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Abstract

A graph H is defined to be light in a graph family G if there exist finite
numbers ϕ(H,G) and w(H,G) such that each G ∈ G which contains H as a
subgraph, also contains its isomorphic copy K with ∆G(K) ≤ ϕ(H,G) and∑

x∈V (K) degG(x) ≤ w(H,G). In this paper, we investigate light graphs in
families of plane graphs of minimum degree 2 with prescribed girth and no
adjacent 2-vertices, specifying several necessary conditions for their lightness
and providing sharp bounds on ϕ and w for light K1,3 and C10.
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1. Introduction

Throughout this paper, we consider connected plane graphs without loops or
multiple edges. We use the standard graph terminology by [12]. By Ck and Sk

we denote a k-vertex cycle (also called k-cycle) and a k-star K1,k, respectively.
The facial walk of a face α is the shortest closed walk containing all edges incident
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with α. A k-vertex is a vertex of degree k, and a k+-vertex (k−-vertex) is a vertex
of degree at least (at most) k; similarly, a k-face (or k+-face) is a face having a
facial walk of length k (or at least k). A (k1, k2, . . . , kn)-path is an n-vertex path
consisting of k1-vertex, k2-vertex, . . . , kn-vertex (in this order from an endvertex).
The weight of a subgraph H in a graph G is the sum

∑
x∈V (H) degG(x).

The research of the structure of plane graphs has a long and fruitful history
tracking, in one direction, the use of the obtained knowledge in various graph
colourings (the most prominent example being the proof of the Four Colour The-
orem, see [1] or, more recently, [11]) and, in another direction, the interest coming
from pure theoretical motivation (originated, in systematic way, from the classi-
cal paper by Lebesgue [10]). Various known results of the latter approach (see,
for example [2, 9]) were subsequently described in a unified way by the following
formalization.

Let G be a family of graphs and let H be a connected graph contained, as
a subgraph, in infinitely many members of G. Let w(H,G) and ϕ(H,G) be the
smallest integers with the property that each graph G ∈ G which contains H as
a subgraph, contains also its isomorphic copy K such that

∑
x∈V (K) degG(x) ≤

w(H,G) and, for each vertex x ∈ V (K), degG(x) ≤ ϕ(H,G) holds; if such finite
integers do not exist (note that w(H,G) ≤ |V (H)| · ϕ(H,G) and ϕ(H,G) ≤
w(H,G) − δ(G) · (|V (H)| − 1) where δ(G) = min{δ(G) : G ∈ G}; thus, these
numbers are both finite or both infinite), we set ϕ(H,G) = w(H,G) := +∞ and
we say that H is heavy in G, and light in G otherwise.

The state of the art of results on light graphs in various families of plane
graphs is summarized in the survey article [8]. Most of them concern the families
of polyhedral graphs or plane graphs constrained by lower bound on the minimum
degree or minimum face size, which is usually assumed to be at least 3. Indeed, in
the family of 2-connected graphs (or, more generally, graphs of minimum degree
at least 2), no graph except K1 is light. This can be seen from the following
construction: given a plane connected graph H 6= K1 and a large positive integer
r, construct a plane graph G by taking |E(H)| copies of K2,r and, for each edge of
H, identify its endvertices with two ”big” vertices of a copy of K2,r (the original
edges of H are preserved); in G, every isomorphic copy of H contains a vertex of
degree at least r + 1. On the other hand, observe that the ”basic brick” for this
construction — the graph K2,r — has girth 4; this motivated further research of
the structure of plane graphs with higher girths in hope of obtaining some larger
light graphs. In particular, in [3], it was proved that each plane graph of girth at
least 7 contains a light edge of weight at most 5, which was further extended for
smaller girths in [4, 5] and [6] along with description of types of 3-vertex paths in
these graphs (which yields that P3 is light in the family of plane graphs of girth at
least 7). Note that the condition of sufficiently high girth itself is not sufficient for
the existence of light graphs other than paths, as can be seen by a modification of
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the above described construction where K2,r is replaced by a theta-graph formed
by identification of the endvertices of r disjoint long paths. However, this example
features adjacent 2-vertices, thus, one can hope that a combination of prescribed
girth with forbidding adjacency of 2-vertices would enforce the existence of non-
trivial light graphs in plane graphs. Hence, in the following, we will investigate
the structure of graphs from the family P•(g) of plane graphs of girth at least
g, with minimum degree at least 2 and without adjacent 2-vertices (note that
the latter condition implies, using the well-known fact that each plane graph of
minimum degree at least 2 and girth at least 5k+1 contains a k-path of 2-vertices,
that the girth of plane graphs with these restrictions is at most 10).

Our results are summarized in the following theorems.

Theorem 1. S3 is light in P•(g) if and only if g ≥ 7; in particular,

(i) ϕ(S3,P
•(7)) = 5;

(ii) ϕ(S3,P
•(g)) = 3 and w(S3,P

•(g)) = 10 for g ∈ {8, 9};

(iii) ϕ(S3,P
•(10)) = 3 and w(S3,P

•(10)) = 9.

Theorem 2. (i) Let g ≤ 10 and H be a connected plane graph of girth at least

g and maximum degree at least 4. Then H is heavy in P•(g).

(ii) For g ∈ {5, 6, 7, 8, 9} and k ≥ g, Ck is heavy in P•(g).

Theorem 3. For k ≥ 11, k 6= 28, Ck is heavy in P•(10) while C10 is light in

P•(10); in particular, ϕ(C10,P
•(10)) = 5 and w(C10,P

•(10)) = 27.

2. Proofs

Proof of Theorem 1. To show that g ≥ 7 is a necessary condition for the
lightness of S3 in P•(g) it suffices to consider the graph from the family P•(6)
presented in Figure 1 in which any 3-star contains a vertex of large degree. The
proof of sufficiency is divided into several cases.

Case (i). By contradiction. Assume that there exists a counterexample Ĝ

of girth at least 7 containing no 3-star with all vertices of degree at most 5 (in
this proof called light 3-star). Now, in Ĝ, subdivide each edge uv of Ĝ where
u, v are vertices of degree 3, 4 or 5. It is easy to see that the resulting plane
graph G = (V,E, F ) is also a counterexample (note that, in G, no two vertices
of degrees 3, 4 or 5 are adjacent).

Euler’s formula |V | − |E|+ |F | = 2 applied to G yields

−14|V |+ 10|E|+ 4|E| − 14|F | = −28,(1)
∑

v∈V
(5 deg(v)− 14) +

∑
f∈F

(2 deg(f)− 14) = −28.(2)
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Figure 1. The graph of P•(6) with no light 3-star.

Define the initial charge c : V ∪ F → Z of vertices and faces of G in the
following way:

c(v) := 5 deg(v)− 14 for every v ∈ V, c(f) := 2 deg(f)− 14 for every f ∈ F .

According to (2), the total sum of all initial charges is negative. We will
redistribute these charges according to specific discharging rules in a way that
the sum of the charges always remains the same; then, we show that, after the
completion of discharging process, the final charge c∗ of all elements of V ∪ F is
non-negative, which is a contradiction with (2).

The discharging rules are the following:

R1: If v is a 2-vertex and

(a) v is incident with two 3-vertices or two 4+-vertices, then v sends the charge
−2 to both its neighbours,

(b) v is incident with a 3-vertex x and a 4+-vertex y, then v sends the charge
−5

3 to x and the charge −7
3 to y.

R2: Each 6+-vertex sends 8
3 to every adjacent 3-vertex.

R3: If f is an 8+-face incident with p ≥ 1 vertices of degree 3, then f sends
2 deg(f)−14

p
to each of them.

A 7-face f is called bad if its facial walk contains, as a subpath, a (3, 2, 3, 2, 3)-
path; the central 3-vertex of this subpath will be called bad vertex of f .

R4: (a) Each 6+-vertex sends 1
3 to every incident bad face.

(b) Each bad vertex of face f sends −1
3 to face f .

Now we show that the final charge c∗ of every element of V ∪ F is non-
negative. The initial charge of each 7-face α is 0 and, after applying Rule R4, its
final charge is 0 or 1

3 (either α is a bad face — then at least one vertex incident
with α is a 6+vertex because in G there are no adjacent 3-, 4- and 5-vertices; or
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c∗(α) = c(α)). Similarly, for an 8+-face f incident with p vertices of degree 3, its

final charge is 2 deg(f) − 14 − p · 2 deg(f)−14
p

= 0 if p ≥ 1 or 2 deg(f) − 14 > 0 if
p = 0.

To analyze the final charge of vertices of G, we consider several cases.

1. deg(v) = 2. The initial charge of v is −4 and, according to Rule R1, c∗(v) = 0.

2. deg(v) = 3. As every copy of S3 in G contains a 6+-vertex, v is adjacent to
at least one 6+-vertex. If we apply Rule R1(a) to v at most once, then c∗(v) ≥
1− 2− 5

3 + 8
3 = 0 according to Rules R1 and R2 (and possibly to R3). Suppose

that the Rule R1(a) is applied to v twice. If v is incident with an 8+-face then,
according to Rules R1(a), R2, R3 and the fact that 3-vertices are not adjacent in
G (hence every k-face is incident with at most ⌊k2⌋ 3-vertices), it holds c∗(v) ≥
1−2 ·2+ 8

3 +
2·8−14

4 > 0. If v is incident only with 7-faces, then the Rule R4(b) is
applied (at least once) to v and its final charge is at least 1−2 ·2+ 8

3 − (−1
3) = 0.

3. 4 ≤ deg(v) ≤ 5. Then v is adjacent to at most two 2-vertices (otherwise G

would contain a 3-star with all vertices of degree at most 5), so, according to
Rule R1, c∗(v) ≥ 5 deg(v)− 14− 2 · 7

3 = 5deg(v)− 56
3 > 0.

4. deg(v) ≥ 6. Let t denote the number of 2-vertices adjacent to v, s denote the
number of 6+-vertices adjacent to v and b the number of bad faces incident with
v. It is easy to check that an edge incident with a 2-vertex and a 6+-vertex can
be incident with at most one bad face, so b ≤ t + 2s. Now using Rules R1, R2
and R4(a), we get

c∗(v) ≥ 5 deg(v)− 14− 7
3 t−

8
3(deg(v)− t− s)− 1

3b =
7
3 deg(v)+

1
3 t+

8
3s−

1
3b− 14

≥ 7
3 deg(v) +

1
3 t+

8
3s−

1
3(t+ 2s)− 14 = 7

3 deg(v) + 2s− 14 ≥ 0.

Hence, all elements of G have non-negative final charges, which completes the
proof.

In the plane graph from the family P•(7) presented in Figure 2, each 3-star
contains a 5-vertex, which proves that the upper bound 5 on ϕ(S3,P

•(7)) is best
possible.

Case (ii). By contradiction. Let G = (V,E, F ) be a counterexample of girth
at least 8 such that the central vertex of every 3-star in G is adjacent with a
4+-vertex or at least two 3-vertices. Again, Euler’s formula |V | − |E| + |F | = 2
applied to G yields

−8|V |+ 6|E|+ 2|E| − 8|F | = −16,(3)
∑

v∈V
(3 deg(v)− 8) +

∑
f∈F

(deg(f)− 8) = −16.(4)

Define the initial charge c : V ∪ F → Z of vertices and faces of G in the
following way:
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Figure 2. The graph of P•(7) whose all 3-stars have a 5-vertex.

c(v) := 3 deg(v)− 8 for every v ∈ V, c(f) := deg(f)− 8 for every f ∈ F .

We redistribute the charges according to the following discharging rules:

R1: Each 2-vertex sends −1 to both its neighbours.

R2: Each 4+-vertex sends 1 to every adjacent 3-vertex.

Now we show that the final charge c∗ of every element of G is non-negative,
which will lead to a contradiction with (4). As the girth of G is at least 8, the
final charge of every face is non-negative. To analyze the final charge of vertices
of G, we consider several cases.

1. deg(v) = 2. Then, according to Rule R1, c∗(v) = 0.

2. deg(v) = 3. If v is adjacent to a 4+-vertex, then c∗(v) ≥ 1 − 2 · 1 + 1 = 0.
Otherwise, v is adjacent to at least two 3-vertices, thus Rule R1 applies at most
once and c∗(v) ≥ 1− 1 = 0.

3. deg(v) ≥ 4. Then, according to Rules R1 and R2, it holds c∗(v) ≥ 3 deg(v)−
8− deg(v) ≥ 2 deg(v)− 8 ≥ 0.

In the plane graph from the family P•(9) presented in Figure 3, each 3-star



Light Graphs in Planar Graphs of Large Girth 233

contains a 3-vertex (see thick edges), which proves that the upper bounds 3 and
10 on ϕ(S3,P

•(g)) and w(S3,P
•(g)) are best possible.

Figure 3. The graph of P•(9) whose all 3-stars have a 3-vertex and weight 10.

Case (iii). By contradiction. Let G = (V,E, F ) be a counterexample of girth
10 such that the central vertex of every 3-star in G is incident with at least one
3-vertex. Again, Euler’s formula |V | − |E|+ |F | = 2 applied to G yields

−10|V |+ 8|E|+ 2|E| − 10|F | = −20,(5)
∑

v∈V
(4 deg(v)− 10) +

∑
f∈F

(deg(f)− 10) = −20.(6)

Define the initial charge c : V ∪ F → Z of vertices and faces of G in the
following way:

c(v) := 4 deg(v)− 10 for every v ∈ V, c(f) := deg(f)− 10 for every f ∈ F .

We redistribute the charges (keeping their total sum) according to the following
discharging rule:

R: Each 2-vertex sends −1 to both its neighbours.

Now we show that the final charge c∗ of every element of G is non-negative,
which will lead to a contradiction with (6). As the girth of G is 10, the final
charge of every face is non-negative. To analyze the final charge of vertices of G,
we consider several cases.
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1. deg(v) = 2. Then, according to Rule R, c∗(v) = 0.

2. deg(v) = 3. From the assumption of theorem, v is adjacent to at least one
3-vertex, thus Rule R applies at most twice and c∗(v) ≥ 2− 2 = 0.

3. deg(v) ≥ 4. Then, according to Rule R, it holds c∗(v) ≥ 4 deg(v) − 10 −
deg(v) ≥ 3 deg(v)− 10 > 0.

In the plane graph of girth 10 obtained from the dodecahedron graph by
subdividing each its edge by a 2-vertex, each 3-vertex has only neighbours of
degree 2, which proves the optimality of the weight 9.

Proof of Theorem 2. The particular proofs for a graph H with ∆(H) ≥ 4 or
for a cycle Ck follow the same general strategy: given a large integer n, we first
construct a graph Hn from the particular family P•(g) such that Hn contains an
n-vertex and the subgraph of Hn induced by vertices of degree less than n does
not contain an isomorphic copy of H (or Ck). Next, we take two disjoint copies

H
(1)
n , H

(2)
n of Hn drawn in the plane in such a way that, for i ∈ {1, 2}, the facial

walk of the outerface βi of H
(i)
n contains an n-vertex ui; let vi be a vertex on the

facial walk of βi which is most distant from ui (that is, the shortest (ui, vi)-path
which is a part of the facial walk of βi has the maximum possible length). Then,
we add a new edge v1v2 thereby obtaining the plane graph Dn ∈ P•(g) containing
two n-vertices in its outerface such that their distance is at least g−1 (note that,
in each particular proof, Hn is designed in such a way that the subgraph of Dn

induced by vertices of degree less than n still does not contain an isomorphic
copy of H, resp. Ck as well).

To complete the proof, we take the plane drawing of H (or Ck) and transform
it to a plane graph Gn in such a way that, for each edge xy of H, resp. Ck, we
identify the vertices x and y with two n-vertices from the outerface of a copy of
Dn (we preserve edge xy). Due to the above mentioned properties of Hn and
Dn, we obtain that Gn ∈ P•(g) and contains H (or Ck) as a subgraph, but each
isomorphic copy of H, resp. Ck, in Gn must contain an n+-vertex, which proves
that H and Ck are not light in P•(g).

(i) The graph Hn is constructed in the following way: take two 3n-cycles C1 =
a1b1c1a2b2c2 · · · anbncn, C2 = p1q1r1p2q2r2 · · · pnqnrn and two new vertices x, y;
for each i = 1, . . . , n, add new edges bipi, ciri, xai, yqi. This can be done in such a
way that the obtained graph H ′

n is plane (note that H ′

n is cubic and has girth 5).
Then Hn is obtained from H ′

n by subdividing each edge with a new 2-vertex (see
Figure 4).

(ii) Suppose first that g ∈ {5, 6, 7, 8} and k ≥ g. Then the graphHn is constructed
from the dual graph of an n-antiprism (that is, the plane quadrangulation consist-
ing of two nonadjacent n-vertices and 2n 3-vertices) by subdividing each its edge
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Figure 4. The graph Hn for H with ∆(H) ≥ 4.

with a new 2-vertex. Observe that the subgraph of Hn induced by its 3−-vertices
contains a single cycle of length 4n.

Now, let g = 9; we distinguish several cases.

(a) For k ≥ 26 or k ∈ {10, 11, 12, 13, 22, 23}, Hn is the graph presented in
Figure 5; observe that the subgraph of Hn induced by 3−-vertices is essentially
(not regarding its pendant vertices) formed by interconnecting many copies of
the same graph on 31 vertices, and that this graph contains neither cycles of
length 10, 11, 12, 13, 22, 23, 26 – 31 (which can be checked by hand or, with less
effort, by Wolfram Mathematica computer algebra system using the procedure
FindCycle[]) nor any other cycles of length at least 26 provided n is much larger
than k.

(b) For k ∈ {9, 14, 15, 17, 18, 19, 20, 21, 24, 25}, Hn is the same as in the proof of
(i); it is easy to check that the subgraph of Hn induced on 3−-vertices contains
only cycles of lengths 10 + 6ℓ, ℓ ≥ 0, or at least n.

(c) Finally, for k = 16, Hn is the graph presented in Figure 6; again, the specific
sizes of its faces formed by 3−-vertices and the way they are adjacent yields that
Hn itself contains no 16-cycle which passes only through 3−-vertices.

Proof of Theorem 3. Let G ∈ P•(10). Consider the graph G′ obtained from G

by contracting all its 2-vertices. Then G′ is a simple plane graph with δ(G′) = 3
and g(G′) = 5. By the dual version of Lebesgue theorem, we obtain that G′

contains a 5-cycle C incident with four 3-vertices and a 5−-vertex. As g(G) = 10,
this implies that the cycle of G which was transformed to C in G′ is a 10-cycle
consisting of five 2-vertices, four 3-vertices and a 5−vertex, which proves the
claim.
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Figure 5. The graph Hn for g = 9 and k ≥ 26 or k ∈ {10, 11, 12, 13, 22, 23}.

Figure 6. The graph Hn for g = 9 and k = 16.

To show that both the bounds 5 and 27 are best possible, consider the dual of
the snub dodecahedron graph and subdivide each edge with a 2-vertex; this plane
graph has girth 10 and every its 10-cycle contains a 5-vertex, and has weight 27.

By using the construction described in the proof of Theorem 2 with H being
an odd cycle of length at least 11 and Hn being the graph presented in Figure 4,
we obtain that no odd cycle is light in P•(10). Now, let n and k ≥ 6, k 6= 14 be
positive integers. As Ck is not light in a family of plane graphs with minimum
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vertex degree 3 and girth 5 (see [7]), there exists a plane graph G′

n with δ(G′

n) =
3, g(G′

n) = 5 such that every its k-cycle contains a vertex of degree at least n.
Let Gn be a graph obtained from G′

n by subdividing every its edge with a new
2-vertex. Thus G ∈ P•(10) and every 2k-cycle in Gn contains a vertex of degree
at least n, which gives that C2k is heavy in P•(10).

Let us note that it is not known whether C14 is light or heavy in the family of
plane graphs with minimum vertex degree 3 and girth 5. If C14 is heavy in that
family, then C28 is also heavy in P•(10). However, if C14 is light in the family of
plane graphs with minimum vertex degree 3 and girth 5 then we cannot conclude
that C28 is light in P•(10).
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