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Abstract

A graph G = (V,E) is called 1-planar if it admits a drawing in the
plane such that each edge is crossed at most once. In this paper, we study
bipartite 1-planar graphs with prescribed numbers of vertices in partite sets.
Bipartite 1-planar graphs are known to have at most 3n− 8 edges, where n
denotes the order of a graph. We show that maximal-size bipartite 1-planar
graphs which are almost balanced have not significantly fewer edges than
indicated by this upper bound, while the same is not true for unbalanced
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ones. We prove that the maximal possible size of bipartite 1-planar graphs
whose one partite set is much smaller than the other one tends towards 2n
rather than 3n. In particular, we prove that if the size of the smaller partite
set is sublinear in n, then |E| = (2 + o(1))n, while the same is not true
otherwise.
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1. Introduction

One of the general questions in extremal graph theory can be formulated in the
following way: Given a family G of graphs, what is the maximum number of edges
of an n-vertex graph G ∈ G? One of the fundamental results in this area is the
theorem of Turán, which states that if G is the family of k-clique-free graphs, then
the maximum number of edges of an n-vertex graph G ∈ G is at most (k−2)n2

2(k−1) .
Turán’s theorem was rediscovered many times and has many corollaries. For
k = 3 we obtain Mantel’s theorem: the maximum number of edges of an n-vertex
bipartite graph is at most n2

4 .
By prescribing the family G we can study different classes of graphs. If G

is a family of planar graphs, then from the Euler’s formula we obtain that any
n-vertex planar graph (n ≥ 3) contains at most 3n − 6 edges. More strongly,
any n-vertex planar graph can be extended to an n-vertex planar graph with
3n− 6 edges. Similar proposition holds for bipartite planar graphs: any n-vertex
bipartite planar graph (n ≥ 3) contains at most 2n − 4 edges, moreover, every
n-vertex bipartite planar graph can be extended to an n-vertex bipartite planar
graph with 2n− 4 edges.
If a graph is not planar, then each of its drawing in the plane contains some

crossings of its edges. If a graph G can be drawn in the plane so that each of
its edges is crossed by at most one other edge, then it is 1-planar. It is known
[5, 7, 8] that any n-vertex 1-planar graph (n ≥ 3) has at most 4n− 8 edges, but
not every n-vertex 1-planar graph can be extended to an n-vertex 1-planar graph
with 4n− 8 edges, see [1].
In this paper we deal with the family of bipartite 1-planar graphs. We con-

sider the problem of finding a bipartite 1-planar graph with given sizes of partite
sets which has the largest number of edges among all such graphs. It is known [6]
that any n-vertex bipartite 1-planar graph has at most 3n−8 edges for even n 6= 6
and at most 3n− 9 edges for odd n and for n = 6. At the end of Section 4 (and
in Lemma 6) we give a construction confirming that this upper bound is sharp.
The maximal possible number of edges in such a graph keeps also relatively close
to 3n when the cardinalities of its partite sets are almost equal (see Lemma 6).



On an Extremal Problem in the Class of . . . 143

On the other hand we notice that as graphs investigated get more unbalanced
(i.e., one partite set becomes much smaller than the other) then this value drops
(see Corollary 2) and tends towards the double of the order. Investigating this
process more thoroughly, due to Corollary 2 and Lemma 4 we are in fact able
to precisely describe for what proportions of the sizes of the partite sets we may
observe this phenomenon, see comments in the concluding section.
Our results also partially answer the question of Sopena [9]: How many edges

we have to remove from the complete bipartite graph with given sizes of the
partite sets to obtain a 1-planar graph? Observe that this question is equivalent
to our problem.

2. Notation

In this paper we consider simple graphs. We use the standard graph theory
terminology of [4]. We use V (G) and E(G) to denote the vertex set and the edge
set of a graph G, respectively. The degree of a vertex v is denoted by deg(v).
A vertex of degree k is called a k-vertex. Similarly, a face (of a plane graph) of
size k is called a k-face.
We will use the following notation introduced in [5]. Let G be a 1-planar

graph and let D = D(G) be a 1-planar drawing of G (that is, a drawing of G in
the plane in which every edge is crossed at most once; we will also assume that
no edge is self-crossing and adjacent edges do not cross). Given two non-adjacent
edges pq, rs ∈ E(G), the crossing of pq, rs is the common point of two arcs

⌢
pq,

⌢
rs ∈ D (corresponding to edges pq, rs). Denote by C = C(D) the set of all
crossings in D and by E0 the set of all non-crossed edges in D. The associated
plane graph D× = D×(G) of D is the plane graph such that V (D×) = V (D)∪C
and E(D×) = E0 ∪ {xz, yz|xy ∈ E(D) − E0, z ∈ C, z ∈ xy}. Thus, in D×,
the crossings of D become new vertices of degree 4; we call these vertices false.
Vertices of D× which are also vertices of D are called true. Similarly, the edges
and faces of D× are called false, if they are incident with a false vertex, and true
otherwise.
Note that a 1-planar graph may have different 1-planar drawings, which lead

to non-isomorphic associated plane graphs.

3. Unbalanced Bipartite 1-Planar Graphs

Let G be a bipartite 1-planar graph such that the partite sets of G have sizes x
and y. If x = y, then G is called balanced. In this part of the paper we show that
if x is small compared to y, then the maximal number of edges in a corresponding
bipartite 1-planar graph G shall tend towards 2|V (G)| rather than staying close
to 3|V (G)|.
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3.1. An upper bound for the number of edges

The following assertion improves the result of [2] (stating that any 1-planar draw-
ing of an n-vertex 1-planar graph has at most n − 2 crossings) when x is small
compared to y.

Lemma 1. Let G be a bipartite 1-planar graph such that the partite sets of G
have sizes x and y, 2 ≤ x ≤ y. Then G has a 1-planar drawing with at most
6x− 12 crossings.

Proof. Color the vertices of G in the smaller partite set with black and the
rest of the vertices with white. Among all possible 1-planar drawings of G, we
denote by D a drawing that has the minimum number of crossings and by D×

its associated plane graph. Color the false vertices with red.
Now we extend D× in the following way. Let v be a false vertex incident

with black vertices v1 and v2. We draw a new noncrossing edge v1v2 as shown in
Figure 1.

v1

v

v2

→

v1

v

v2

Figure 1. The extension of D×.

For every false vertex v we draw a new edge v1v2 as described. Note that the
new drawing might contain parallel edges. Denote the new (multi)graph by H.
Let H ′ be a subgraph of H (with the same embedding) induced by the black

and red vertices. First we show that if the (multi)graph H ′ has a separating
2-cycle (i.e., a 2-cycle whose interior and exterior contain a vertex), then its
interior and also exterior contain at least one black vertex each. To see that,
assume, for a contradiction, that H ′ contains a separating 2-cycle which has only
red vertices in the interior. This 2-cycle is a separating cycle also in H since it
consists of two edges which join black vertices. The red vertices correspond to
crossings, therefore there are some white vertices in the interior of this separating
2-cycle in H. No black vertex is in the interior of this cycle, hence all edges which
join white vertices from this interior with black vertices could have been drawn
without edge crossing, contrary to the minimality of the number of crossings in
the considered 1-planar drawing D.
If for every 2-cycle of H ′ with an empty interior or exterior we remove one

edge of the 2-cycle incident with it, then we obtain the graph H ′′. We say that
an edge of H ′′ is black if both its endvertices are black. Observe that every red
vertex is incident with a 3-face in H ′′ (similarly as in H ′). Moreover, every such
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3-face is incident with one black edge. Therefore, the number of red vertices in
H ′′ is at most the double number of black edges in H ′′.
Now consider the subgraph of H ′′ induced by the black vertices. This (multi)

graph can be extended to a triangulation by inserting new additional edges (with-
out inserting new vertices) because even if it contains a 2-cycle, then its interior
and exterior contain a vertex. This triangulation has at most 3x − 6 edges (be-
cause it has x vertices). From this it follows that the graph H ′′ has at most
2(3x − 6) red vertices. Consequently, the number of crossings in D is at most
6x− 12.

Corollary 2. If G is a bipartite 1-planar graph such that the partite sets of G
have sizes x and y, 2 ≤ x ≤ y, then |E(G)| ≤ 2|V (G)|+ 6x− 16.

Proof. Lemma 1 implies that by removing at most 6x − 12 edges from G we
can get a planar graph. This planar graph is also bipartite. Thus, it has at
most 2|V (G)| − 4 edges. Consequently, the number of edges of G is at most
2|V (G)|+ 6x− 16.

Note that the bound in Corollary 2 is tight for x = 2 (in this case G is
a bipartite planar graph). For x = 3 we can obtain a tight upper bound by
a different approach.

Lemma 3. If G is a bipartite 1-planar graph such that the partite sets of G have
sizes 3 and y ≥ 3, then |E(G)| ≤ 2|V (G)|. Moreover, this bound is tight.

Proof. Let V1 and V2 be the partite sets of G, where |V1| = 3. In [3] it is proved
that the complete bipartite graph K3,7 is not 1-planar. Therefore, there are at
most six vertices of degree three in V2 (and the remaining vertices have degree
at most two). Consequently, |E(G)| =

∑
v∈V2

deg(v) ≤ 6 · 3 + (|V (G)| − 9) · 2 =
2|V (G)|.

K3,6 is the smallest bipartite 1-planar graph for which the upper bound is
attained. By adding 2-vertices to the larger partite set we can obtain more such
graphs, see Figure 2.

3.2. Lower bound for the number of edges

Lemma 4. Let x, y be integers such that x ≥ 3 and y ≥ 6x − 12. Then there
exists a bipartite 1-planar graph G such that the partite sets of G have sizes x
and y, and |E(G)| ≥ 2|V (G)|+ 4x− 12.

Proof. First assume that y = 6x− 12.
Let T be a triangulation on x vertices. From the Euler’s formula it follows

that every triangulation on x vertices has 2x−4 faces. Let T ′ be a graph obtained
from T by inserting a configurationW3 depicted in Figure 3 into each of its faces.
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Figure 2. A bipartite 1-planar graph G with 3 + y vertices and 2|V (G)| edges.

Figure 3. The configuration W3.

Let G be a graph obtained from T ′ by removing the original edges of T . Clearly,
G is a bipartite 1-planar graph (the original vertices of T form the first partite
set and the added vertices form the second partite set). It is a routine matter to
check that |V (G)| = 7x− 12 and |E(G)| = 18x− 36 = 2|V (G)|+ 4x− 12.
Now suppose that y = 6x − 12 + k for some k ≥ 1. In this case we take

the 1-planar drawing of G (as it is defined above), next we add k vertices to
a 4-face of G× and finally we join (without edge crossings) each of them with
the two true vertices of this face. In such a way we obtain a new bipartite
1-planar graph which has 7x − 12 + k vertices and 18x − 36 + 2k edges. Hence,
|E(H)| = 2|V (H)|+ 4x− 12.

4. Almost Balanced Bipartite 1-Planar Graphs

Lemma 5. Let x, y be integers such that x ≥ 3, y ≥ 6 and x ≤ y ≤ 6x − 12.
Then there exists a bipartite 1-planar graph G such that the partite sets of G have
sizes x, y and |E(G)| ≥ 5

2 |V (G)|+ x
2 − 17

2 .

Proof. First assume that y = 6r for some integer r ≥ 1. Let T be a triangulation
on 6r

6 +2 = y
6+2 vertices. Color the vertices of T with black. Let x = y

6+2+3s+t,
where s ≥ 0 and t ∈ {0, 1, 2} (x ≥ y

6 + 2 since y ≤ 6x − 12). Let T ′ be a graph
obtained from T by inserting a configuration B3 depicted in Figure 4 into s faces,
a configuration B2 into one face if t = 2, a configuration B1 into one face if t = 1
and the configuration B0 to the other faces of T and removing the original edges
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of T . This modification is possible if and only if T has at least s + 1 faces (or
s faces if t = 0). The number of faces of T is 2(y6 +2)−4 = y

3 , so we need to show
that s+1 ≤ y

3 . From x = y
6 +2+3s+ t and x ≤ y we obtain 4

5 +
6
5s+

2
5 t ≤

y
3 . The

inequality s+1 ≤ 4
5 +

6
5s+

2
5 t, equivalently 1 ≤ s+2t, does not hold if and only if

t = s = 0. But in this case the inequality s+ 1 ≤ y
3 trivially holds. Observe that

T ′ has (y6 + 2) + 3s+ t = x black vertices and 3 · y
3 = y white vertices, moreover

it has 3(x+ y − (y6 + 2)) = 5
2(x+ y) + x

2 − 6 edges.

B0 B1 B2 B3

Figure 4. The configurations B0, B1, B2 and B3.

If y = 6r + u, where r ≥ 1 and u ∈ {1, 2, 3, 4, 5}, then we proceed similarly
as above. In this case T is a triangulation on 6r+6

6 + 2 vertices. Using this
triangulation we obtain (by the same construction as previously) a bipartite
1-planar graph on x + (6r + 6) vertices and 3x + 5

2 · (6r + 6) − 6 edges. Note
that if x 6= 11 or y 6= 11, then we must insert the configuration B0 into at least
two faces of T according to our construction, since otherwise the graph T ′ has at
least (6r+6

6 +2)+3 · (6r+6
3 − 2)+1 = 7r+4 black vertices. At the same time, the

graph T ′ has x ≤ 6r+u black vertices, and therefore 7r+4 ≤ 6r+u, equivalently
r+4 ≤ u. This inequality in turn has only one solution, namely r = 1 and u = 5.
This implies x = y = 11.
If we remove 6 − u white vertices of two configurations of type B0, then we

obtain a bipartite 1-planar graph with x+ y vertices and 3x+ 5
2 · (6r + 6)− 6−

3(6− u) = 5
2 · (x+ 6r + u) + x

2 − 9 + u
2 ≥ 5

2 · (x+ y) + x
2 − 17

2 edges.
If x = y = 11, then there is a bipartite 1-planar graph G such that the partite

sets of G have sizes x and |E(G)| = 3|V (G)| − 8, see [6].

The following result provides a lower-bound improvement in the case when
G is very close to being balanced.

Lemma 6. Let x, y, z be positive integers such that x ≥ 3, y = x + z, z ≥ 0.
Then there exists a bipartite 1-planar graph G such that the partite sets of G have
sizes x and y and |E(G)| = 3|V (G)| − 8− z.

Proof. First we take a 1-planar drawing of a bipartite 1-planar graph G on x+x
vertices and 6x−8 edges (given in [6]). The edges of this drawing divide the plane
into some regions. We insert z vertices to the region which is incident with two
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vertices from the same partite set and join the added vertices with these two ones
(without edge crossings) as shown in Figure 5.

→

Figure 5. The extension of G.

Let H denote the obtained graph. Clearly, H is a bipartite 1-planar graph with
|V (H)| = |V (G)| + z = 2x + z and |E(H)| = |E(G)| + 2z = 6x − 8 + 2z =
3|V (H)| − 8− z.

For the sake of completeness we describe a construction of a bipartite 1-planar
graph G on x+ x vertices and 3(x+ x)− 8 edges.
Let x = 2k for some positive integer k. If k = 1, then G is a cycle on four

vertices. Let H be a graph consisting of k ≥ 2 cycles Ci = x1,iy1,ix2,iy2,ix1,i on
four vertices, i = 1, . . . , k. Take an embedding of H such that the cycle Ci is in
the inner part of Cj (i.e., inside the bounded part of the plane with boundaries
determined by Cj) if i < j. Next we extend this drawing of H by adding the
edges x1,iy1,i+1, x1,iy2,i+1, x2,iy1,i+1, x2,iy2,i+1, x1,i+1y1,i, x1,i+1y2,i, x2,i+1y1,i and
x2,i+1y2,i for i = 1, . . . , k− 1 so that the edge xℓ,i+1yj,i crosses the edge xℓ,iyj,i+1

for j, ℓ ∈ {1, 2}, i = 1, . . . , k − 1 (see Figure 6).

y2,1

y2,2

y2,3

y1,1

y1,2

y1,3

x2,1

x2,2

x2,3

x1,1

x1,2

x1,3

→

y2,1

y2,2

y2,3

y1,1

y1,2

y1,3

x2,1

x2,2

x2,3

x1,1

x1,2

x1,3

Figure 6. A construction of a bipartite 1-planar graph with x + x vertices and 6x − 8
edges for x even.

The new graph has 4k− 8 vertices of degree six and eight vertices of degree four,
therefore it has 12k − 8 edges.
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If x = 2k+1, then we modify the graph obtained for x = 2k in the following
way. First we remove the edges x1,iy1,i−1 for i = 2, 3, . . . , k and the edges x1,iy1,i
for i = 2, 3, . . . , k−1. Thereafter we add the edges x1,iy1,i+2 for i = 1, 2, . . . , k−2
and the edges x1,iy1,i+3 for i = 1, 2, . . . , k − 3. Finally, we add a vertex to
the region which is incident with the vertices x1,1, y1,1, y1,2 and join it with the
vertices y1,1, y1,2, y1,3, y2,1; then add a vertex to the region which is incident with
the vertices x1,k−1, x1,k, y1,k and join it with the vertices x1,k−2, x1,k−1, x1,k, x2,3,
as shown in Figure 7.
We removed 2k−3 edges and added two vertices and 2k+3 edges. Therefore

the obtained bipartite 1-planar graph has 4k + 2 vertices and (12k − 8)− (2k −
3) + (2k + 3) = 12k − 2 = 3(4k + 2)− 8 edges.

5. Comments

For given integers x, y, x ≤ y, let Gx,y be a bipartite 1-planar graph with partite
sets of sizes x and y with the maximal number of edges. Denote by gx,y the
size of this graph. By [6], we always have gx,y ≤ 3|V (Gx,y)| − 8. It follows from
Lemma 6, that gx,y keeps close to 3|V (Gx,y)| if Gx,y is balanced enough, i.e., when
x is not significantly smaller than y. The larger is the difference between x and
y, the smaller the ratio gx,y/|V (Gx,y)| is, as shown in Corollary 2. By Lemma 4
however the number of edges never drops under 2|V (Gx,y)| if x ≥ 3. This implies
a natural question on how the ratio gx,y/|V (Gx,y)| depends on the proportion of
x and y, in particular, when this ratio gets closer to 2 rather than 3.
Our research was thus motivated by the wish to reveal a kind of threshold

for x, given by a function of y under which gx,y/|V (Gx,y)| actually converges to
2 as y tends to infinity. The results of this paper imply the following solution of
this problem. Suppose x = f(y) is any fixed linear function of y (e.g., x = 0.1y),
then by Corollary 2 and Lemma 4 there exist constants c1 and c2 such that

(2 + c1)|V (Gx,y)| ≤ gx,y ≤ (2 + c2)|V (Gx,y)|

(for y large enough). If on the other hand, x is expressed by any sublinear function
of y, then gx,y/|V (Gx,y)| = 2 + o(1), cf. Corollary 2.
Note also that if x ≥ 1

6y + 2, then by Lemma 5, gx,y exceeds 5
2 |V (Gx,y)|. On

the other hand, we believe that for x ≤ 1
6y + 2, our construction from Lemma 4

is optimal and thus conclude by posing the following conjecture.

Conjecture 7. For any integers x, y such that x ≥ 3 and y ≥ 6x − 12, every
bipartite 1-planar graph G with partite sets of sizes x and y has at most 2|V (G)|+
4x− 12 edges.
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Figure 7. A construction of a bipartite 1-planar graph with x + x vertices and 6x − 8
edges for x odd.
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