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Abstract

Let G be a graph with no isolated vertex. In this paper, we study a
parameter that is squeezed between arguably the two most important dom-
ination parameters; namely, the domination number, γ(G), and the total
domination number, γt(G). A set S of vertices in a graph G is a semitotal
dominating set of G if it is a dominating set of G and every vertex in S is
within distance 2 of another vertex of S. The semitotal domination number,
γt2(G), is the minimum cardinality of a semitotal dominating set of G. We
observe that γ(G) ≤ γt2(G) ≤ γt(G). We characterize the set of vertices
that are contained in all, or in no minimum semitotal dominating set of a
tree.
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1. Introduction

In this paper, we continue the study of a parameter, called the semitotal domi-
nation number, that is squeezed between arguably the two most important dom-
ination parameters; namely, the domination number and the total domination
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number. A dominating set in a graph G is a set S of vertices of G such that
every vertex in V (G) \ S is adjacent to at least one vertex in S. The domination

number of G, denoted by γ(G), is the minimum cardinality of a dominating set of
G. A total dominating set, abbreviated a TD-set, of a graph G with no isolated
vertex is a set S of vertices of G such that every vertex in V (G) is adjacent to at
least one vertex in S. The total domination number of G, denoted by γt(G), is the
minimum cardinality of a TD-set of G. The literature on the subject of domina-
tion parameters in graphs up to the year 1997 has been surveyed and detailed in
the so-called domination book [4]. Total domination is now well studied in graph
theory. For a recent book on the topic, see [9]. A survey of total domination in
graphs can also be found in [5].

The concept of semitotal domination in graphs was introduced and studied by
Goddard, Henning and McPillan [3], and studied further in [6, 7] and elsewhere.
A set S of vertices in a graph G with no isolated vertices is a semitotal dominating

set, abbreviated semi-TD-set, of G if it is a dominating set of G and every vertex
in S is within distance 2 of another vertex of S. The semitotal domination number,
denoted by γt2(G), is the minimum cardinality of a semi-TD-set of G. A semi-
TD-set of G of cardinality γt2(G) is called a γt2(G)-set. Since every TD-set is
a semi-TD-set, and since every semi-TD-set is a dominating set, we have the
following observation first observed in [3]. For every graph G with no isolated
vertex, γ(G) ≤ γt2(G) ≤ γt(G).

Mynhardt [10] characterized all the vertices that are in all, or in no minimum
dominating set. Moreover, the same type of results were established by Cockayne,
Henning and Mynhardt in [2] for total domination, Henning and Plummer [8] for
paired domination and Blidia, Chellali and Khelifi [1] for double domination.
Motivated by these results, we aim to characterize all the vertices that are in all,
or in no minimum semitotal dominating set in a rooted tree T .

1.1. Terminology and Notation

For notation and graph theory terminology that are not defined herein, we refer
the reader to [9]. Let G = (V,E) be a graph with vertex set V = V (G) of
order n = |V | and edge set E = E(G) of size m = |E|, and let v be a vertex in
V . We denote the degree of v in G by dG(v). A leaf of G is a vertex of degree 1,
while a support vertex of G is a vertex adjacent to a leaf. A strong support vertex

is a support vertex with at least two leaf-neighbors. We define a branch vertex

as a vertex of degree at least 3. A star is a tree with at most one vertex that is
not a leaf.

For a set S ⊆ V , the subgraph induced by S is denoted by G[S]. A cycle

and path on n vertices are denoted by Cn and Pn, respectively. For two vertices
u and v in a connected graph G, the distance dG(u, v) between u and v is the
length of a shortest (u, v)-path in G. The distance dG(v, S) between a vertex
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v and a set S of vertices in a graph G is the minimum distance from v to a
vertex of S in G. The maximum distance among all pairs of vertices of G is the
diameter of a graph G which is denoted by diam(G). The open neighborhood of
a vertex v is the set NG(v) = {u ∈ V |uv ∈ E} and the closed neighborhood of v
is NG[v] = {v} ∪NG(v). For a set S ⊆ V , its open neighborhood is the set

NG(S) =
⋃

v∈S
NG(v),

and its closed neighborhood is the set NG[S] = NG(S) ∪ S. If the graph G
is clear from the context, we omit it in the above expressions. For example, we
write d(u), d(u, v), N(v) and N [v] rather than dG(u), dG(u, v), NG(v) and NG[v],
respectively.

Let X and Y be subsets of vertices in G. If Y ⊆ N [X], then we say the set X
dominates the set Y in G and that the set Y is dominated by X. Furthermore,
if Y = {y}, then we simply say that y is dominated by X rather than {y} is
dominated by X. Thus, if a vertex v is dominated by X, then N [v]∩X 6= ∅. We
note that if X dominates V , then X is a dominating set in G. Hence, if X is a
dominating set in G, then N [X] = V . Additionally, we say that X semitotally

dominates the set Y in G if each vertex in X lies within distance 2 of another
vertex in X, and in turn the set Y is said to be semitotally dominated by X.

For a graph G, we define the sets At2(G) and Nt2(G) as follows:

At2(G) = {v ∈ V (G) | v is in every γt2(G)-set},

and
Nt2(G) = {v ∈ V (G) | v is in no γt2(G)-set}.

A rooted tree T distinguishes one vertex r called the root. For each vertex
v 6= r of T , the parent of v is the neighbor of v on the unique (r, v)-path, while
a child of v is any other neighbor of v. We denote all the children of a vertex v
by C(v). A descendant of v is a vertex u 6= v such that the unique (r, u)-path
contains v. Thus, every child of v is a descendant of v. A grandchild of v is a
descendant of v at distance 2 from v. We let D(v) denote the set of descendants
of v, and we define D[v] = D(v)∪{v}. The set of leaves in T is denoted by L(T )
and the set of support vertices is denoted by S(T ). The maximal subtree at v
is the subtree of T induced by D[v], and is denoted by Tv. The set of leaves in
Tv distinct from v we denote by L(v); that is, L(v) = D(v) ∩ L(T ). The set of
branch vertices of T is denoted by B(T ). For j ∈ {0, 1, 2, 3, 4}, we define

Lj(v) = {u ∈ L(v) | d(u, v) ≡ j (mod 5)}.

Furthermore, let

L1
1(v) = {x ∈ L1(v) | d(v, x) = 1} and L1

2(v) = L1(v) \ L1
1(v).
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We sometimes write Lj
T (v) to emphasize the tree (or subtree) concerned.

Additionally, we define the path from v to a leaf in Lj(v) to be a Lj(v)-path.
Given a vertex x of a tree T , we say we attach a path of length q to x if we add
a vertex-disjoint path Pq on q vertices and join x to a leaf of the path Pq. In this
case, we simply write that we attach Pq to x. We next define an essential support
vertex in a tree.

Definition 1. A vertex v in a tree T is an essential support vertex in T if and
only if v has exactly one leaf-neighbor, v ∈ At2(T ) and N(v) ⊆ Nt2(T ).

We note that if v is an essential support vertex in a tree T , then v has exactly
one leaf-neighbor and N [v] ∩D = {v} for every γt2(T )-set D.

2. Tree Pruning

In this paper, we use a method called tree pruning to characterize the sets At2(T )
and Nt2(T ) for an arbitrary tree T . Let T be a tree rooted at a vertex v. Suppose
that T is not a star. We let C(4)(v) denote the set of children of v that belong to
P4’s that are attached to v. Furthermore, we let the descendants at distance 2
from v along P5’s that are attached to v be denoted by Gr(v) and we call them
special grandchildren of v. The pruning of T is performed with respect to its
root, v. If d(u) ≤ 2 for each u ∈ V (Tv) \ {v}, then let T v = T . Otherwise, let
u be a branch vertex at maximum distance from v (we note that |C(u)| ≥ 2 and
d(x) ≤ 2 for each x ∈ D(u)). We identify the following types of branch vertices:

(T.1) |L3(u)| ≥ 1.
(T.2) L3(u) = ∅, |L1(u)| ≥ 1 and |L0(u) ∪ L2(u) ∪ L4(u)| ≥ 1.
(T.3) L3(u) = L0(u) = L2(u) = L4(u) = ∅ and |L1(u)| ≥ 2.
(T.4) L3(u) = L1(u) = ∅ and |L4(u)| ≥ 1.
(T.5) L3(u) = L1(u) = L4(u) = ∅, |L2(u)| = 1 and |L0(u)| ≥ 1.
(T.6) L3(u) = L1(u) = L4(u) = ∅ and |L2(u)| ≥ 2.
(T.7) L3(u) = L1(u) = L4(u) = L2(u) = ∅.

We now apply the following pruning process.

(a) If u is type (T.1) or (T.2), then delete D(u) and attach a P3 to u.
(b) If u is type (T.3), then delete D(u) and attach a P1 to u.
(c) If u is type (T.4) or (T.6), then delete D(u) and attach a P4 to u.
(d) If u is type (T.5), then delete D(u) and attach a P2 to u.
(e) If u is type (T.7), then delete D(u) and attach a P5 to u.

This step of the pruning process, where all the descendants of u are deleted
and a path of length 1, 2, 3, 4 or 5 is attached to u to give a tree in which u has
degree 2, is called a pruning of Tv at u. Repeat the above process until a tree
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T v is obtained with d(u) ≤ 2 for each u ∈ V (T v) \ {v}. The tree T v is called the

pruning of Tv. To simplify notation, we write L
j
(v) instead of Lj

T v

(v).

3. Main Results

In this paper, we aim to establish a characterization of the set of vertices contained
in all or none of the minimum semi-TD-sets in a tree T of order n ≥ 2.

In the trivial case when T = P2, we note that At2(T ) = V (T ), while if
T = P3, then At2(T ) = Nt2(T ) = ∅. If T is a star K1,n−1 with central vertex v
and n ≥ 4, then At2(T ) = {v} and Nt2(T ) = ∅. Hence in what follows we restrict
our attention to the more interesting case when n ≥ 4 and T is not a star. We
shall prove the following main results.3

Theorem 1. Let T be a tree with order at least 4 that is not a star and is rooted

at a vertex v such that d(u) ≤ 2 for each u ∈ V (T ) \ {v}. Then,

(a) v ∈ At2(T ) if and only if one of the following hold:

(i) |L3(v)| ≥ 1 and |L1(v) ∪ L3(v)| ≥ 2.

(ii) L3(v) = ∅ and |L1(v)| ≥ 3.

(iii) L3(v) = ∅ and |L1
1(v)| = 2.

(iv) L3(v) = ∅, |L1
1(v)| ≤ 1, |L1(v)| = 2 and |L0(v) ∪ L2(v) ∪ L4(v)| ≥ 1.

(v) L2(v) = L3(v) = L4(v) = ∅, |L1(v)| = |L1
1(v)| = 1 and |L0(v)| ≥ 1.

(b) v ∈ Nt2(T ) if and only if one of the following hold:

(i) L1(v) = L3(v) = ∅ and |L4(v)| ≥ 1, or

(ii) L1(v) = L3(v) = L4(v) = ∅ and |L2(v)| ≥ 2.

Theorem 2. Let v be a vertex of a tree T with order at least 4 that is not a star.

Then,

(a) v ∈ At2(T ) if and only if one of the following hold:

(i) |L
3
(v)| ≥ 1 and |L

1
(v) ∪ L

3
(v)| ≥ 2.

(ii) L
3
(v) = ∅ and |L

1
(v)| ≥ 3.

(iii) L
3
(v) = ∅ and |L

1
1(v)| = 2.

(iv) L
3
(v) = ∅, |L

1
1(v)| ≤ 1, |L

1
(v)| = 2 and |L

0
(v) ∪ L

2
(v) ∪ L

4
(v)| ≥ 1.

(v) L
2
(v) = L

3
(v) = L

4
(v) = ∅, |L

1
(v)| = |L

1
1(v)| = 1 and |L

0
(v)| ≥ 1.

(b) v ∈ Nt2(T ) if and only if one of the following hold:

(i) L
1
(v) = L

3
(v) = ∅ and |L

4
(v)| ≥ 1, or

(ii) L
1
(v) = L

3
(v) = L

4
(v) = ∅ and |L

2
(v)| ≥ 2.

3An example to illustrate Theorem 2 is presented in the appendix.
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4. Preliminary Results

The semitotal domination number of a path and a cycle is determined in [3].

Lemma 3 [3]. For n ≥ 3, γt2(Pn) = γt2(Cn) =
⌈

2n
5

⌉

.

Lemma 3 immediately infers that every path Pn where n ≡ 0 (mod 5) has
a unique γt2(Pn)-set. That is, if we number the vertices in V (Pn) consecutively
starting at 1, then the γt2(Pn)-set is the set of all vertices with numbers congruent
to 2 (mod 5) and 4 (mod 5). Additionally, the paths P2 and P7 also have unique
minimum semi-TD-sets. We state this formally as follows.

Observation 4. The paths P2, P7 and Pn, where n ≡ 0 (mod 5), all have unique

minimum semi-TD-sets.

We shall need the following result first observed in [6].

Observation 5. If G is a connected graph that is not a star, then there is a

γt2(G)-set that contains no leaf of G.

We proceed with the following two lemmas that will be useful when proving
our main results. We use the standard notation [k] = {1, 2, . . . , k}.

Lemma 6. Let T be a tree of order at least 3. Let t be a support vertex in T and

let u′ be a leaf-neighbor of t. If T ′ is the tree obtained from T by attaching a path

of length 5 to u′, then γt2(T
′) = γt2(T ) + 2.

Proof. Suppose T ′ is obtained from T by adding to u′ the path uwxyz together
with the edge uu′. Every γt2(T )-set can be extended to a semi-TD-set of T ′ by
adding to it the vertices w and y, and so γt2(T

′) ≤ γt2(T ) + 2. Let D′ be a
γt2(T

′)-set. If z ∈ D′, then we can replace z in D′ by y. Hence we may choose
D′ so that D′ ∩ {y, z} = {y}. In order to semitotally dominate the vertex y, we
note that x or w belong to D′. If x ∈ D′, then we can replace x in D′ by w.
Hence we may choose D′ so that D′ ∩ {x,w} = {w}. If u ∈ D′, then we can
replace u in D′ by u′. Hence we may choose D′ so that u /∈ D′. If t ∈ D′, then
we can replace u′ in D′ with a neighbor of t different from u′. If t /∈ D′ and
|D′ ∩ N(t)| ≥ 2, then we can replace u′ in D′ with the vertex t. If t /∈ D′ and
D′ ∩N [t] = {u′}, then in order to dominate the neighbors of t different from u′,
the set D′ contains at least one vertex at distance 2 from t in T , implying once
again that we can replace u′ in D′ with the vertex t. Hence, we may choose D′ so
that u′ /∈ D′. In order to dominate the vertex u′, we note that t ∈ D′. Since D′ is
a semi-TD-set of T ′, the set D′\{w, y} is necessarily a semi-TD-set of T , implying
that γt2(T ) ≤ |D′| − 2 = γt2(T

′)− 2. Consequently, γt2(T
′) = γt2(T ) + 2.
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Lemma 7. Let T be a tree with order at least 3. Let t be a support vertex in T
and let u′ be a leaf-neighbor of t. Let T ′ be the tree obtained from T by attaching a

path of length 5 to u′. If t is an essential support vertex in T , let v ∈ V (T )\{u′, t}.
If t is not an essential support vertex in T , let v ∈ V (T ). Then the following

hold.

(a) v ∈ At2(T ) if and only if v ∈ At2(T
′).

(b) v ∈ Nt2(T ) if and only if v ∈ Nt2(T
′).

Proof. Suppose T ′ is obtained from T by adding to u′ the path uwxyz together
with the edge uu′.

(a) Suppose that v /∈ At2(T ). Let D be a γt2(T )-set that does not contain v.
Then, D∪{w, y} is a semi-TD-set of T ′ of cardinality |D|+2 = γt2(T )+2 = γt2(T

′)
by Lemma 6. Consequently, D ∪ {w, y} is a γt2(T

′)-set that does not contain v,
implying that v /∈ At2(T

′). Therefore, by contraposition, if v ∈ At2(T
′), then

v ∈ At2(T ).

Conversely, suppose that v ∈ At2(T ). Suppose to the contrary that v /∈
At2(T

′). Let D′ be a γt2(T
′)-set that does not contain the vertex v, and let

D = D′ ∩ V (T ). If v = u′, then by Observation 5, there exists a γt2(T )-set
that does not contain v, contradicting our assumption that v ∈ At2(T ). Hence,
v 6= u′. Proceeding as in the proof of Lemma 6, we can choose D′ so that
D′ ∩ {w, x, y, z, u} = {w, y}. Thus, D = D′ \ {w, y} and, by Lemma 6, |D| =
|D′| − 2 = γt2(T

′) − 2 = γt2(T ). If v 6= t, then proceeding as in the proof of
Lemma 6, we can additionally choose D′ so that D′ ∩ {u′, t} = {t}, implying
that the set D is a γt2(T )-set that does not contain v, a contradiction. Hence,
v = t. By supposition, v /∈ D′, and so neither neighbor of u′ in T ′ belongs to D′,
implying that u′ ∈ D′.

If D is a semi-TD-set in T , then D is a γt2(T )-set that does not contain
the vertex v, contradicting our supposition that v ∈ At2(T ). Hence, D is not a
semi-TD-set in T , implying that no vertex in D is at distance 1 or 2 from u′.
Thus, D ∩ N [v] = {u′}. In particular, we note that u′ is the only leaf-neighbor
of v in T .

We show next that for every γt2(T )-set S, N [v] ∩ S = {v}. For notational
convenience, let T be rooted at the vertex v and let N(v) \ {u′} = {v1, . . . , vk}.
For i ∈ [k], let Ti denote the maximal subtree of T rooted at vi (and so, Ti = Tvi)
and let Di = D ∩ V (Ti). We note that vi /∈ Di and that the set Di is a semi-
TD-set in Ti for all i ∈ [k]. Suppose that there exists a γt2(T )-set, S, such that
|N [v] ∩ S| ≥ 2. Since v ∈ At2(T ), we note that v ∈ S. If u′ ∈ S, we can simply
replace u′ in S with a neighbor of v that is not a leaf. Renaming the children
of v if necessary, we may therefore assume that v1 ∈ S. Let S1 = S ∩ V (T1).
Since the set D1 contains a vertex at distance 2 from v in T , we note that the set
(S \S1)∪D1 is a semi-TD-set of T , implying that |S| = γt2(T ) ≤ |S|−|S1|+ |D1|,
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or, equivalently, |S1| ≤ |D1|. We now consider the set S∗ = (D\D1)∪S1. Since u
′

and v1 are at distance 2 apart in T , the set S∗ is a semi-TD-set of T , implying that
γt2(T ) ≤ |S∗| ≤ |D|−|D1|+|S1| ≤ |D| = γt2(T ). Consequently, |S

∗| = γt2(T ) and
S∗ is a γt2(T )-set that does not contain the vertex v, a contradiction. Therefore,
for every γt2(T )-set S, we have N [v] ∩ S = {v}. Moreover, this result together
with our earlier observation that u′ is the only leaf-neighbor of v in T imply that
v is an essential support vertex in T , a contradiction (recalling that here v = t).
Hence, v ∈ At2(T

′). This completes the proof of part (a).

(b) Suppose that v ∈ Nt2(T
′). We show that v ∈ Nt2(T ). Suppose to the

contrary that there exists a γt2(T )-set, D, that contains the vertex v. Then,
D ∪ {w, y} is a semi-TD-set of T ′ of cardinality |D| + 2 = γt2(T ) + 2 = γt2(T

′).
Consequently, D∪{w, y} is a γt2(T

′)-set that contains v, a contradiction. There-
fore, v ∈ Nt2(T ).

Conversely, suppose that v ∈ Nt2(T ). We show that v ∈ Nt2(T
′). Suppose

to the contrary that there exists a γt2(T
′)-set, D′, that contains the vertex v. Let

D = D′∩V (T ). Proceeding as in the proof of Lemma 6, we can choose D′ so that
D′ ∩ {w, x, y, z, u} = {w, y}. Thus, D = D′ \ {w, y}. If v 6= u′, then proceeding
as in the proof of Lemma 6, we can further choose D′ so that D′ ∩ {u′, t} = {t},
implying that the set D is a γt2(T )-set containing v, a contradiction. Hence,
v = u′. If D is a semi-TD-set in T , then the set D is a γt2(T )-set containing v, a
contradiction. Hence, D is not a semi-TD-set in T , implying that no vertex in D
is at distance 1 or 2 from u′. Thus, D ∩N [t] = {u′}. In particular, this implies
that u′ is the only leaf-neighbor of t in T . An analogous proof to that employed
in the proof of part (a) shows the vertex t is an essential support vertex in T ,
contradicting the fact that in this case v = u′. Therefore, v ∈ Nt2(T

′).

5. Proof of Theorem 1

Proof. Let T be a tree with order at least 4 that is not a star and is rooted
at a vertex v such that d(u) ≤ 2 for each u ∈ V (T ) \ {v}. For each w ∈ L(v)
such that dT (v, w) ≥ 6, let T ′ be the tree obtained by replacing the (v, w)-
path in T with a (v, w)-path of length j, j ∈ {5, 6, 2, 3, 4} if w ∈ Li(v), i ∈
{0, 1, 2, 3, 4}, respectively. By repeated applications of Lemma 7, v ∈ At2(T )
(Nt2(T ), respectively) if and only if v ∈ At2(T

′) (Nt2(T
′), respectively). Hence,

in what follows, we assume T = T ′. If v is a leaf of T , then by our earlier
assumptions, T is a path Pn where n ∈ {4, 5, 6, 7}. If n ∈ {4, 6}, then v /∈
At2(T ) ∪ Nt2(T ). If n ∈ {5, 7}, then by Observation 4, v ∈ Nt2(T ). Hence, we
may assume that v is not a leaf in T . Let D be an arbitrary γt2(T )-set and let W
be the set of vertices at distance 3 from a leaf of some L1

2(v)-path. We proceed
further with a series of claims.
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Claim A. If |L1
1(v)| ≥ 2, then v ∈ At2(T ).

Proof. Suppose |L1
1(v)| ≥ 2. Thus, v is a strong support vertex in T and there-

fore has at least two leaf-neighbors. Moreover, |L0(v) ∪ L1
2(v) ∪ L2(v) ∪ L3(v) ∪

L4(v)| ≥ 1 since T is not a star. Let w be a neighbor of v that is not a leaf.
Suppose, to the contrary, that v /∈ At2(T ). Let S be a γt2(T )-set that does
not contain the vertex v. The set S contains all leaf-neighbors of v. Since
N [w] ∩ S 6= ∅, we note that v is within distance 2 from at least one vertex in
N [w] ∩ S. Further, no vertex in N [w] ∩ S is a leaf-neighbor of v. Replacing
the leaf-neighbors of v in S with the vertex v produces a semi-TD-set in T of
cardinality less than |S| = γt2(T ), a contradiction. Hence, v ∈ At2(T ).

By Claim A, we may assume that |L1
1(v)| ≤ 1.

Claim B. If L(v) = L0(v), then v /∈ At2(T ) ∪Nt2(T ).

Proof. Suppose L(v) = L0(v). Then, L1(v) ∪ L2(v) ∪ L3(v) ∪ L4(v) = ∅. Let
S = Gr(v) ∪ S(T ) ∪ {v}. The set S is a semi-TD-set of T , and so γt2(T ) ≤
|S| = 2|L0(v)| + 1. Recall that D is an arbitrary γt2(T )-set. If vv1v2v3v4v5 is a
path emanating from v in T , then v5 is a leaf in T and |D ∩ {v2, v3, v4, v5}| ≥ 2,
implying that the set D contains at least two vertices from each path of order 5
attached to v and at least one vertex in N [v]. Thus, γt2(T ) = |D| ≥ 2|L0(v)|+1 =
|S| ≥ γt2(T ). Consequently, we must have equality throughout this inequality
chain. In particular, |S| = γt2(T ) = 2|L0(v)|+1 and S is a γt2(T )-set. Replacing
v in S with an arbitrary neighbor of v produces a γt2(T )-set not containing v.
Hence, v /∈ At2(T ) ∪Nt2(T ).

By Claim B, we may assume that L(v) 6= L0(v).

Claim C. If L(v) = L0(v) ∪ L1
1(v) where |L1

1(v)| = 1 and |L0(v)| ≥ 1, then v is

an essential support vertex in T . In particular, v ∈ At2(T ).

Proof. Suppose L(v) = L0(v)∪L1
1(v) where |L

1
1(v)| = 1 and |L0(v)| = k ≥ 1. In

this case, L1
2(v)∪L2(v)∪L3(v)∪L4(v) = ∅. Let L1

1(v) = {u}. We note that u is
the only leaf-neighbor of v in T . We show that v ∈ At2(T ) and N(v) ⊆ Nt2(T ),
implying that v is an essential support vertex of T . Let S = Gr(v)∪ S(T )∪ {v}.
The set S is a semi-TD-set of T , and so γt2(T ) ≤ |S| = 2k + 1. If vv1v2v3v4v5 is
a path emanating from v in T , then v5 is a leaf in T and |D∩{v2, v3, v4, v5}| ≥ 2.
In particular, the set D contains at least two vertices from each path of order 5
attached to v. Further, D contains at least one of u and v. Thus, γt2(T ) =
|D| ≥ 2k + 1 = |S| ≥ γt2(T ). Consequently, we must have equality throughout
this inequality chain. In particular, |S| = γt2(T ) = 2k + 1, implying that S is a
γt2(T )-set.
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Suppose that there exists a γt2(T )-set, D
′, that does not contain v. In this

case, u ∈ D′. Further, in order to semitotally dominate u, we note that |(D′ \
{u}) ∩ N(v)| ≥ 1. This, however, implies that along one of P5’s attached to
v in T , at least three of its vertices belong to D′, which in turn implies that
|D′| ≥ 2k + 2 > |S|, a contradiction. Hence, v ∈ At2(T ). As observed earlier,
if vv1v2v3v4v5 is a path emanating from v in T , then |D ∩ {v2, v3, v4, v5}| ≥ 2.
Further, since v ∈ At2(T ), we note that v ∈ D. Thus if |D ∩ N(v)| ≥ 1, then
γt2(T ) = |D| ≥ 2k + 2, a contradiction. Therefore, N(v) ∩D = ∅, implying that
N(v) ⊆ Nt2(T ). Thus, v is an essential support vertex in T .

By our earlier assumptions, |L1
1(v)| ≤ 1 and L(v) 6= L0(v). By Claim C, we

may assume that L(v) 6= L0(v) ∪ L1
1(v).

Claim D. Suppose |L3(v)| ≥ 1. Then the following hold.

(a) If |L3(v)| ≥ 2, then v ∈ At2(T ).

(b) If |L3(v)| = 1 and |L1(v)| ≥ 1, then v ∈ At2(T ).

(c) If |L3(v)| = 1, L1(v) = ∅ and |L0(v)∪L2(v)∪L4(v)| ≥ 1, then v /∈ At2(T )∪
Nt2(T ).

Proof. (a) Suppose |L3(v)| ≥ 2. Let {u3, v3} ⊆ L3(v) and let vu1u2u3 and
vv1v2v3 be the (v, u3)-path and the (v, v3)-path. By our earlier assumptions, the
vertex v has at most one leaf-neighbor. Further, we remark that there may exist
leaves at distance 2, 4, 5 and 6 from v in T . The set S(T )∪C(4)(v)∪Gr(v)∪W∪{v}
is a semi-TD-set of cardinality 2(|L0(v)|+ |L1

2(v)|+ |L4(v)|)+ |L2(v)|+ |L3(v)|+1,
and so γt2(T ) ≤ 2(|L0(v)|+ |L1

2(v)|+ |L4(v)|) + |L2(v)|+ |L3(v)|+ 1.

Suppose D does not contain v. Then, D will contain at least two vertices
from each L0(v)-path, at least three vertices from each L1

2(v)-path, at least one
vertex from each L2(v)-path, at least two vertices from each L3(v)-path, and at
least two vertices from each L4(v)-path. Further, if |L1

1(v)| = 1, then D contains
the leaf-neighbor of v. If u3 ∈ D, we can replace u3 in D with u2. Hence, we may
choose D so that D ∩ {u1, u2, u3} = {u1, u2}. This implies that γt2(T ) = |D| ≥
2(|L0(v)|+ |L4(v)|)+3|L1

2(v)|+ |L2(v)|+2|L3(v)|+ |L1
1(v)| ≥ 2(|L0(v)|+ |L1

2(v)|+
|L4(v)|)+ |L2(v)|+2|L3(v)| > 2(|L0(v)|+ |L1

2(v)|+ |L4(v)|)+ |L2(v)|+ |L3(v)|+1,
a contradiction. Hence, v ∈ D. Since D is an arbitrary γt2(T )-set, we deduce
that v ∈ At2(T ).

(b) Suppose that |L3(v)| = 1 and |L1(v)| ≥ 1. Let L3(v) = {u3} and let
vu1u2u3 be the (v, u3)-path. Suppose firstly that L1

1(v) = ∅, and so L1(v) =
L1
2(v). In this case, the set S(T ) ∪ C(4)(v) ∪ Gr(v) ∪ W ∪ {v} is a semi-TD-

set of cardinality 2(|L0(v)| + |L1(v)| + |L4(v)|) + |L2(v)| + 2, and so γt2(T ) ≤
2(|L0(v)|+ |L1(v)|+ |L4(v)|)+ |L2(v)|+2. Suppose D does not contain v. Then,
D contains at least two vertices on the path u1u2u3 and at least three vertices from
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each L1
2(v)-path. Further, D contains at least two vertices from each L0(v)-path,

two vertices from each L4(v)-path and one vertex from each L2(v)-path. However,
this implies that γt2(T ) = |D| ≥ 2(|L0(v)| + |L4(v)|) + 3|L1(v)| + |L2(v)| + 2 >
2(|L0(v)| + |L1(v)| + |L4(v)|) + |L2(v)| + 2, a contradiction. Hence, v ∈ D, and
since D is an arbitrary γt2(T )-set, v ∈ At2(T ).

Suppose secondly that |L1
1(v)| = 1. Let L1

1(v) = {u}. In this case, the set
S(T )∪C(4)(v)∪Gr(v)∪W∪{v} is a semi-TD-set of cardinality 2(|L0(v)|+|L1

2(v)|+
|L4(v)|)+ |L2(v)|+2, and so γt2(T ) ≤ 2(|L0(v)|+ |L1

2(v)|+ |L4(v)|)+ |L2(v)|+2.
Suppose D does not contain v. Then, u ∈ D and D contains at least two vertices
on the path u1u2u3 and at least three vertices from each L1

2(v)-path. The number
of vertices needed from each L0(v)-path, L2(v)-path and L4(v)-path remains
unchanged. However, this implies that γt2(T ) = |D| ≥ 2(|L0(v)| + |L4(v)|) +
3|L1

2(v)|+|L2(v)|+2|L3(v)|+|L1
1(v)| = 2(|L0(v)|+|L4(v)|)+3|L1

2(v)|+|L2(v)|+3 >
2(|L0(v)| + |L1

2(v)| + |L4(v)|) + |L2(v)| + 2, a contradiction. Hence, v ∈ D, and
since D is an arbitrary γt2(T )-set, v ∈ At2(T ).

(c) Suppose that |L3(v)| = 1, L1(v) = ∅ and |L0(v)∪L2(v)∪L4(v)| ≥ 1. Let
L3(v) = {u3} and let vu1u2u3 be the (v, u3)-path. Every leaf of T , different from
u3, is at distance 2, 4 or 5 from v, and so L(v)\{u3} = L0(v)∪L2(v)∪L4(v). By
Observation 5, there is a γt2(T )-set, say D′, that contains no leaf of T , implying
that S(T ) ⊆ D′. The set D′ contains at least two vertices from each L0(v)-path
and at least two vertices from each L4(v)-path. Further, D′ contains at least one
vertex from each L2(v)-path and at least two vertices from the (v, u3)-path. This
implies that γt2(T ) ≥ 2(|L0(v)|+ |L4(v)|) + |L2(v)|+ 2. On the other hand, the
set of children of v that do not belong to any L0(v)-path, together with the set
S(T )∪Gr(v) form a semi-TD-set, say S, of T of cardinality 2(|L0(v)|+ |L4(v)|)+
|L2(v)|+2, implying that γt2(T ) ≤ 2(|L0(v)|+|L4(v)|)+|L2(v)|+2. Consequently,
γt2(T ) = 2(|L0(v)|+ |L4(v)|) + |L2(v)|+ 2. Moreover, S and (S \ {u1})∪ {v} are
γt2(T )-sets, implying that v /∈ At2(T ) ∪ Nt2(T ).

By Claim D, we may assume that L3(v) = ∅.

Claim E. If |L1(v)| ≥ 3, then v ∈ At2(T ).

Proof. Suppose, firstly, that L0(v) ∪ L2(v) ∪ L4(v) 6= ∅. The vertex set S(T ) ∪
C(4)(v) ∪ Gr(v) ∪ W ∪ {v} is a semi-TD-set of cardinality 2(|L0(v)| + |L1

2(v)| +
|L4(v)|)+ |L2(v)|+1, and so γt2(T ) ≤ 2(|L0(v)|+ |L1

2(v)|+ |L4(v)|)+ |L2(v)|+1.
Suppose D does not contain v. If L1

1(v) = ∅, then every leaf is at distance 2, 4,
5 or 6 from v in T and L1(v) = L1

2(v). In this case, D contains at least three
vertices from each L1

2(v)-path, two vertices from each L0(v)-path, two vertices
from each L4(v)-path and one vertex from each L2(v)-path. Hence, γt2(T ) =
|D| > 3|L1(v)| + 2(|L0(v) + |L4(v)|) + |L2(v)| > 2(|L0(v)| + |L1(v)| + |L4(v)|) +
|L2(v)| + 1, a contradiction. Therefore, L1

1(v) 6= ∅. Let L1
1(v) = {u}. Every leaf
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is at distance 1, 2, 4, 5 or 6 from v in T . In this case, D contains the leaf u,
implying that γt2(T ) = |D| > 3|L1

2(v)|+2(|L0(v) + |L4(v)|) + |L2(v)|+ |L1
1(v)| >

2(|L0(v)| + |L1
2(v)| + |L4(v)|) + |L2(v)| + 1, a contradiction. Hence, v ∈ D, and

since D is an arbitrary γt2(T )-set, v ∈ At2(T ).

Suppose, secondly, that L0(v) ∪ L2(v) ∪ L4(v) = ∅. Thus, L(v) = L1(v). Let
u6 ∈ L1(v) and let vu1u2u3u4u5u6 be the (v, u6)-path. The vertex set S(T )∪W ∪
{u1, v} is a semi-TD-set of cardinality 2|L1

2(v)|+2, and so γt2(T ) ≤ 2|L1
2(v)|+2.

Suppose D does not contain v. If L1
1(v) = ∅, then every leaf is at distance 6

from v in T and L(v) = L1(v) = L1
2(v). In this case, D contains at least three

vertices from each L1(v)-path. Hence, γt2(T ) = |D| ≥ 3|L1(v)| > 2|L1(v)|+ 2, a
contradiction. If L1

1(v) 6= ∅, then letting L1
1(v) = {u}, every leaf in L1(v) \ {u} is

at distance 6 from v in T . In this case, D contains at least three vertices from each
L1
2(v)-path and the leaf u. Hence, γt2(T ) = |D| ≥ 3|L1

2(v)| + 1 > 2|L1
2(v)| + 2,

a contradiction. Hence, v ∈ D, and since D is an arbitrary γt2(T )-set, v ∈
At2(T ).

By Claim E, we may assume that |L1(v)| ≤ 2.

Claim F. Suppose |L1(v)| = 2. Then the following hold.

(a) If |L0(v) ∪ L2(v) ∪ L4(v)| ≥ 1, then v ∈ At2(T ).

(b) If L0(v) = L2(v) = L4(v) = ∅, then v /∈ At2(T ) ∪ Nt2(T ).

Proof. (a) Suppose |L0(v)∪L2(v)∪L4(v)| ≥ 1. The vertex set S(T )∪C(4)(v)∪
Gr(v) ∪W ∪ {v} is a semi-TD-set of cardinality 2(|L0(v)| + |L1

2(v)|+ |L4(v)|) +
|L2(v)|+ 1, and so γt2(T ) ≤ 2(|L0(v)|+ |L1

2(v)|+ |L4(v)|) + |L2(v)|+ 1. Suppose
D does not contain v. If L1

1(v) = ∅, then L1(v) = L1
2(v) and |L1

2(v)| = 2. In
this case, D contains at least three vertices from each L1

2(v)-path, two vertices
from each L0(v)-path, two vertices from each L4(v)-path and one vertex from
each L2(v)-path. Hence, γt2(T ) = |D| ≥ 2(|L0(v) + |L4(v)|) + |L2(v)| + 6 >
2(|L0(v) + |L4(v)|) + |L2(v)| + 5 = 2(|L0(v)| + |L1

2(v)| + |L4(v)|) + |L2(v)| + 1,
a contradiction. Therefore, L1

1(v) 6= ∅. Let L1
1(v) = {u} and let L1

2(v) = {u6}.
Additionally, let vu1u2u3u4u5u6 be the (v, u6)-path. In this case, D contains
the leaf u and at least three vertices from the (u1, u6)-path, at least one vertex
from each L2(v)-path and at least two vertices from each L0(v)-path and L4(v)-
path, implying that γt2(T ) = |D| ≥ 2(|L0(v)+ |L4(v)|)+ |L2(v)|+4 > 2(|L0(v)|+
|L4(v)|)+ |L2(v)|+3 = 2(|L0(v)|+ |L1

2(v)|+ |L4(v)|)+ |L2(v)|+1, a contradiction.
Hence, v ∈ D, and since D is an arbitrary γt2(T )-set, v ∈ At2(T ).

(b) Suppose L0(v) = L2(v) = L4(v) = ∅. Let u6 ∈ L1
2(v) and let the

path vu1u2u3u4u5u6 be the (v, u6)-path. Suppose firstly that L1
1(v) = ∅. Then,

L1(v) = L1
2(v). Let v6 ∈ L1

2(v) \ {u6} and let vv1v2v3v4v5v6 be the (v, v6)-path.
In this case, T = P13 and γt2(T ) = 6. Further, the set S = {u1, u3, u5, v1, v3, v5}
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is a γt2(T )-set not containing v, while (S \ {u1}) ∪ {v} is a γt2(T )-set containing
v. Hence, v /∈ At2(T )∪Nt2(T ). Suppose secondly that L1

1(v) 6= ∅ and let L1
1(v) =

{u}. In this case, T = P8 and γt2(T ) = 4. Further, the set S = {u, u1, u3, u5} is a
γt2(T )-set not containing v. Moreover, (S \ {u1})∪{v} is a γt2(T )-set containing
v. Hence, once again v /∈ At2(T ) ∪ Nt2(T ).

By Claim F, we may assume that |L1(v)| ≤ 1.

Claim G. If |L1(v)| = 1, then v /∈ At2(T ) ∪Nt2(T ).

Proof. Suppose firstly that L2(v) = L4(v) = ∅. By our earlier assumptions,
the vertex v is not a leaf in T , L3(v) = ∅ and L(v) 6= L0(v) ∪ L1

1(v), implying
that |L0(v)| ≥ 1 and L1(v) = L1

2(v). Let L1
2(v) = {u6} and let vu1u2u3u4u5u6

be the (v, u6)-path. Every semi-TD-set of T contains at least two vertices from
each L0(v)-path and at least three vertices from the (v, u6)-path, and so γt2(T ) ≥
2|L0(v)| + 3. However, the set S = S(T ) ∪ Gr(v) ∪ {v, u3} is a semi-TD-set of
T of cardinality 2|L0(v)| + 3, and so γt2(T ) ≤ |S| = 2|L0(v)| + 3. Consequently,
γt2(T ) = 2|L0(v)| + 3 and S is a γt2(T )-set containing v. Moreover, S′ = (S \
{v}) ∪ {u1} is γt2(T )-set containing v. Hence, v /∈ At2(T ) ∪ Nt2(T ).

Suppose secondly that |L2(v) ∪ L4(v)| ≥ 1. The vertex set S = S(T ) ∪
C(4)(v) ∪ Gr(v) ∪ W ∪ {v} is a semi-TD-set of cardinality 2(|L0(v)| + |L1

2(v)| +
|L4(v)|)+ |L2(v)|+1, and so γt2(T ) ≤ 2(|L0(v)|+ |L1

2(v)|+ |L4(v)|)+ |L2(v)|+1.
Suppose L1

1(v) = ∅, and so L1(v) = L1
2(v) and |L1

2(v)| = 1. In this case, let
L1(v) = {u6} and let vu1u2u3u4u5u6 be the (v, u6)-path. The set D contains at
least three vertices from the (v, u6)-path, at least one vertex from each L2(v)-
path and at least two vertices from each L0(v)-path and L4(v)-path, implying
that γt2(T ) = |D| ≥ 2(|L0(v)| + |L4(v)|) + |L2(v)| + 3 = 2(|L0(v)| + |L1

2(v)| +
|L4(v)|) + |L2(v)| + 1. Consequently, γt2(T ) = 2(|L0(v)| + |L4(v)|) + |L2(v)| + 3
and S is a γt2(T )-set containing v. Moreover, the set (S \ {v}) ∪ {u1} is a
γt2(T )-set that does not contain v. Hence, v /∈ At2(T ) ∪ Nt2(T ). Suppose next
that L1(v) = L1

1(v) = {u}. In this case, |L1
2(v)| = 0 and the set D contains

at least one of u and v, at least one vertex from each L2(v)-path and at least
two vertices from each L0(v)-path and L4(v)-path, implying that γt2(T ) = |D| ≥
2(|L0(v)| + |L4(v)|) + |L2(v)| + 1 = 2(|L0(v)| + |L1

2(v)| + |L4(v)|) + |L2(v)| + 1.
Consequently, γt2(T ) = 2(|L0(v)| + |L4(v)|) + |L2(v)| + 1 and S is a γt2(T )-set
containing v. Moreover, the set (S \ {v}) ∪ {u} is a γt2(T )-set that does not
contain v. Hence, once again v /∈ At2(T ) ∪ Nt2(T ).

By Claim G, we may assume that L1(v) = ∅.

Claim H. Suppose L1(v) = ∅. Then the following hold.

(a) If |L4(v)| ≥ 1, then v ∈ Nt2(T ).

(b) If |L2(v)| = 1 and L4(v) = ∅, then v /∈ At2(T ) ∪Nt2(T ).



84 M.A. Henning and A.J. Marcon

(c) If |L2(v)| ≥ 2 and L4(v) = ∅, then v ∈ Nt2(T ).

Proof. (a) Suppose |L4(v)| ≥ 1. Every leaf is at distance 2, 4 or 5 from v in
T . The set D contains at least one vertex from each L2(v)-path and at least
two vertices from each L0(v)-path and each L4(v)-path. Thus, γt2(T ) = |D| ≥
2(|L0(v)| + |L4(v)|) + |L2(v)| with strict inequality if v ∈ D. The set C(4)(v) ∪
S(T ) ∪ Gr(v) is a semi-TD-set of T of cardinality 2(|L0(v)| + |L4(v)|) + |L2(v)|,
and so γt2(T ) ≤ 2(|L0(v)| + |L4(v)|) + |L2(v)|. Consequently, γt2(T ) = |D| =
2(|L0(v)| + |L4(v)|) + |L2(v)| and v /∈ D. Since D is an arbitrary γt2(T )-set,
v ∈ Nt2(T ).

(b) Suppose |L2(v)| = 1 and L4(v) = ∅. Let L2(v) = {u2} and let vu1u2 be
the (v, u2)-path. Then, L

0(v) = L(v) \ {u2} and S = S(T ) ∪Gr(v) ∪ {v, u1} is a
semi-TD-set of cardinality 2|L0(v)|+ 2, and so γt2(T ) ≤ |S| = 2|L0(v)|+ 2. The
set D contains at least two vertices from the set N [v] ∪ {u2} and at least two
vertices not in N [v] from each L0(v)-path. Thus, γt2(T ) = |D| ≥ 2|L0(v)| + 2.
Consequently, γt2(T ) = 2|L0(v)| + 2 and S is a γt2(T )-set that contains the
vertex v. Moreover, the set (S\{v})∪{u2} is a γt2(T )-set that does not contain v.
Hence, v /∈ At2(T ) ∪Nt2(T ).

(c) Suppose that |L2(v)| ≥ 2 and L4(v) = ∅. Every leaf is at distance 2
or 5 from v in T . The set D contains at least one vertex from each L2(v)-
path and at least two vertices from each L0(v)-path. Thus, γt2(T ) = |D| ≥
2|L0(v)| + |L2(v)| with strict inequality if v ∈ D. The set S(T ) ∪ Gr(v) is a
semi-TD-set of cardinality 2|L0(v)|+ |L2(v)|, and so γt2(T ) ≤ 2|L0(v)|+ |L2(v)|.
Consequently, γt2(T ) = |D| = 2|L0(v)| + |L2(v)| and v /∈ D. Since D is an
arbitrary γt2(T )-set, v ∈ Nt2(T ).

Theorem 1 now follows from Claims A, B, C, D, E, F, G and H.

6. Proof of Theorem 2

Let T be a rooted tree that is not a star with root v that contains at least one
branch vertex different from v. We shall adopt the following notation. Let u be
a branch vertex at maximum distance from v and let k0 = |L0(u)|, k1 = |L1(u)|,
k2 = |L2(u)|, k3 = |L3(u)| and k4 = |L4(u)|. Let w be the parent of u (possibly,
v = w). Let T ′ be the tree obtained from T by applying the following operations.

O1: For k3 ≥ 1, let T ′ be the tree obtained from T by deleting D(u) and
attaching a path P3 to u.

O2: For k3 = 0, k1 ≥ 1 and k0 + k2 + k4 ≥ 1, let T ′ be the tree obtained from
T by deleting D(u) and attaching a path P3 to u.
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O3: For k0 = k2 = k3 = k4 = 0 and k1 ≥ 2, let T ′ be the tree obtained from T
by deleting D(u) and attaching a path P1 to u.

O4: For k1 = k3 = 0 and k4 ≥ 1, let T ′ be the tree obtained from T by deleting
D(u) and attaching a path P4 to u.

O5: For k1 = k3 = k4 = 0, k2 = 1 and k0 ≥ 1, let T ′ be the tree obtained from
T by deleting D(u) and attaching a path P2 to u.

O6: For k1 = k3 = k4 = 0 and k2 ≥ 2, let T ′ be the tree obtained from T by
deleting D(u) and attaching a path P4 to u.

O7: For k1 = k2 = k3 = k4 = 0, let T ′ be the tree obtained from T by deleting
D(u) and attaching a path P5 to u.

Our next result, namely Theorem 2, establishes a key result relating the semi-
total domination numbers of the trees T and T ′. Theorem 2 follows immediately
from Theorem 1 and Theorem 8. We use the standard notation [k] = {1, 2, . . . , k}
once again.

Theorem 8. Let T be a tree with order at least 4 that is not a star and is rooted

at a vertex v such that T contains at least one branch vertex u different from v
and let T ′ be the tree defined immediately before the statement of the theorem.

Let w be the parent of u (possibly, w = v). Suppose that T ′ is obtained from T
by applying operation Oi for some i ∈ [7]. Then,

γt2(T
′) =







































γt2(T )− 2k0 − k2 − k3 − 2k4 + 1 for i = 1,
γt2(T )− 2k0 − k2 − 2k4 + 1 for i = 2,
γt2(T ) for i = 3,
γt2(T )− 2k0 − k2 − 2k4 + 2 for i = 4,
γt2(T )− 2k0 for i = 5,
γt2(T )− 2k0 − k2 + 2 for i = 6,
γt2(T )− 2k0 + 2 for i = 7.

Further, in all cases, the following properties PA and PN hold:

PA : v ∈ At2(T ) if and only if v ∈ At2(T
′).

PN : v ∈ Nt2(T ) if and only if v ∈ Nt2(T
′).

Proof. For each vertex x ∈ L(u) replace the (u, x)-path in T with a (u, x)-path of
length j, where j ∈ {5, 1, 2, 3, 4} if x ∈ Li(u) when i ∈ {0, 1, 2, 3, 4}, respectively.
Let T

′′

denote the resulting tree. By repeated applications of Lemma 7, we deduce
that v ∈ At2(T ) (Nt2(T ), respectively) if and only if v ∈ At2(T

′′

) (Nt2(T
′′

),
respectively). Hence, we assume T = T

′′

. With this assumption, every leaf of T
that is a descendant of u is within distance 5 from u. We proceed further with a
series of five claims.
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Claim I. Suppose k3 ≥ 1. Then, T ′ is obtained from T by operation O1 and

γt2(T
′) = γt2(T )− 2k0 − k2 − k3 − 2k4 + 1 and properties PA and PN hold.

Proof. Suppose k3 ≥ 1. Thus, T ′ is obtained from T by operation O1. Let
u3 ∈ L3(u) and let uu1u2u3 be the (u, u3)-path. Renaming vertices, if necessary,
we may assume that T ′ = T−(D(u)\{u1, u2, u3}). Let H = T [D(u)\{u1, u2, u3}]
and let XH = (S(T )∪Gr(u)∪C(4)(u))∩V (H). We note that |XH | = 2k0+ k2+
k3 + 2k4 − 1. By Observation 5, there exists a γt2(T

′)-set S that contains the
vertex u2. If u1 ∈ S, then we can replace u1 in S with u. Thus, we may assume
S ∩ {u, u1, u2, u3} = {u, u2}. The set S can be extended to a semi-TD-set of T
by adding to it the set XH , implying that γt2(T ) ≤ |S|+ |XH | = γt2(T

′) + |XH |.
Conversely, let D be a γt2(T )-set and let Du = D∩D(u). The set D contains

at least two vertices from each L0(u)-path and L4(u)-path, and at least one vertex
from each L2(u)-path and L3(u)-path, implying that |Du| ≥ 2k0+k2+k3+2k4 =
|XH |+ 1. By Observation 5, we can choose D so that S(T ) ⊆ D. In particular,
u2 ∈ D. If u1 ∈ D, then we can replace u1 in D with u. Hence, we may assume
that D ∩ {u, u1, u2, u3} = {u, u2}, implying that D ∩ V (T ′) = (D \Du) ∪ {u2} is
a semi-TD-set of T ′. Therefore, γt2(T

′) ≤ |D|− |Du|+1 ≤ |D|− (|XH |+1)+1 =
|D| − |XH | = γt2(T )− |XH |. Consequently, γt2(T ) = γt2(T

′) + |XH | = γt2(T
′) +

2k0 + k2 + k3 + 2k4 − 1.
Suppose v /∈ At2(T

′) and let S′ be a γt2(T
′)-set that does not contain the

vertex v. If u3 ∈ S′, then we can replace u3 in S′ by u2. Hence, we may assume
that u2 ∈ S′. If u1 ∈ S′, then we can replace u1 in S′ by u. Hence, we may assume
that S′ ∩ {u, u1, u2, u3} = {u, u2}. With these assumptions, the set S′ ∪XH is a
semi-TD-set of T of cardinality |S′| + |XH | = γt2(T

′) + |XH | = γt2(T ). Hence,
S′ ∪XH is a γt2(T )-set not containing v, implying that v /∈ At2(T ). Therefore,
by contraposition, if v ∈ At2(T ), then v ∈ At2(T

′).
Conversely, suppose v ∈ At2(T

′). Suppose to the contrary that v /∈ At2(T ).
LetD be a γt2(T )-set that does not contain v. Analogous to our earlier arguments,
we can choose such a set D so that D∩D[u] = XH∪{u, u2}. Therefore, D∩V (T ′)
is a γt2(T

′)-set that does not contain v, a contradiction. Hence, if v ∈ At2(T
′),

then v ∈ At2(T ). Thus, property PA holds. Analogous arguments show that
property PN holds.

By Claim I, we may assume that k3 = 0, for otherwise the desired result
follows.

Claim J. Suppose k1 ≥ 1. Then, T ′ is obtained from T by operation Oi for some

i ∈ {2, 3} and

γt2(T
′) =

{

γt2(T )− 2k0 − k2 − 2k4 + 1 for i = 2,
γt2(T ) for i = 3.

Further, the properties PA and PN hold in both cases.
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Proof. Suppose k1 ≥ 1. Let u′ be a leaf-neighbor of u. We proceed further with
a series of two subclaims.

Claim J.1. If k0 + k2 + k4 ≥ 1, then γt2(T
′) = γt2(T )− 2k0 − k2 − 2k4 + 1 and

properties PA and PN hold.

Proof. Suppose k0 + k2 + k4 ≥ 1. Thus, T ′ is obtained from T by operation O2.
Let P : u1u2u3 be the path P3 added to T−D(u) when constructing T ′, where u is
adjacent to u1. Let H = T [D(u)] and let XH = (S(T )∪Gr(u)∪C(4)(u))∩V (H).
We note that |XH | = 2k0+ k2+2k4. By Observation 5 there exists a γt2(T

′)-set,
S, such that u2 ∈ S. If u1 ∈ S, then we can replace u1 in D with u. Hence,
we may assume that S ∩ {u, u1, u2, u3} = {u, u2}. Since k0 + k2 + k4 ≥ 1, the
set S \ {u2} can be extended to a semi-TD-set of T by adding to it the set XH ,
implying that γt2(T ) ≤ |S \ {u2}|+ |XH | = γt2(T

′) + |XH | − 1.
Conversely, let D be a γt2(T )-set and let Du = D∩D(u). The set D contains

at least two vertices from each L0(u)-path and L4(u)-path, and at least one
vertex from each L2(u)-path, implying that |Du| ≥ 2k0 + k2 + 2k4 = |XH |. By
Observation 5, we can chooseD so that S(T ) ⊆ D. In particular, u ∈ D, implying
that (D \Du) ∪ {u2} is a semi-TD-set of T ′, and so γt2(T

′) ≤ |D| − |Du|+ 1. If
|Du| > |XH |, then (D\Du)∪XH is a semi-TD-set of T of cardinality less than |D|,
a contradiction. Hence, |Du| = |XH | and γt2(T

′) ≤ |D| − |Du| + 1 = γt2(T ) −
|XH |+1. Consequently, γt2(T ) = γt2(T

′)+ |XH |−1 = γt2(T
′)+2k0+k2+2k4−1.

Suppose v /∈ At2(T
′) and let S′ be a γt2(T

′)-set that does not contain the
vertex v. If u3 ∈ S′, then we can replace u3 in S′ by u2. Hence, we may
assume that u2 ∈ S′. If u1 ∈ S′, then we can replace u1 in S′ by u. Hence,
we may assume that S′ ∩ {u, u1, u2, u3} = {u, u2}. With these assumptions, the
set S = (S′ \ {u2}) ∪XH is a semi-TD-set of T of cardinality |S′| + |XH | − 1 =
γt2(T

′) + |XH | − 1 = γt2(T ). Hence, S is a γt2(T )-set not containing v, implying
that v /∈ At2(T ). Therefore, by contraposition, if v ∈ At2(T ), then v ∈ At2(T

′).
Conversely, suppose v ∈ At2(T

′). Suppose to the contrary that v /∈ At2(T ).
LetD be a γt2(T )-set that does not contain v. Analogous to our earlier arguments,
we can choose such a set D so that D ∩ D[u] = XH ∪ {u}. Therefore, (D ∩
V (T ′)) ∪ {u2} is a γt2(T

′)-set that does not contain v, a contradiction. Hence, if
v ∈ At2(T

′), then v ∈ At2(T ). Thus, property PA holds. Analogous arguments
show that property PN holds.

Claim J.2. If k0+k2+k4 = 0, then γt2(T
′) = γt2(T ) and properties PA and PN

hold.

Proof. Since k0 + k2 + k4 = 0, we have k1 ≥ 2. Thus, T ′ is obtained from T
by operation O3. Renaming vertices if necessary, T ′ = T − (D(u) \ {u′}). By
assumption, the tree T is not a star, implying that the tree T ′ is not a star.
By Observation 5, there exists a γt2(T

′)-set S that contains the vertex u and
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no leaf in T ′. Thus, we assume u ∈ S and that no leaf of T ′ is contained in S.
Thus, the set S is a semi-TD-set of T , implying that γt2(T ) ≤ |S| = γt2(T

′).
Conversely, let D be a γt2(T )-set. By Observation 5, we can choose D so that
S(T ) ⊆ D. In particular, u ∈ D and no leaf-neighbor of u belongs to D, implying
that D is a semi-TD-set of T ′, and so γt2(T

′) ≤ |D| = γt2(T ). Consequently,
γt2(T ) = γt2(T

′).

Suppose v /∈ At2(T
′) and let S′ be a γt2(T

′)-set that does not contain the
vertex v. If u′ ∈ S′, then if u ∈ S′ we replace u′ in S with a vertex from
x ∈ N [w] \ {u} such that x 6= v, else we replace u′ in S with u. Hence we
may assume that u′ /∈ S′ (which is possible since T ′ is not a star). Thus the
set S′ is a γt2(T )-set not containing v, implying that v /∈ At2(T ). Therefore, by
contraposition, if v ∈ At2(T ), then v ∈ At2(T

′).

Conversely, suppose v ∈ At2(T
′). Suppose to the contrary that v /∈ At2(T ).

Let D be a γt2(T )-set that does not contain v. If D contains a leaf-neighbor z
of u, then if u ∈ D we can replace z in D with a vertex from x ∈ N [w] \ {u}
such that x 6= v else we replace z in D with u to produce a new γt2(T )-set that
does not contain v. Hence, we may choose the set D so that D ∩ D[u] = {u}.
Therefore, D is a γt2(T

′)-set that does not contain v, a contradiction. Hence, if
v ∈ At2(T

′), then v ∈ At2(T ). Thus, property PA holds. Analogous arguments
show that property PN holds.

Claim J follows immediately from Claim J.1 and Claim J.2.

By Claim J, we may assume that k1 = 0, for otherwise the desired result
follows.

Claim K. Suppose k4 ≥ 1. Then, T ′ is obtained from T by operation O4 and

γt2(T
′) = γt2(T )− 2k0 − k2 − 2k4 + 2 and properties PA and PN hold.

Proof. Suppose k4 ≥ 1. Thus, T ′ is obtained from T by operation O4. By
our earlier assumptions, k1 = k3 = 0. Let u4 ∈ L4(u) and let uu1u2u3u4 be
the (u, u4)-path. Renaming vertices if necessary, we may assume that T ′ =
T − (D(u) \ {u1, u2, u3, u4}). Let H = T [D(u) \ {u1, u2, u3, u4}] and let XH =
(S(T )∪C(4)(u)∪Gr(u))∩ V (H). We note that |XH | = 2k0 + k2 +2(k4 − 1). By
Observation 5, there exists a γt2(T

′)-set S that contains the vertex u3. If u2 ∈ S,
then we can replace u2 in S with u1. Thus, we may assume S ∩{u1, u2, u3, u4} =
{u1, u3}. Then the set S can therefore be extended to a semi-TD-set of T by
adding to it the set XH , implying that γt2(T ) ≤ |S|+ |XH | = γt2(T

′) + |XH |.
Conversely, let D be a γt2(T )-set and let Du = D∩D(u). The set D contains

at least two vertices from each L0(u)-path and L4(u)-path, and at least one
vertex from each L2(u)-path, implying that |Du| ≥ 2k0 + k2 + 2k4 = |XH | + 2.
On the other hand, the set (D \ Du) ∪ {u1, u3} is a semi-TD-set of T ′, and so
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γt2(T
′) ≤ γt2(T ) − |Du| + 2 ≤ γt2(T ) − |XH |. Consequently, γt2(T ) = γt2(T

′) +
|XH | = γt2(T

′) + 2k0 + k2 + 2k4 − 2.

Suppose v /∈ At2(T
′) and let S′ be a γt2(T

′)-set that does not contain the
vertex v. If u4 ∈ S′, then we can replace u4 in S′ with u3. Hence we may choose
S′ so that u3 ∈ S′. If u2 ∈ S′, then we can replace u2 in S′ with u1. Thus,
we may assume S′ ∩ {u1, u2, u3, u4} = {u1, u3}. The set S′ ∪ XH is therefore a
semi-TD-set of T of cardinality |S′| + |XH | = γt2(T

′) + |XH | = γt2(T ). Thus,
S′ ∪ XH is a γt2(T )-set not containing the vertex v, implying that v /∈ At2(T ).
Therefore, by contraposition, if v ∈ At2(T ), then v ∈ At2(T

′).

Conversely, suppose v ∈ At2(T
′). Suppose to the contrary that v /∈ At2(T ).

Let D be a γt2(T )-set that does not contain v and let Du = D ∩D(u). If |Du| >
|XH |+2, then the set (D\Du)∪(XH∪{u1, u3}) is a semi-TD-set of T of cardinality
less than |D|, a contradiction. Hence, |Du| ≤ |XH |+ 2. Analogous to our earlier
arguments, |Du| ≥ |XH |+2. Consequently, |Du| = |XH |+2 and (D\Du)∪{u1, u3}
is a semi-TD-set of T ′ of cardinality |D| − |Du| + 2 = γt2(T ) − |XH | = γt2(T

′).
Thus, (D\Du)∪{u1, u3} is a γt2(T

′)-set that does not contain v, a contradiction.
Hence, if v ∈ At2(T

′), then v ∈ At2(T ). Thus, property PA holds. Analogous
arguments show that property PN holds.

By Claim K, we may assume that k4 = 0, for otherwise the desired result
follows.

Claim L. Suppose k2 ≥ 1. Then, T ′ is obtained from T by operation Oi for

some i ∈ {5, 6} and

γt2(T
′) =

{

γt2(T )− 2k0 for i = 5,
γt2(T )− 2k0 − k2 + 2 for i = 6.

Further, the properties PA and PN hold in both cases.

Proof. Suppose k2 ≥ 1. Let u2 ∈ L2(u) and let uu1u2 be the (u, u2)-path in T .
By our earlier assumptions, k1 = k3 = k4 = 0. We proceed further with a series
of two subclaims.

Claim L.1. If k2 = 1, then γt2(T
′) = γt2(T ) − 2k0 and properties PA and PN

hold.

Proof. Suppose that k2 = 1 and hence, k0 ≥ 1 and L2(u) = {u2}. Thus, T ′

is obtained from T by operation O5. Let uu1u2 be the (u, u2)-path. Renaming
vertices if necessary, T ′ = T − (D(u) \ {u1, u2}). Let H = T [D(u) \ {u1, u2}] and
let XH = (S(T ) ∪ Gr(u)) ∩ V (H). We note that |XH | = 2k0. Every γt2(T

′)-set
S can be extended to a semi-TD-set of T by adding to it the set XH , implying
that γt2(T ) ≤ |S|+ |XH | = γt2(T

′) + |XH |.
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Conversely, let D be an γt2(T )-set and let Du = D ∩ D(u). The set Du

contains at least two vertices from each L0(u)-path and one of the vertices u1
or u2, implying that |Du| ≥ 2k0 + 1 = |XH | + 1. The set (D \ Du) ∪ {u1} is a
semi-TD-set of T ′, and so γt2(T

′) ≤ |D|−|Du|+1 ≤ γt2(T )−|XH |. Consequently,
γt2(T ) = γt2(T

′) + |XH | = γt2(T
′) + 2k0.

Suppose v /∈ At2(T
′) and let S′ be a γt2(T

′)-set that does not contain the
vertex v. Then, the set S′ ∪XH is a γt2(T )-set not containing v, implying that
v /∈ At2(T ). Therefore, by contraposition, if v ∈ At2(T ), then v ∈ At2(T

′).

Conversely, suppose v ∈ At2(T
′). Suppose to the contrary that v /∈ At2(T ).

LetD be a γt2(T )-set that does not contain v. Analogous to our earlier arguments,
we can choose such a set D so that D ∩D(u) = XH ∪ {u1}. Thus, D \XH is a
semi-TD-set of T ′ of cardinality |D| − |XH | = γt2(T ) − |XH | = γt2(T

′). The set
D \XH is therefore a γt2(T

′)-set that does not contain v, a contradiction. Hence,
if v ∈ At2(T

′), then v ∈ At2(T ). Thus, property PA holds. Analogous arguments
show that property PN holds.

Claim L.2. If k2 ≥ 2, then γt2(T
′) = γt2(T ) − 2k0 − k2 + 2 and properties PA

and PN hold.

Proof. Suppose k2 ≥ 2. Thus, T ′ is obtained from T by operation O6. Let
P : u1u2u3u4 be the path P4 added to T −D(u) when constructing T ′, where u
is adjacent to u1. Let H = T [D(u)] and let XH = (S(T ) ∪ Gr(u)) ∩ V (H). We
note that |XH | = 2k0 + k2. By Observation 5, there exists a γt2(T

′)-set S that
contains the vertex u3. If u2 ∈ S, then we may replace u2 in S with u1. Hence
we may choose S so that S ∩ {u1, u2, u3, u4} = {u1, u3}. The set S \ {u1, u3} can
therefore be extended to a semi-TD-set of T by adding to it the set XH , implying
that γt2(T ) ≤ |S \ {u1, u3}|+ |XH | = γt2(T

′) + |XH | − 2.

Conversely, let D be a γt2(T )-set and let Du = D∩D(u). The set Du contains
at least two vertices from each L0(u)-path and one vertex from each L2(u)-path,
implying that |Du| ≥ 2k0+ k2 = |XH |. The set (D \Du)∪{u1, u3} is a semi-TD-
set of T ′, and so γt2(T

′) ≤ |D| − |Du| + 2 ≤ γt2(T ) − |XH | + 2. Consequently,
γt2(T ) = γt2(T

′) + |XH | − 2 = γt2(T
′) + 2k0 + k2 − 2.

Suppose v /∈ At2(T
′) and let S′ be a γt2(T

′)-set that does not contain the
vertex v. Analogous to our earlier arguments, we can choose such a set S′ so that
S′ ∩ {u1, u2, u3, u4} = {u1, u3}. The set (S′ \ {u1, u3}) ∪XH is a semi-TD-set of
cardinality |S′| + |XH | − 2 = γt2(T

′) + |XH | − 2 = γt2(T ) and is thus a γt2(T )-
set not containing v, implying that v /∈ At2(T ). Therefore, by contraposition, if
v ∈ At2(T ), then v ∈ At2(T

′).

Conversely, suppose v ∈ At2(T
′). Suppose to the contrary that v /∈ At2(T ).

LetD be a γt2(T )-set that does not contain v. Analogous to our earlier arguments,
we can choose a set D so that D∩D(u) = XH . Therefore, (D \XH)∪{u1, u3} is
a semi-TD-set of cardinality |D| − |XH |+2 = γt2(T )− |XH |+2 = γt2(T

′) and is
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thus a γt2(T
′)-set that does not contain v, a contradiction. Hence, if v ∈ At2(T

′),
then v ∈ At2(T ). Thus, property PA holds. Analogous arguments show that
property PN holds.

Claim L follows from Claim L.1 and Claim L.2. This completes the proof of
Claim L.

By Claim L, we may assume that k2 = 0, for otherwise the desired result
follows. By our earlier assumptions, k1 = k3 = k4 = 0. Thus, L(u) = L0(u).
Since u is a branch vertex, k0 ≥ 2.

Claim M. Suppose k0 ≥ 2. Then, T ′ is obtained from T by operation O7 and

γt2(T
′) = γt2(T )− 2k0 + 2 and properties PA and PN hold.

Proof. Let {u5, v5} ⊆ L0(u) and let uu1u2u3u4u5 and uv1v2v3v4v5 be the re-
spective (u, u5)-path and (u, v5)-path in T . Thus, T ′ is obtained from T by
operation O7. Renaming vertices if necessary, we may assume that T ′ = T −
(D(u) \ {u1, u2, u3, u4, u5}). Let H = T [D(u) \ {u1, u2, u3, u4, u5}] and let XH =
(S(T ) ∪ Gr(u)) ∩ V (H). We note that |XH | = 2k0 − 2. Every γt2(T

′)-set can
be extended to a semi-TD-set of T by adding to it the set XH , implying that
γt2(T ) ≤ γt2(T

′) + |XH |.
Conversely, let D be a γt2(T )-set and let Du = D∩D(u). The set Du contains

at least two vertices from each L0(u)-path, implying that |Du| ≥ 2k0 = |XH |+2.
The set (D\Du)∪{u2, u4} is a semi-TD-set of T ′, and so γt2(T

′) ≤ |D|−|Du|+2 ≤
γt2(T )− |XH |. Consequently, γt2(T ) = γt2(T

′) + |XH | = γt2(T
′) + 2k0 − 2.

Suppose v /∈ At2(T
′) and let S′ be a γt2(T

′)-set that does not contain the
vertex v. Then, the set S′ ∪XH is a γt2(T )-set not containing v, implying that
v /∈ At2(T ). Therefore, by contraposition, if v ∈ At2(T ), then v ∈ At2(T

′).

Conversely, suppose v ∈ At2(T
′). Suppose to the contrary that v /∈ At2(T ).

Let D be a γt2(T )-set that does not contain v and chosen so that |D ∩D(u)| is a
minimum. Let Du = D∩D(u). If |Du| ≥ |XH |+3, then the set (D \Du)∪ (XH ∪
{u, u2, u4}) is a semi-TD-set of T of cardinality |D| − |Du| + |XH | + 3 ≤ |D| =
γt2(T ) and is therefore a γt2(T )-set containing fewer vertices of D(u) than does
D, a contradiction. Hence, |Du| ≤ |XH |+2. Analogous to our earlier arguments,
|Du| ≥ |XH | + 2. Consequently, |Du| = |XH | + 2 and (D \ Du) ∪ {u2, u4} is a
semi-TD-set of T ′ of cardinality |D| − |Du|+2 = γt2(T )− |XH | = γt2(T

′). Thus,
(D\Du)∪{u2, u4} is a γt2(T

′)-set that does not contain v, a contradiction. Hence,
if v ∈ At2(T

′), then v ∈ At2(T ). Thus, property PA holds. Analogous arguments
show that property PN holds.

Theorem 8 follows from Claims I, J, K, L and M.
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Appendix

We now present an example to illustrate Theorem 2. Applying our pruning process
discussed in Section 2 to the rooted tree T with root v illustrated in Figure 1(a), we
proceed as follows.

• The branch vertices b3 and b4 are both at maximum distance 3 from v in T . We
select b3, where |L3(b3)| = 1. Thus, b3 is a type-(T.1) branch vertex and we delete D(b3)
and attach a path of length 3 to b3.

• The branch vertex at maximum distance from v in the resulting tree (illustrated in
Figure 1(b)) is the vertex b4. Since |L1(b4)| > 2 and every leaf-descendant of b4 belongs
to L1(b4), the vertex b4 is therefore a type-(T.3) branch vertex and we delete D(b4) and
attach a path of length 1 to b4.
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Figure 1.The pruning of a tree rooted at v.

• The branch vertex at maximum distance from v in the resulting tree (illustrated
in Figure 1(c)) is the vertex b2. Since |L4(b2)| = 1 and L1(b2) = L3(b2) = ∅, the vertex
b2 is a type-(T.4) branch vertex and we delete D(b2) and attach a path of length 4 to b2.

• The branch vertex at maximum distance from v in the resulting tree (illustrated
in Figure 1(d)) is the vertex b1. Since |L3(b1)| = 1, the vertex b1 is a type-(T.1) branch
vertex and we delete D(b1) and attach a path of length 3 to b1. The resulting pruned
tree T v is illustrated in Figure 1(e).

• Since |L
1

(v)| = 1 and |L
4

(v)| = 1, by Theorem 2, we deduce that v /∈ At2(T ) ∪
Nt2(T ).
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