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Abstract

A unique-maximum k-coloring with respect to faces of a plane graph G

is a coloring with colors 1, . . . , k so that, for each face α of G, the maximum
color occurs exactly once on the vertices of α. We prove that any plane
graph is unique-maximum 3-colorable and has a proper unique-maximum
coloring with 6 colors.
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1. Introduction

Graphs considered in this paper are simple, finite, and undirected. We use the no-
tation and terminology of Bondy and Murty [1]. A k-(vertex -)coloring of a graph
G is a mapping ϕ : V (G) → {1, . . . , k}. A coloring ϕ of G is proper if, for any
two adjacent vertices x and y, ϕ(x) 6= ϕ(y) holds. A hypergraph H = (V, E) is a
generalization of a graph, its (hyper-)edges are subsets of V of arbitrary (positive)
size. A (vertex) coloring of hypergraphs can be defined in many ways, so that
restricting the definition to simple graphs coincides with proper graph coloring.

1This work was supported by the Slovak Science and Technology Assistance Agency under
the contract No. APVV-0023-10, by Grant VEGA 1/0652/12, and by the Agency of the Slovak
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1.1. Conflict-free coloring

A coloring of a hypergraph H is conflict-free (CF ) if, for every edge e ∈ E(H),
there is a color that occurs exactly once on the vertices of e. The CF chromatic

number of H is the minimum k for which H has a CF k-coloring. The CF
coloring of hypergraphs was introduced (in a geometric setting) by Even et al.

[8] in connection with frequency assignment problems for cellular networks. For
simple graphs, Cheilaris [3] studied the CF coloring with respect to neighborhoods,
i.e., the coloring in which, for every vertex x, there is a color that occurs exactly
once in the neighborhood N(x) or in the closed neighborhood N [x] = N(x)∪{x},
respectively, and proved the upper bound 2

√
n for the CF chromatic number with

respect to neighborhoods of a graph of order n. For closed neighbourhood, this
bound was improved by Pach and Tardos [14] to O(log2+ε n), for any ε > 0.
Cheilaris and Tóth [6] and Cheilaris, Pecker, and Zachos [5] studied the CF

coloring of a graph G with respect to paths, i.e., the coloring in which, for every
path P of G, there is a color that occurs exactly once on the vertices of P .
Note that the mentioned CF colorings of graphs are special cases of CF coloring
of hypergraphs. For more results on CF coloring see, e.g., [6, 10, 12] and for
another applications of CF coloring see [16].

1.2. Unique-maximum coloring

A coloring of a hypergraph H is unique-maximum (UM ) if, for every edge e ∈
E(H), the maximum color on the vertices of e is unique. The UM chromatic

number of H is the minimum k for which H has a UM k-coloring. UM coloring
of hypergraphs and its relation to CF coloring was investigated by Cheilaris,
Keszegh, and Pálvölgyi [4]. For simple graphs, the UM coloring with respect to

paths requires that the maximum color on the vertices of any path is unique
and it is alternatively known as ordered coloring or vertex ranking, in which for
every path with equally colored end-vertices there is an internal vertex with higher
color. Katchalski, McCuaig, and Seager [11] found the upper bound 3(

√
6+2)

√
n

for UM chromatic number with respect to paths of plane graph of order n. For
more results on UM coloring see, e.g., [5, 6].

1.3. Weak-parity coloring

A coloring of a hypergraph H is weak-parity (WP) if, for every edge e ∈ E(H),
there is a color c with the odd number of vertices of e colored c. The WP

chromatic number of H is the minimum k for which H has a WP k-coloring. The
WP coloring of hypergraphs was introduced (under the notion odd coloring) by
Cheilaris, Keszegh, and Pálvölgyi [4] as a generalization of the WP coloring of
graphs with respect to paths defined originally by Bunde et al. [2].
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2. Colorings of Plane Graphs with Respect to Faces

Let G be a plane graph with the face set F (G). For a face α ∈ F (G), V (α)
denotes the set of vertices incident with α. The face-hypergraph H(G) of G is
the hypergraph with the vertex set V (G) and the edge set {V (α) : α ∈ F (G)},
i.e., every face of G corresponds to an edge of H(G) consisting of the vertices
incident with this face. Kündgen and Ramamurthi [13] and Ramamurthi and
West [15] considered a coloring of face-hypergraphs as the corresponding face-
constrained coloring of plane graphs. Motivated by these papers, we can define
the following colorings of plane graphs with respect to faces as special cases of
mentioned colorings for hypergraphs.

• A WP k-coloring of G is a colouring such that, for every face α ∈ F (G),
there is a color c with the odd number of vertices of α colored c. The
minimum k for which G has a (proper) WP k-coloring is denoted by χwp(G)
(χpwp(G)).

• A CF k-coloring of G is a coloring such that, for each face α ∈ F (G), there
is a color that occurs exactly once on the vertices of α. The minimum k for
which G has a (proper) CF k-coloring is denoted by χcf(G) (χpcf(G)).

• A UM k-coloring of G is a coloring such that, for each face α of G, the
maximum color (of α) occurs exactly once on the vertices of α. The min-
imum k for which G has a (proper) UM k-coloring is denoted by χum(G)
(χpum(G)).

A graph G is WP (CF, UM ) k-colorable if there is a WP (CF, UM) k-coloring
of G.

A simple relation between the chromatic numbers we have defined is the
following

Proposition 1. If G is a plane graph, then

(1) χwp(G) ≤ χcf(G) ≤ χum(G),

(2) χ(G) ≤ χpwp(G) ≤ χpcf(G) ≤ χpum(G).

Czap and Jendrol’ proved the following upper bound on WP chromatic num-
ber

Theorem 2 [7]. If G is a connected plane graph, then χwp(G) ≤ 4.

and conjectured that this upper bound can be improved.

Conjecture 3 [7]. If G is a connected plane graph, then χwp(G) ≤ 3.
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Moreover, they proved this conjecture for 2-connected cubic plane graphs. For
the proper WP (CF) coloring, the tight upper bounds are known.

Theorem 4 [7]. If G is a 2-connected plane graph, then χpcf(G) ≤ 4; moreover,

the bound 4 is tight.

Corollary 5 [7]. If G is a 2-connected plane graph, then χpwp(G) ≤ 4; moreover,

the bound 4 is tight.

For results on corresponding (WP, CF, UM) chromatic indices we refer to
[9]. For a better overview, in the next theorem and in the following lemma we
use the colors black = 1, blue = 2, and red = 3. We prove Conjecture 3 in the
following stronger form:

Theorem 6. Every plane graph has a 3-coloring with colors black, blue and red

such that

(1) each face is incident with at most one red vertex, and

(2) each face that is not incident with a red vertex is incident with exactly one

blue vertex.

Note that the roles of colors red and blue in this theorem are slightly assy-
metric. While the number of red vertices incident with a face is bounded by one,
the theorem gives no bound for the number of blue vertices incident with a face
(incident with a red vertex). Indeed, for n ≥ 5, the n-prism (i.e., the cartesian
product Cn�K2) shows that the number of blue vertices incident with a face has
to be unbounded. There are at most two red vertices in total because each vertex
is incident with one of the two n-gons. Since each vertex is incident with only two
quadrangles and each quadrangle is incident with at least one red or blue vertex,
there are at least n

2
blue or red vertices in the considered coloring. Consequently,

at least one of the n-gons is incident with at least n

4
− 1 blue vertices.

To prepare the proof of this theorem, we provide the following lemma:

Lemma 7. Let G be a plane graph, let xy ∈ E(G) be a selected edge of G

incident with the outer face, and let c ∈ {black, blue}. There is a 3-coloring of G

with colors black, blue, and red such that

(1) vertex x has color c,

(2) vertex y is black,

(3) each edge is incident with at most one blue vertex,

(4) no vertex incident with the outer face is red,

(5) each inner face is incident with at most one red vertex, and

(6) each inner face that is not incident with a red vertex is incident with exactly

one blue vertex.
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The proof of Theorem 6 using Lemma 7 is as follows.

Proof of Theorem 6. Let G be a plane graph. Choose a vertex z ∈ V (G)
incident with the outer face and color it red. If G − z is edgeless, then G is
a forest (i.e., it has only one face) and we can color all other vertices black.
Otherwise, choose an edge xy of the outer face of G− z, color x and y black, and
apply Lemma 7 on G− z (with the selected edge xy and the color c = black) to
obtain colors of the remaining vertices. Any face α of G is either an inner face of
G− z and thus colored correctly by Lemma 7, or is incident with the red vertex
z. Since the vertices of the outer face of G− z are colored black or blue, there is
no other red vertex on α.

Proof of Lemma 7. The proof is by induction on the number of vertices. Let
G be a plane graph, let xy ∈ E(G) be a selected edge of G incident with the
outer face ω, and let c ∈ {blue, black}.

Case 1. If ω is the only face of G (i.e., if G is a forest), the precoloring of x
and y can be extended to the required coloring of G by coloring all other vertices
black.

Case 2. If G is disconnected, denote G1 the component of G containing xy

and let G2 = G −G1. We apply the induction hypothesis to color G1 (with the
selected edge xy and the selected color c). For an arbitrary edge x2y2 ∈ E(G2)
incident with the outer face of G2 (and thus incident with ω as well) we color
the graph G2 (with the selected edge x2y2 and the color c2 = black) by induction
hypothesis, or we simply color all vertices of G2 black, if G2 is edgeless.

Hence, we may assume that G is connected and has at least two faces (i.e., G
has a cycle and therefore it has at least three vertices and at least three edges).

Case 3. Let U 6= ∅ be the set of vertices incident with no inner face of G

(note that, for u ∈ U , every edge incident with u is a bridge of G).

Case 3.1. If there exists u ∈ U \ {x, y}, we apply induction hypothesis to
color G− u and finally we color u black.

Case 3.2. If x ∈ U and x is a pendant vertex of G (i.e a vertex of degree one)
then y has degree at least 2. Let x′ be a neighbor of y on ω which is different
from x. Now we color G−x (with the selected edge x′y and the color c′ = black)
by the induction hypothesis. Together with the vertex x colored by c we have a
required coloring. (We proceed analogously if y ∈ U is pendant.)

In the next two cases, let both x and y have degree at least 2.

Case 3.3. If y ∈ U then we apply the induction hypothesis to color G − y

(with a selected edge xy′ incident with the outer face of G − y and the color c)
and finally we color y black.
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Case 3.4. For U = {x}, let y1, . . . , yk be the neighbors of x in G (note
that y is one of them). Clearly, all these neighbors have degree at least 2. For
i ∈ {1, . . . , k}, let Gi be the component of G − x containing yi, let yixi be an
edge of Gi incident with the outer face of Gi (and thus incident with ω as well),
and let ci = black. We apply the induction hypothesis to every graph Gi (with
the selected edge xiyi and the color ci) and, together with the vertex x colored
by c, we obtain a required coloring.

Hence, we may assume that each vertex of G is incident with an inner face
of G.

Case 4. Let B = G[V (ω)] be the graph induced by the vertices incident with
the outer face ω in G.

Case 4.1. If B contains a cut-vertex x2, then we split the graph G on x2
into two subgraphs G1 and G2 so that xy ∈ E(G1). More formally, let M be
the component of G − x2 containing x or y (note that either x and y belong to
the same component of G − x2 or x2 ∈ {x, y}), let G2 = G[V (G) \ V (M)], and
let G1 = G[V (M) ∪ {x2}]. Moreover, let y2 be a neighbor of x2 on the outerface
of G2. There is a required 3-coloring ϕ1 of G1 (with the selected edge xy and
the color c) and a required 3-coloring of G2 (with the selected edge x2y2 and the
color c2 = ϕ1(x2) ∈ {black, blue}, as x2 is incident with the outer face of G1),
both by induction hypothesis.

Case 4.2. If B contains an inner edge x2y2 (i.e., an edge not incident with
ω—in this case, {x2, y2} is a 2-vertex-cut of G), then we split the graph G on
x2y2 into two subgraphs G1 and G2 so that xy ∈ E(G1). More formally, let M

be the component of G − x2 − y2 containing x or y, let G2 = G[V (G) \ V (M)],
and let G1 = G[V (M) ∪ {x2, y2}]. There is a required 3-coloring ϕ1 of G1 (with
the selected edge xy and the color c) and thereafter a required 3-coloring of G2

(with the selected edge x2y2 and the color c2 = black, if ϕ1(x2) = ϕ1(y2) = black,
or c2 = blue, if ϕ1(x2) = blue or ϕ1(y2) = blue, respectively), both by induction
hypothesis.

Hence, we may assume that B is a cycle and y has a neighbor v on B that is
different from x.

Case 4.3. If G = B then we color vertex x by c, vertex v black or blue, but
different from x, and all other vertices (inclusively y) black.

Case 4.4. If G 6= B, let α be the inner face of G incident with yv. Because
G[V (α)] 6= B, α has a vertex u 6∈ V (B) (i.e., not incident with ω). We apply
induction hypothesis (with the selected edge xy and the color c) on G − u \ yv

obtained from G by deleting the vertex u and the edge yv and finally we color
u red to obtain a required coloring. The vertices of the outer face of G − u \ yv
are exactly the vertices incident with ω (in G) together with the vertices incident
with the faces containing vertex u (in G). Obviously, none of them is colored red
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and therefore ω is incident with no red vertex. Any inner face of G is either an
inner face of G − u \ yv and thus colored correctly by induction hypothesis, or
it is incident with the red vertex u (which is its unique red vertex). Moreover,
there is no edge in G incident with two blue vertices. Namely, every edge of G is
either an edge of G− u \ yv and thus colored correctly by induction hypothesis,
or it is incident with the red vertex u, or it is the edge yv, where y is black.

With the fact that, for odd n, the n-prism is not WP 2-colorable (because for
any WP 2-coloring it holds: from the pair of opposite edges of every quadrangle,
one edge is monochromatic and the other one is bichromatic—a contradiction,
see [7]), the following theorem is a direct consequence of Theorem 6.

Theorem 8. If G is a plane graph, then χwp(G) ≤ χcf(G) ≤ χum(G) ≤ 3;
moreover, the bound 3 is tight for all three chromatic numbers.

With the help of the Four Color Theorem, we use Theorem 6 to prove the
following upper bound on proper UM coloring.

Theorem 9. If G is a plane graph, then χpum(G) ≤ 6.

Proof. Let ϕ′ be a UM 3-coloring of G with colors black = 1, blue = 5, and
red = 6, and let ϕ′′ be a proper 4-coloring of G with colors 1, 2, 3, 4. The
coloring ϕ defined by ϕ(x) = max{ϕ′(x), ϕ′′(x)}, for x ∈ V (G), is a proper UM
6-coloring of G.

We believe that the following strengthening of the Four Color Theorem holds.

Conjecture 10. If G is a plane graph, then χpum(G) ≤ 4.
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[6] P. Cheilaris and G. Tóth, Graph unique-maximum and conflict-free colouring , J.
Discrete Algorithms 9 (2011) 241–251.
doi:10.1016/j.jda.2011.03.005

http://dx.doi.org/10.1137/120880471
http://dx.doi.org/10.1016/j.jda.2011.03.005


102 I. Fabrici and F. Göring
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