs have different colors. A set N ⊆ V (D) is said to be a kernel
by monochromatic paths of D if it satisfies the two following conditions:

(i) for every pair of different vertices u, v ∈ N there is no monochromatic
path in D between them, and

(ii) for every vertex x ∈ V (D) − N there is a vertex y ∈ N such that
there is an xy-monochromatic path in D.

A γ-cycle in D is a sequence of different vertices γ = (u0, u1, . . . , un, u0)
such that for every i ∈ {0, 1, . . . , n}:

(i) there is a uiui+1-monochromatic path, and
(ii) there is no ui+1ui-monochromatic path.
The addition over the indices of the vertices of γ is taken modulo (n+1).

If D is an m-colored digraph, then the closure of D, denoted by C(D), is the
m-colored multidigraph defined as follows: V (C(D)) = V (D), A(C(D)) =

1This work was partially supported by CONACYT 219840-2013 and PAPIIT IN106613.

http://dx.doi.org/10.7151/dmgt.1848


104 H. Galeana-Sánchez, G. Gaytán-Gómez and R. Rojas-Monroy

A(D) ∪ {(u, v) with color i | there exists a uv-monochromatic path colored
i contained in D}.

In this work, we prove the following result. Let D be a finite m-colored
digraph which satisfies that there is a partition C = C1 ∪ C2 of the set of
colors of D such that:

(1) D[Ĉi] (the subdigraph spanned by the arcs with colors in Ci) contains
no γ-cycles for i ∈ {1, 2};

(2) If C(D) contains a rainbow C3 = (x0, z, w, x0) involving colors of C1

and C2, then (x0, w) ∈ A(C(D)) or (z, x0) ∈ A(C(D));

(3) If C(D) contains a rainbow P3 = (u, z, w, x0) involving colors of C1 and
C2, then at least one of the following pairs of vertices is an arc in C(D):
(u,w), (w, u), (x0, u), (u, x0), (x0, w), (z, u), (z, x0).

Then D has a kernel by monochromatic paths.
This theorem can be applied to all those digraphs that contain no γ-

cycles. Generalizations of many previous results are obtained as a direct
consequence of this theorem.

Keywords: digraph, kernel, kernel by monochromatic paths, γ-cycle.
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1. Introduction

For general concepts we refer the reader to [1]. Let D be a digraph, and let
V (D) and A(D) denote the sets of vertices and arcs of D, respectively. We recall
that a subdigraph D1 of D is a spanning subdigraph if V (D1) = V (D). If S is a
nonempty subset of V (D), then the subdigraph induced by S, denoted by D[S],
is the digraph having vertex set S, and whose arcs are all those arcs of D joining
vertices of S. An arc u1u2 of D will be called an S1S2-arc of D whenever u1 ∈ S1

and u2 ∈ S2.

A set I ⊆ V (D) is independent if A(D[I]) = ∅. A kernel N of D is an
independent set of vertices such that for each z ∈ V (D)−N there exists a zN -arc
in D, that is, an arc from z toward some vertex in N . A digraph D is a kernel-

prefect digraph when every induced subdigraph of D has a kernel. Sufficient
conditions for the existence of kernels in digraphs have been investigated by
several authors, von Neumann and Morgenstern [17]; Richardson [18, 19]; Duchet
and Meyniel [4]; Duchet [2, 3]; Galeana-Sánchez and Neumann-Lara [9, 10]. The
concept of kernel is very useful in applications.

We call the digraph D an m-colored digraph if the arcs of D are colored with
m colors. Along this paper, all the paths and cycles will be directed paths and
directed cycles. A path is monochromatic if all of its arcs are colored alike. A
cycle is called a quasi-monochromatic cycle if with at most one exception all of
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its arcs are colored alike. A subdigraph H of D is rainbow if all its arcs have
distinct colors. A set N of vertices of D is a kernel by monochromatic paths if
for every pair of vertices of N there is no monochromatic path between them
and for every vertex v not in N there is a monochromatic path from v to some
vertex in N . If D is an m-colored digraph, then the closure of D, denoted
by C(D), is the m-colored multidigraph defined as follows: V (C(D)) = V (D),
A(C(D)) = A(D) ∪ {(u, v) with color i | there exists a uv-monochromatic path
colored i contained in D}. Notice that for any digraph D, C(C(D)) ∼= C(D), and
D has a kernel by monochromatic paths if and only if C(D) has a kernel.

In [22] Sands, Sauer and Woodrow proved that any 2-colored digraph D has
a set S of vertices such that: (i) for any x, y ∈ S, there is no monochromatic
path between them, and (ii) for every vertex x 6∈ S, there is a monochromatic
path from x to a vertex of S (i.e., D has a kernel by monochromatic paths, a
concept that was introduced later by Galeana-Sánchez [5]). In particular, they
proved that any 2-colored tournament T has a kernel by monochromatic paths.
They also raised the following problem: Let T be a 3-colored tournament such
that every cycle of length 3 is a quasi-monochromatic cycle; must T have a
kernel by monochromatic paths? This question still remains open. In [21] Shen
Minggang proved that if T is an m-colored tournament such that every cycle
of length 3 is a quasi-monochromatic cycle, and every transitive tournament of
order 3 is quasi-monochromatic, then T has a kernel by monochromatic paths.
He also proved that this result is the best possible for m-colored tournaments
with m ≥ 5. In fact, he proved that for each m ≥ 5 there exists an m-colored
tournament T such that every cycle of length 3 is quasi-monochromatic and T

has no kernel by monochromatic paths. Also for every m ≥ 3 there exists an
m-colored tournament T ′ such that every transitive tournament of order 3 is
quasi-monochromatic and T ′ has no kernel by monochromatic paths. In 2004
[11] Galeana-Sánchez and Rojas-Monroy presented a 4-colored tournament T

such that every cycle of order 3 is quasi-monochromatic, but T has no kernel
by monochromatic paths. The known sufficient conditions for the existence of
kernel by monochromatic paths in m-colored (m ≥ 3) tournaments (or nearly
tournaments), ask for the monochromaticity or quasi-monochromaticity of certain
subdigraphs. More information on m-colored digraphs can be found in [5, 6, 7,
23, 24].

If C = (z0, z1, . . . , zn, z0) is a cycle, we will denote by ℓ(C) its length, and if
zi, zj ∈ V (C) with i ≤ j, then we denote by (zi, C, zj) the zizj-path contained in
C. A sequence of different vertices γ = (u0, . . . , un, u0) is a γ-cycle if for every
i ∈ {0, 1, . . . , n} there is a uiui+1-monochromatic path, and there is no ui+1ui-
monochromatic path. The addition over the indices of the vertices of γ is taken
modulo (n + 1).

In this paper we prove that if D is a finite m-colored digraph, and if there
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exists a partition C = C1 ∪ C2 of the set of colors of D such that:

(1) D[Ĉi] contains no γ-cycles for i ∈ {1, 2}, (Ĉi denotes the set of arcs of D

with colors in Ci);

(2) If C(D) contains a rainbow C3 = (x0, z, w, x0) involving colors of C1 and C2,
then (x0, w) ∈ A(C(D)) or (z, x0) ∈ A(C(D));

(3) If C(D) contains a rainbow P3 = (u, z, w, x0) involving colors of C1 and C2,
then at least one of the following pairs of vertices is an arc in C(D): (u,w),
(w, u), (x0, u), (u, x0), (x0, w), (z, u), (z, x0).

Then D has a kernel by monochromatic paths.

We will need the following results.

Assertion 1.1. Let D be a finite or infinite digraph and u, v ∈ V (D). Every

uv-walk in D contains a uv-path.

Assertion 1.2. Let D be a finite or infinite digraph. Every closed walk in D

contains a cycle.

Assertion 1.3. Let D be a finite digraph. If every vertex v ∈ V (D) fulfills that

δ−D(v) ≥ 1 (δ+D(v) ≥ 1), then D contains a cycle.

Theorem 1.4 (Duchet [2]). If D is a finite digraph such that every cycle of D

has at least one symmetrical arc, then D has a kernel.

Theorem 1.5 (Rojas-Monroy, Villarreal-Valdés [20]). Let D be a finite or infinite

digraph. If every cycle and every infinite outward path has a symmetrical arc,

then there exists x ∈ V (D) which satisfies (x, u) ∈ A(D) implies (u, x) ∈ A(D).

The following lemma has been important to obtain many results on the ex-
istence of kernels by monochromatic paths in finite m-colored digraphs [5, 6, 8,
12, 13, 14, 15, 16].

Lemma 1.6. Let D be a finite or infinite m-colored digraph and C(D) its closure.
Then D contains no γ-cycles if and only if every cycle in C(D) has at least one

symmetrical arc.

It follows from Lemma 1.6 and Theorem 1.5 that if D is a finite m-colored
digraph which contains no γ-cycles, then D has a kernel by monochromatic paths.

2. γ-Cycles and Monochromatic Paths in Arc-Colored Digraphs

The following three lemmas are about m-colored digraphs containing no γ-cycles,
and they are useful to prove our main result.
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Lemma 2.1. Let D be a finite m-colored digraph, and suppose that D contains

no γ-cycles. There exists x0 ∈ V (D) such that for every z ∈ V (D) − {x0} if

there exists an x0z-monochromatic path contained in D, then there exists a zx0-

monochromatic path contained in D.

Proof. Assume, for a contradiction, that D is a digraph as in the hypothesis of
the Lemma 2.1, and that there is no vertex x0 satisfying the assertion of Lemma
2.1.

Let x0 ∈ V (D), it follows from our assumptions that there is x1 ∈ V (D) −
{x0} such that there is an x0x1-monochromatic path contained in D and there
is no x1x0-monochromatic path contained in D. Again from our assumptions
there is x2 ∈ V (D) − {x1} such that there is an x1x2-monochromatic path con-
tained in D and there is no x2x1-monochromatic path contained in D. Once
chosen x0, x1, . . . , xn; given our supposition we can choose xn+1 ∈ V (D) − {xn}
in such a way that there is an xnxn+1-monochromatic path in D and there
is no xn+1xn-monochromatic path in D. Thus, we obtain a sequence of ver-
tices (x0, x1, x2, x3, . . .) such that for every i ∈ {0, 1, 2, . . .} there is an xixi+1-
monochromatic path contained in D and there is no xi+1xi-monochromatic path
contained in D. Since D is a finite digraph, there is {i, j} ⊆ N ∪ {0} with
i < j such that xj = xi. Let j0 = min{j | xj = xi for some i < j}, and let
i0 ∈ {0, 1, . . . , j0 − 1} such that xi0 = xj0 (notice that i0 is unique because of
the definition of j0). Without loss of generality suppose that i0 = 0 and j0 = n.
Thus, C = (x0, x1, . . . , xn−1, xn = x0) is a sequence of n different vertices such
that for every i ∈ {0, . . . , n−1} there is an xixi+1-monochromatic path contained
in D and there is no xi+1xi-monochromatic path contained in D (the indices of
the vertices will be taken modulo n). Therefore, C = (x0, x1, . . . , xn−1, xn = x0)
is a γ-cycle, which contradicts the hypothesis.

Let D be an m-colored digraph and let H be a subdigraph of D. We will say
that S ⊆ V (D) is a semikernel by monochromatic paths modulo H of D if S is
independent by monochromatic paths in D and for every z ∈ V (D)−S, if there is
a Sz-monochromatic path contained in D−H, then there is a zS-monochromatic
path contained in D.

Lemma 2.2. Let D be a finite m-colored digraph. Suppose that there is a parti-

tion C = C1 ∪C2 of the set of colors of D such that D[Ĉ1] contains no γ-cycles.

Then there exists x0 ∈ V (D) such that {x0} is a semikernel by monochromatic

paths (mod D[Ĉ2]) of D.

Proof. It follows by applying Lemma 2.1 to D − Ĉ2.

Let D be a finite m-colored digraph. Suppose that there is a partition C =
C1 ∪ C2 of the set of colors of D and D[Ĉ1] contains no γ-cycles.
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Denote by

S={S |S 6=∅ and S is a semikernel by monochromatic paths (mod D[Ĉ2]) of D}.

Notice that by Lemma 2.2, there exists a semikernel by monochromatic paths
(mod D[Ĉ2]) of D, and thus S 6= ∅.

Whenever S 6= ∅, we will denote by DS the loopless digraph defined as
follows:

(1) V (DS) = S (i.e, for every element of S we put a vertex in DS), and

(2) (S1, S2) ∈ A(DS) if and only if for every s1 ∈ S1 there exists s2 ∈ S2 such
that s1 = s2 or there exists an s1s2-monochromatic path contained in D[Ĉ2]
and there is no s2S1-monochromatic path contained in D.

Lemma 2.3. Let D be a finite m-colored digraph. Suppose that there is a par-

tition C = C1 ∪ C2 of the set of colors of D and D[Ĉi] contains no γ-cycles for

i ∈ {1, 2}. Then DS is an acyclic digraph.

Proof. Observe that by Lemma 2.2, there exists a semikernel by monochromatic
paths (mod D[Ĉ2]) of D and therefore S 6= ∅. Thus, we can consider the digraph
DS . Suppose, for a contradiction, that the digraph DS contains some cycle, say
C = (S0, S1, . . . , Sn−1, S0) of length n ≥ 2. Since C is a cycle in DS , we have that
Si 6= Sj whenever i 6= j.

Claim 1. There exists i0 ∈ {0, 1, 2, . . . , n − 1} such that for some z ∈ Si0,

z 6∈ Si0+1 (mod n).

Proof. Otherwise, for every i ∈ {0, 1, . . . , n− 1} and every z ∈ Si we have that
z ∈ Si+1, and then Si = Sj for all i, j ∈ {0, 1, . . . , n− 1}. So, C = (S0), which is
a contradiction, since the digraph is loopless.

Claim 2. If there exists i0 ∈ {0, 1, . . . , n − 1} such that for some z ∈ Si0 and

some w ∈ Si0+1 (mod n) there exists a zw-monochromatic path, then there exists

j0 6= i0, j0 ∈ {0, 1, . . . , n− 1}, such that w ∈ Sj0 and w 6∈ Sj0+1(mod n).

Proof. Suppose without loss of generality that i0 = 0. First, observe that w 6∈
Sn = S0, since otherwise we have a zw-monochromatic path with {z, w} ⊆ S0,
contradicting that S0 is independent by monochromatic paths. Since w ∈ S1,
let j0 = max{i ∈ {0, 1, . . . , n − 1} | w ∈ Si} (notice that for both previous
observations j0 is well defined). So, w ∈ Sj0 and w 6∈ Sj0+1.

It follows from Claim 1 that there exist i0 ∈ {0, . . . , n− 1} and t0 ∈ Si0 such
that t0 6∈ Si0+1. It follows from the fact that (Si0 , Si0+1) ∈ A(DS) that there
exists t1 ∈ Si0+1 such that there exists a t0t1-monochromatic path contained in
D[Ĉ2] and there is no t1Si0-monochromatic path contained in D. From Claim 2,
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it follows that there exists an index i1 ∈ {0, . . . , n − 1} such that t1 ∈ Si1 and
t1 6∈ Si1+1. Since (Si1 , Si1+1) ∈ A(DS) it follows that there exists t2 ∈ Si1+1

such that there is a t1t2-monochromatic path contained in D[Ĉ2] and there is no
t2Si1-monochromatic path contained in D. Since D is finite, we obtain a sequence
of vertices (t0, t1, t2, . . . , tm−1, t0) such that there exists a titi+1-monochromatic
path contained in D[Ĉ2] and there is no ti+1ti-monochromatic path contained in
D for each i ∈ {0, 1, 2, . . . ,m − 1} (mod m). But this contradicts that D[Ĉ2]
contains no γ-cycles.

3. The Main Result

The idea of the proof of our main theorem is to select S ∈ V (DS) such that
δ+DS

(S) = 0 (such S exists since DS is acyclic) and prove that S is a kernel by
monochromatic paths of D.

Theorem 3.1. Let D be a finite m-colored digraph. If there exists a partition

C = C1 ∪ C2 of the set of colors of D such that:

(1) D[Ĉi] contains no γ-cycles for i ∈ {1, 2};

(2) If C(D) contains a rainbow C3=(x0, z, w, x0) involving colors of C1 and C2,

then (x0, w) ∈ A(C(D)) or (z, x0) ∈ A(C(D));

(3) If C(D) contains a rainbow P3 = (u, z, w, x0) involving colors of C1 and C2,

then at least one of the following pairs of vertices is an arc in C(D): (u,w),
(w, u), (x0, u), (u, x0), (x0, w), (z, u), (z, x0).

Then D has a kernel by monochromatic paths.

Proof. Consider the digraph DS of the digraph D. Since DS is a finite digraph,
and from Lemma 2.3 it contains no cycles, it follows that DS has at least one
vertex of zero outdegree. Let S ∈ V (DS) be such that δ+DS

(S) = 0. We will prove
that S is a kernel by monochromatic paths of D.

Suppose, for a contradiction, that S is not a kernel by monochromatic paths
of D. Since S ∈ V (DS), we have that S is independent by monochromatic paths.

Let X = {z ∈ V (D) | there is no zS-monochromatic path in D}. It follows
from our assumption that X 6= ∅. Consider D − Ĉ2 and its closure C(D − Ĉ2).
Note that D[Ĉ1] is a subdigraph of D−Ĉ2 which satisfies A(D[Ĉ1]) = A(D−Ĉ2).
Since D[Ĉ1] contains no γ-cycles, we have that D−Ĉ2 contains no γ-cycles either.
Lemma 1.6 implies that every cycle in C(D − Ĉ2) has at least one symmetrical
arc. Let H = C(D − Ĉ2)[X] be the subdigraph of C(D − Ĉ2) induced by X.
We have that H also satisfies that every cycle has at least one symmetrical arc,
by Theorem 1.5 there is a vertex x0 which satisfies that (x0, u) ∈ A(H) implies
(u, x0) ∈ A(H).
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Let T = {z ∈ S | there is no zx0-monochromatic path in D[Ĉ2]}. From
the definition of T , we have that for every z ∈ (S − T ) there exists a zx0-
monochromatic path contained in D[Ĉ2].

Claim 1. T ∪ {x0} is independent by monochromatic paths.

Proof. Since T ⊆ S with S ∈ S and x0 ∈ X, it remains to prove that there is
no wx0-monochromatic path in D[Ĉ1] for w ∈ T . Suppose that such path there
exists. Since S is a semikernel by monochromatic paths (mod D[Ĉ2]), there is an
x0S-monochromatic path in D, but this is a contradiction with the definition of
X.

Claim 2. For each z ∈ V (D)−(T ∪{x0}), if there exists a (T ∪{x0})z-monochro-

matic path contained in D[Ĉ1], then there exists a z(T ∪ {x0})-monochromatic

path contained in D.

Proof. Case 1. There exists a Tz-monochromatic path contained in D[Ĉ1]. Since
T ⊆ S and S ∈ S, it follows that there exists a zS-monochromatic path contained
in D. We may suppose that there exists a z(S−T )-monochromatic path contained
in D (otherwise we are done). Let α1 be a uz-monochromatic path contained in
D[Ĉ1] with u ∈ T , and let α2 be a zw-monochromatic path with w ∈ (S − T )
contained in D. Since w ∈ (S − T ), it follows from the definition of T that there
exists a wx0-monochromatic path α3 contained in D[Ĉ2].

Moreover, color(α1) 6= color(α2) (color(α) denotes the color used in the arcs
of α), otherwise there exists a uw-monochromatic path contained in α1∪α2, with
{u,w} ⊆ S, in contradiction with the fact that S is independent by monochro-
matic paths. In addition, we will suppose that color(α2) 6= color(α3), since
when color(α2) = color(α3) we have α2 ∪ α3 contains a zx0-monochromatic
path and Claim 2 is proved. Also color(α1) 6= color(α3) as color(α1) ∈ C1 and
color(α3) ∈ C2.

So, we obtain that (u, z, w, x0) is a rainbow P3 in C(D) involving colors of
both C1 and C2, and by the hypothesis there exists at least one of the following
monochromatic paths in D: from u to w; from w to u; from x0 to u; from u to
x0; from x0 to w; from z to u; from z to x0. If there exists a zu-monochromatic
path or a zx0-monochromatic path in D, then Claim 2 is proved. So, we will
demonstrate that is not possible the existence of the other paths.

(i) There is no uw-monochromatic path in D, since {u,w} ⊆ S and S is a
semikernel by monochromatic paths (mod D[Ĉ2]) of D.

(ii) There is no wu-monochromatic path in D, (the same reason as in (i)).

(iii) There is no x0u-monochromatic path in D as T ∪ {x0} is independent
by monochromatic paths in D.

(iv) There is no ux0-monochromatic path in D (the same reason as in (iii)).
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(v) There is no x0w-monochromatic path in D, since x0 ∈ X and w ∈ S.

Case 2. There exists an x0z-monochromatic path contained in D[Ĉ1]. Let
α1 be such a path. Suppose that z ∈ X, then (x0, z) is an arc in H (recall
H = C(D − Ĉ2)[X]). The choice of x0 implies that (z, x0) ∈ A(H). By the
definition of the closure of an m-colored digraph and the fact that H is an induced
subdigraph of C(D − Ĉ2) we conclude that there is a zx0-monochromatic path
in D − Ĉ2, and this path is a zx0-monochromatic path in D. Now, assume
that z 6∈ X. It follows from the definition of X that there exists some zS-
monochromatic path contained in D, let α2 be such a path, say that α2 ends in
w. We will suppose that w ∈ (S − T ). Since w ∈ (S − T ), by the definition of T ,
we have that there exists a wx0-monochromatic path contained in D[Ĉ2], let α3

be such a path.

Again, we have that color(α1) 6= color(α2), otherwise there exists an x0w-
monochromatic path contained in D, contradicting that x0 ∈ X and w ∈ S.
In addition, we may suppose that color(α2) 6= color(α3), since if color(α2) =
color(α3), then D contains a zx0-monochromatic path and Claim 2 is proved.
Also color(α1) 6= color(α3), since α1 ⊆ D[Ĉ1] and α3 ⊆ D[Ĉ2].

Then (x0, z, w, x0) is a rainbow C3 in C(D) which involves colors of both
C1 and C2, and from hypothesis there exist an x0w-monochromatic path or a
zx0-monochromatic path in D. Since x0 ∈ X and w ∈ S, it follows directly from
the definitions of X and S that there is no x0w-monochromatic path in D. Then
there is a zx0-monochromatic path in D, and Claim 2 is proved.

We conclude from Claims 1 and 2 that T ∪{x0} ∈ S and therefore T ∪{x0} ∈
V (DS). We have that (S, T ∪ {x0}) ∈ A(DS), since T ⊆ T ∪ {x0}, and for each
s ∈ S−T there exists an sx0-monochromatic path contained in D[Ĉ2], and there
is no x0S-monochromatic path contained in D. But this contradicts the fact that
δ+DS

(S) = 0. Therefore S is a kernel by monochromatic paths in D and Theorem
3.1 is proved.

Remark 3.2. Theorem 3.1 can be applied to all those digraphs that contain
no γ-cycles. Generalizations of many previous results are obtained as a direct
consequence of this theorem.

Now, we give some definitions and next we give a list of digraphs that contains
no γ-cycles.

Definition. A digraph D is n-quasitransitive if for every {u, v} ⊆ V (D) such that
there is a uv-directed path of length n, we have (u, v) ∈ A(D) or (v, u) ∈ A(D).

Definition. We denote by A+(u) the set of arcs of D that have u as the initial
end-point, and A+(u) is monochromatic if all of its elements have the same color.
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Definition. We denote by T4 the digraph such that V (T4) = {u, v, w, x} and
A(T4) = {(u, v), (v, x), (x,w), (u,w)}, see Figure 1.

Figure 1. T4.

Definition. A digraph D is called a bipartite tournament if its set of vertices
can be partitioned into two sets V1 and V2 such that: (i) every arc of D has an
end-point in V1, and the other end-point in V2, and (ii) for every x1 ∈ V1 and
every x2 ∈ V2, we have |{(x1, x2), (x2, x1)} ∩A(D)| = 1.

Definition. T̃6 is the bipartite tournament defined as follows:
1. V (T̃6) = {u, v, w, x, y, z},

2. A(T̃6) = {(u,w), (v, w), (w, x), (w, z), (x, y), (y, u), (y, v), (z, y)},
with {(u,w), (w, x), (y, u), (z, y)} coloured 1 and {(v, w), (w, z), (x, y), (y, v)} col-
ored 2, see Figure 2.

Figure 2. T̃6.

Definition. If v is a vertex of an m-coloured tournament T , we denote by ξ(v)
the set of colours assigned to the arcs with v as an end-point.

Definition. T̃8 is the digraph defined as follows:

1. V (T̃8) = {s, t, u, v, w, x, y, z},

2. A(T̃8) = {(s, t), (s, x), (t, u), (t, y), (u, v), (u, z), (v, w), (v, s), (w, x), (w, t),
(x, y), (x, u), (y, z), (y, v), (z, s), (z, w)},

and each other arc in T̃8 colored 2, see Figure 3.



γ-Cycles in Arc-Colored Digraphs 113

Figure 3. T̃8.

A list of theorems proving the existence of digraphs without γ-cycles.

Theorem 3.3 (Galeana-Sánchez, Gaytán-Gómez, Rojas-Monroy [8]). Let D be

a finite m-colored digraph such that every cycle in D is monochromatic. Then D

contains no γ-cycle.

Theorem 3.4 ( Galeana-Sánchez, Rojas-Monroy, Zavala [16]). Let D be a finite

m-colored 3-quasitransitive digraph such that for every vertex u of D, A+(u) is

monochromatic. If every C3, C4 and T4 contained in D is quasi-monochromatic,

then there is no γ-cycles in D.

Theorem 3.5 ( Galeana-Sánchez [5]). Let T be a finite m-colored tournament. If

each directed cycle contained in T and of length at most 4 is a quasi-monochroma-

tic cycle, then there is no γ-cycles in T .

Theorem 3.6 ( Galeana-Sánchez [6]). Let D be a finite m-colored digraph result-

ing from the deletion of a single arc (x, y) of some m-colored tournament T (i.e.,
D ∼= T − (x, y)). If every directed cycle contained in D of length at most 4 is

quasi-monochromatic, then there is no γ-cycles in D.

Theorem 3.7 (Galeana-Sánchez and Rojas-Monroy [14]). Let T be a finite m-

colored bipartite tournament. Assume that every directed cycle of length 4 is

quasi-monochromatic, every directed cycle of length 6 is monochromatic, and T

has no subtournament isomorphic to T̃6. Then there is no γ-cycles in T .

Theorem 3.8 (Galeana-Sánchez and Rojas-Monroy [12]). Let T be a finite m-

colored bipartite tournament. If every directed cycle of length 4 in T is monochro-

matic, then there is no γ-cycles in T .
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Theorem 3.9 (Galeana-Sánchez and Rojas-Monroy [13]). Let T be a finite 3-
colored tournament such that every directed cycle of length 3 is quasi-monochro-

matic, and for each v ∈ V (T ) we have |ξ(v)| ≤ 2, then there is no γ-cycles in T .

Theorem 3.10 (Galeana-Sánchez and Rojas-Monroy [15]). Let T be a finite m-

colored bipartite tournament such that, every C4 is quasi-monochromatic, every

T4 is quasi-monochromatic, and T has no induced subdigraph isomorphic to T̃8.

Then T has no γ-cycles.
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