Discussiones Mathematicae Graph Theory 36 (2016) 71–93 doi:10.7151/dmgt.1844

VERTICES CONTAINED IN ALL OR IN NO MINIMUM SEMITOTAL DOMINATING SET OF A TREE

MICHAEL A. HENNING¹

AND

ALISTER J. MARCON²

Department of Pure and Applied Mathematics University of Johannesburg Auckland Park, 2006, South Africa

e-mail: mahenning@uj.ac.za alister.marcon@gmail.com

Abstract

Let G be a graph with no isolated vertex. In this paper, we study a parameter that is squeezed between arguably the two most important domination parameters; namely, the domination number, $\gamma(G)$, and the total domination number, $\gamma_t(G)$. A set S of vertices in a graph G is a semitotal dominating set of G if it is a dominating set of G and every vertex in S is within distance 2 of another vertex of S. The semitotal domination number, $\gamma_{t2}(G)$, is the minimum cardinality of a semitotal dominating set of G. We observe that $\gamma(G) \leq \gamma_{t2}(G) \leq \gamma_t(G)$. We characterize the set of vertices that are contained in all, or in no minimum semitotal dominating set of a tree.

Keywords: domination, semitotal domination, trees. 2010 Mathematics Subject Classification: 05C69.

1. INTRODUCTION

In this paper, we continue the study of a parameter, called the semitotal domination number, that is squeezed between arguably the two most important domination parameters; namely, the domination number and the total domination

¹Research supported in part by the South African National Research Foundation and the University of Johannesburg.

²Funded by the South African National Research Foundation.

number. A dominating set in a graph G is a set S of vertices of G such that every vertex in $V(G) \setminus S$ is adjacent to at least one vertex in S. The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of G. A total dominating set, abbreviated a TD-set, of a graph G with no isolated vertex is a set S of vertices of G such that every vertex in V(G) is adjacent to at least one vertex in S. The total domination number of G, denoted by $\gamma_t(G)$, is the minimum cardinality of a TD-set of G. The literature on the subject of domination parameters in graphs up to the year 1997 has been surveyed and detailed in the so-called domination book [4]. Total domination is now well studied in graph theory. For a recent book on the topic, see [9]. A survey of total domination in graphs can also be found in [5].

The concept of semitotal domination in graphs was introduced and studied by Goddard, Henning and McPillan [3], and studied further in [6, 7] and elsewhere. A set S of vertices in a graph G with no isolated vertices is a *semitotal dominating* set, abbreviated semi-TD-set, of G if it is a dominating set of G and every vertex in S is within distance 2 of another vertex of S. The *semitotal domination number*, denoted by $\gamma_{t2}(G)$, is the minimum cardinality of a semi-TD-set of G. A semi-TD-set of G of cardinality $\gamma_{t2}(G)$ is called a $\gamma_{t2}(G)$ -set. Since every TD-set is a semi-TD-set, and since every semi-TD-set is a dominating set, we have the following observation first observed in [3]. For every graph G with no isolated vertex, $\gamma(G) \leq \gamma_{t2}(G) \leq \gamma_t(G)$.

Mynhardt [10] characterized all the vertices that are in all, or in no minimum dominating set. Moreover, the same type of results were established by Cockayne, Henning and Mynhardt in [2] for total domination, Henning and Plummer [8] for paired domination and Blidia, Chellali and Khelifi [1] for double domination. Motivated by these results, we aim to characterize all the vertices that are in all, or in no minimum semitotal dominating set in a rooted tree T.

1.1. Terminology and Notation

For notation and graph theory terminology that are not defined herein, we refer the reader to [9]. Let G = (V, E) be a graph with vertex set V = V(G) of order n = |V| and edge set E = E(G) of size m = |E|, and let v be a vertex in V. We denote the *degree* of v in G by $d_G(v)$. A *leaf* of G is a vertex of degree 1, while a *support vertex* of G is a vertex adjacent to a leaf. A *strong support vertex* is a support vertex with at least two leaf-neighbors. We define a *branch vertex* as a vertex of degree at least 3. A *star* is a tree with at most one vertex that is not a leaf.

For a set $S \subseteq V$, the subgraph induced by S is denoted by G[S]. A cycle and path on n vertices are denoted by C_n and P_n , respectively. For two vertices u and v in a connected graph G, the distance $d_G(u, v)$ between u and v is the length of a shortest (u, v)-path in G. The distance $d_G(v, S)$ between a vertex v and a set S of vertices in a graph G is the minimum distance from v to a vertex of S in G. The maximum distance among all pairs of vertices of G is the diameter of a graph G which is denoted by diam(G). The open neighborhood of a vertex v is the set $N_G(v) = \{u \in V \mid uv \in E\}$ and the closed neighborhood of v is $N_G[v] = \{v\} \cup N_G(v)$. For a set $S \subseteq V$, its open neighborhood is the set

$$N_G(S) = \bigcup_{v \in S} N_G(v),$$

and its closed neighborhood is the set $N_G[S] = N_G(S) \cup S$. If the graph G is clear from the context, we omit it in the above expressions. For example, we write d(u), d(u, v), N(v) and N[v] rather than $d_G(u)$, $d_G(u, v)$, $N_G(v)$ and $N_G[v]$, respectively.

Let X and Y be subsets of vertices in G. If $Y \subseteq N[X]$, then we say the set X dominates the set Y in G and that the set Y is dominated by X. Furthermore, if $Y = \{y\}$, then we simply say that y is dominated by X rather than $\{y\}$ is dominated by X. Thus, if a vertex v is dominated by X, then $N[v] \cap X \neq \emptyset$. We note that if X dominates V, then X is a dominating set in G. Hence, if X is a dominating set in G, then N[X] = V. Additionally, we say that X semitotally dominates the set Y in G if each vertex in X lies within distance 2 of another vertex in X, and in turn the set Y is said to be semitotally dominated by X.

For a graph G, we define the sets $\mathcal{A}_{t2}(G)$ and $\mathcal{N}_{t2}(G)$ as follows:

$$\mathcal{A}_{t2}(G) = \{ v \in V(G) \mid v \text{ is in every } \gamma_{t2}(G) \text{-set} \},\$$

and

$$\mathcal{N}_{t2}(G) = \{ v \in V(G) \mid v \text{ is in no } \gamma_{t2}(G) \text{-set} \}.$$

A rooted tree T distinguishes one vertex r called the root. For each vertex $v \neq r$ of T, the parent of v is the neighbor of v on the unique (r, v)-path, while a child of v is any other neighbor of v. We denote all the children of a vertex v by C(v). A descendant of v is a vertex $u \neq v$ such that the unique (r, u)-path contains v. Thus, every child of v is a descendant of v. A grandchild of v is a descendant of v at distance 2 from v. We let D(v) denote the set of descendants of v, and we define $D[v] = D(v) \cup \{v\}$. The set of leaves in T is denoted by L(T) and the set of support vertices is denoted by S(T). The maximal subtree at v is the subtree of T induced by D[v], and is denoted by T_v . The set of leaves in T_v distinct from v we denote by L(v); that is, $L(v) = D(v) \cap L(T)$. The set of branch vertices of T is denoted by B(T). For $j \in \{0, 1, 2, 3, 4\}$, we define

$$L^{j}(v) = \{ u \in L(v) \, | \, d(u, v) \equiv j \, (\text{mod } 5) \}.$$

Furthermore, let

$$L_1^1(v) = \{x \in L^1(v) | d(v, x) = 1\}$$
 and $L_2^1(v) = L^1(v) \setminus L_1^1(v).$

We sometimes write $L_T^j(v)$ to emphasize the tree (or subtree) concerned. Additionally, we define the path from v to a leaf in $L^j(v)$ to be a $L^j(v)$ -path. Given a vertex x of a tree T, we say we attach a path of length q to x if we add a vertex-disjoint path P_q on q vertices and join x to a leaf of the path P_q . In this case, we simply write that we attach P_q to x. We next define an essential support vertex in a tree.

Definition 1. A vertex v in a tree T is an essential support vertex in T if and only if v has exactly one leaf-neighbor, $v \in \mathcal{A}_{t2}(T)$ and $N(v) \subseteq \mathcal{N}_{t2}(T)$.

We note that if v is an essential support vertex in a tree T, then v has exactly one leaf-neighbor and $N[v] \cap D = \{v\}$ for every $\gamma_{t2}(T)$ -set D.

2. TREE PRUNING

In this paper, we use a method called *tree pruning* to characterize the sets $\mathcal{A}_{t2}(T)$ and $\mathcal{N}_{t2}(T)$ for an arbitrary tree T. Let T be a tree rooted at a vertex v. Suppose that T is not a star. We let $C^{(4)}(v)$ denote the set of children of v that belong to P_4 's that are attached to v. Furthermore, we let the descendants at distance 2 from v along P_5 's that are attached to v be denoted by $\operatorname{Gr}(v)$ and we call them *special grandchildren* of v. The pruning of T is performed with respect to its root, v. If $d(u) \leq 2$ for each $u \in V(T_v) \setminus \{v\}$, then let $\overline{T}_v = T$. Otherwise, let u be a branch vertex at maximum distance from v (we note that $|C(u)| \geq 2$ and $d(x) \leq 2$ for each $x \in D(u)$). We identify the following types of branch vertices:

 $\begin{array}{l} (\mathbf{T.1}) \ |L^{3}(u)| \geq 1. \\ (\mathbf{T.2}) \ L^{3}(u) = \emptyset, \ |L^{1}(u)| \geq 1 \ \text{and} \ |L^{0}(u) \cup L^{2}(u) \cup L^{4}(u)| \geq 1. \\ (\mathbf{T.3}) \ L^{3}(u) = L^{0}(u) = L^{2}(u) = L^{4}(u) = \emptyset \ \text{and} \ |L^{1}(u)| \geq 2. \\ (\mathbf{T.4}) \ L^{3}(u) = L^{1}(u) = \emptyset \ \text{and} \ |L^{4}(u)| \geq 1. \\ (\mathbf{T.5}) \ L^{3}(u) = L^{1}(u) = L^{4}(u) = \emptyset, \ |L^{2}(u)| = 1 \ \text{and} \ |L^{0}(u)| \geq 1. \\ (\mathbf{T.6}) \ L^{3}(u) = L^{1}(u) = L^{4}(u) = \emptyset \ \text{and} \ |L^{2}(u)| \geq 2. \\ (\mathbf{T.7}) \ L^{3}(u) = L^{1}(u) = L^{4}(u) = \emptyset \ \text{and} \ |L^{2}(u)| \geq 2. \end{array}$

We now apply the following pruning process.

(a) If u is type (**T.1**) or (**T.2**), then delete D(u) and attach a P_3 to u.

- (b) If u is type **(T.3)**, then delete D(u) and attach a P_1 to u.
- (c) If u is type (**T.4**) or (**T.6**), then delete D(u) and attach a P_4 to u.
- (d) If u is type (**T.5**), then delete D(u) and attach a P_2 to u.
- (e) If u is type (**T.7**), then delete D(u) and attach a P_5 to u.

This step of the pruning process, where all the descendants of u are deleted and a path of length 1, 2, 3, 4 or 5 is attached to u to give a tree in which u has degree 2, is called a *pruning of* T_v at u. Repeat the above process until a tree \overline{T}_v is obtained with $d(u) \leq 2$ for each $u \in V(\overline{T}_v) \setminus \{v\}$. The tree \overline{T}_v is called the pruning of T_v . To simplify notation, we write $\overline{L}^j(v)$ instead of $L^j_{\overline{T}_v}(v)$.

3. Main Results

In this paper, we aim to establish a characterization of the set of vertices contained in all or none of the minimum semi-TD-sets in a tree T of order $n \ge 2$.

In the trivial case when $T = P_2$, we note that $\mathcal{A}_{t2}(T) = V(T)$, while if $T = P_3$, then $\mathcal{A}_{t2}(T) = \mathcal{N}_{t2}(T) = \emptyset$. If T is a star $K_{1,n-1}$ with central vertex v and $n \ge 4$, then $\mathcal{A}_{t2}(T) = \{v\}$ and $\mathcal{N}_{t2}(T) = \emptyset$. Hence in what follows we restrict our attention to the more interesting case when $n \ge 4$ and T is not a star. We shall prove the following main results.³

Theorem 1. Let T be a tree with order at least 4 that is not a star and is rooted at a vertex v such that $d(u) \leq 2$ for each $u \in V(T) \setminus \{v\}$. Then,

- (a) $v \in \mathcal{A}_{t2}(T)$ if and only if one of the following hold:
 - (i) $|L^3(v)| \ge 1$ and $|L^1(v) \cup L^3(v)| \ge 2$.
 - (ii) $L^{3}(v) = \emptyset$ and $|L^{1}(v)| \ge 3$.
 - (iii) $L^{3}(v) = \emptyset$ and $|L_{1}^{1}(v)| = 2$.
 - (iv) $L^3(v) = \emptyset$, $|L_1^1(v)| \le 1$, $|L^1(v)| = 2$ and $|L^0(v) \cup L^2(v) \cup L^4(v)| \ge 1$.
 - (v) $L^{2}(v) = L^{3}(v) = L^{4}(v) = \emptyset, |L^{1}(v)| = |L^{1}_{1}(v)| = 1 \text{ and } |L^{0}(v)| \ge 1.$

(b) $v \in \mathcal{N}_{t2}(T)$ if and only if one of the following hold:

- (i) $L^{1}(v) = L^{3}(v) = \emptyset$ and $|L^{4}(v)| \ge 1$, or
- (ii) $L^1(v) = L^3(v) = L^4(v) = \emptyset$ and $|L^2(v)| \ge 2$.

Theorem 2. Let v be a vertex of a tree T with order at least 4 that is not a star. Then,

(a) $v \in \mathcal{A}_{t2}(T)$ if and only if one of the following hold: (i) $|\overline{L}^{3}(v)| \geq 1$ and $|\overline{L}^{1}(v) \cup \overline{L}^{3}(v)| \geq 2$. (ii) $\overline{L}^{3}(v) = \emptyset$ and $|\overline{L}^{1}(v)| \geq 3$. (iii) $\overline{L}^{3}(v) = \emptyset$ and $|\overline{L}^{1}_{1}(v)| = 2$. (iv) $\overline{L}^{3}(v) = \emptyset$, $|\overline{L}^{1}_{1}(v)| \leq 1$, $|\overline{L}^{1}(v)| = 2$ and $|\overline{L}^{0}(v) \cup \overline{L}^{2}(v) \cup \overline{L}^{4}(v)| \geq 1$. (v) $\overline{L}^{2}(v) = \overline{L}^{3}(v) = \overline{L}^{4}(v) = \emptyset$, $|\overline{L}^{1}(v)| = |\overline{L}^{1}_{1}(v)| = 1$ and $|\overline{L}^{0}(v)| \geq 1$. (b) $v \in \mathcal{N}_{t2}(T)$ if and only if one of the following hold: (i) $\overline{L}^{1}(v) = \overline{L}^{3}(v) = \emptyset$ and $|\overline{L}^{4}(v)| \geq 1$, or (ii) $\overline{L}^{1}(v) = \overline{L}^{3}(v) = \overline{L}^{4}(v) = \emptyset$ and $|\overline{L}^{2}(v)| \geq 2$.

^{$^{3}}An example to illustrate Theorem 2 is presented in the appendix.$ </sup>

4. Preliminary Results

The semitotal domination number of a path and a cycle is determined in [3].

Lemma 3 [3]. For $n \ge 3$, $\gamma_{t2}(P_n) = \gamma_{t2}(C_n) = \left\lceil \frac{2n}{5} \right\rceil$.

Lemma 3 immediately infers that every path P_n where $n \equiv 0 \pmod{5}$ has a unique $\gamma_{t2}(P_n)$ -set. That is, if we number the vertices in $V(P_n)$ consecutively starting at 1, then the $\gamma_{t2}(P_n)$ -set is the set of all vertices with numbers congruent to $2 \pmod{5}$ and $4 \pmod{5}$. Additionally, the paths P_2 and P_7 also have unique minimum semi-TD-sets. We state this formally as follows.

Observation 4. The paths P_2 , P_7 and P_n , where $n \equiv 0 \pmod{5}$, all have unique minimum semi-TD-sets.

We shall need the following result first observed in [6].

Observation 5. If G is a connected graph that is not a star, then there is a $\gamma_{t2}(G)$ -set that contains no leaf of G.

We proceed with the following two lemmas that will be useful when proving our main results. We use the standard notation $[k] = \{1, 2, ..., k\}$.

Lemma 6. Let T be a tree of order at least 3. Let t be a support vertex in T and let u' be a leaf-neighbor of t. If T' is the tree obtained from T by attaching a path of length 5 to u', then $\gamma_{t2}(T') = \gamma_{t2}(T) + 2$.

Proof. Suppose T' is obtained from T by adding to u' the path uwxyz together with the edge uu'. Every $\gamma_{t2}(T)$ -set can be extended to a semi-TD-set of T' by adding to it the vertices w and y, and so $\gamma_{t2}(T') \leq \gamma_{t2}(T) + 2$. Let D' be a $\gamma_{t2}(T')$ -set. If $z \in D'$, then we can replace z in D' by y. Hence we may choose D' so that $D' \cap \{y, z\} = \{y\}$. In order to semitotally dominate the vertex y, we note that x or w belong to D'. If $x \in D'$, then we can replace x in D' by w. Hence we may choose D' so that $D' \cap \{x, w\} = \{w\}$. If $u \in D'$, then we can replace u in D' by u'. Hence we may choose D' so that $u \notin D'$. If $t \in D'$, then we can replace u' in D' with a neighbor of t different from u'. If $t \notin D'$ and $|D' \cap N(t)| \geq 2$, then we can replace u' in D' with the vertex t. If $t \notin D'$ and $D' \cap N[t] = \{u'\}$, then in order to dominate the neighbors of t different from u', the set D' contains at least one vertex at distance 2 from t in T, implying once again that we can replace u' in D' with the vertex t. Hence, we may choose D' so that $u' \notin D'$. In order to dominate the vertex u', we note that $t \in D'$. Since D' is a semi-TD-set of T', the set $D' \setminus \{w, y\}$ is necessarily a semi-TD-set of T, implying that $\gamma_{t2}(T) \leq |D'| - 2 = \gamma_{t2}(T') - 2$. Consequently, $\gamma_{t2}(T') = \gamma_{t2}(T) + 2$. **Lemma 7.** Let T be a tree with order at least 3. Let t be a support vertex in T and let u' be a leaf-neighbor of t. Let T' be the tree obtained from T by attaching a path of length 5 to u'. If t is an essential support vertex in T, let $v \in V(T) \setminus \{u', t\}$. If t is not an essential support vertex in T, let $v \in V(T)$. Then the following hold.

(a) $v \in \mathcal{A}_{t2}(T)$ if and only if $v \in \mathcal{A}_{t2}(T')$.

(b) $v \in \mathcal{N}_{t2}(T)$ if and only if $v \in \mathcal{N}_{t2}(T')$.

Proof. Suppose T' is obtained from T by adding to u' the path uwxyz together with the edge uu'.

(a) Suppose that $v \notin \mathcal{A}_{t2}(T)$. Let D be a $\gamma_{t2}(T)$ -set that does not contain v. Then, $D \cup \{w, y\}$ is a semi-TD-set of T' of cardinality $|D|+2 = \gamma_{t2}(T)+2 = \gamma_{t2}(T')$ by Lemma 6. Consequently, $D \cup \{w, y\}$ is a $\gamma_{t2}(T')$ -set that does not contain v, implying that $v \notin \mathcal{A}_{t2}(T')$. Therefore, by contraposition, if $v \in \mathcal{A}_{t2}(T')$, then $v \in \mathcal{A}_{t2}(T)$.

Conversely, suppose that $v \in \mathcal{A}_{t2}(T)$. Suppose to the contrary that $v \notin \mathcal{A}_{t2}(T')$. Let D' be a $\gamma_{t2}(T')$ -set that does not contain the vertex v, and let $D = D' \cap V(T)$. If v = u', then by Observation 5, there exists a $\gamma_{t2}(T)$ -set that does not contain v, contradicting our assumption that $v \in \mathcal{A}_{t2}(T)$. Hence, $v \neq u'$. Proceeding as in the proof of Lemma 6, we can choose D' so that $D' \cap \{w, x, y, z, u\} = \{w, y\}$. Thus, $D = D' \setminus \{w, y\}$ and, by Lemma 6, $|D| = |D'| - 2 = \gamma_{t2}(T') - 2 = \gamma_{t2}(T)$. If $v \neq t$, then proceeding as in the proof of Lemma 6, we can additionally choose D' so that $D' \cap \{u', t\} = \{t\}$, implying that the set D is a $\gamma_{t2}(T)$ -set that does not contain v, a contradiction. Hence, v = t. By supposition, $v \notin D'$, and so neither neighbor of u' in T' belongs to D', implying that $u' \in D'$.

If D is a semi-TD-set in T, then D is a $\gamma_{t2}(T)$ -set that does not contain the vertex v, contradicting our supposition that $v \in \mathcal{A}_{t2}(T)$. Hence, D is not a semi-TD-set in T, implying that no vertex in D is at distance 1 or 2 from u'. Thus, $D \cap N[v] = \{u'\}$. In particular, we note that u' is the only leaf-neighbor of v in T.

We show next that for every $\gamma_{t2}(T)$ -set S, $N[v] \cap S = \{v\}$. For notational convenience, let T be rooted at the vertex v and let $N(v) \setminus \{u'\} = \{v_1, \ldots, v_k\}$. For $i \in [k]$, let T_i denote the maximal subtree of T rooted at v_i (and so, $T_i = T_{v_i}$) and let $D_i = D \cap V(T_i)$. We note that $v_i \notin D_i$ and that the set D_i is a semi-TD-set in T_i for all $i \in [k]$. Suppose that there exists a $\gamma_{t2}(T)$ -set, S, such that $|N[v] \cap S| \geq 2$. Since $v \in \mathcal{A}_{t2}(T)$, we note that $v \in S$. If $u' \in S$, we can simply replace u' in S with a neighbor of v that is not a leaf. Renaming the children of v if necessary, we may therefore assume that $v_1 \in S$. Let $S_1 = S \cap V(T_1)$. Since the set D_1 contains a vertex at distance 2 from v in T, we note that the set $(S \setminus S_1) \cup D_1$ is a semi-TD-set of T, implying that $|S| = \gamma_{t2}(T) \leq |S| - |S_1| + |D_1|$, or, equivalently, $|S_1| \leq |D_1|$. We now consider the set $S^* = (D \setminus D_1) \cup S_1$. Since u'and v_1 are at distance 2 apart in T, the set S^* is a semi-TD-set of T, implying that $\gamma_{t2}(T) \leq |S^*| \leq |D| - |D_1| + |S_1| \leq |D| = \gamma_{t2}(T)$. Consequently, $|S^*| = \gamma_{t2}(T)$ and S^* is a $\gamma_{t2}(T)$ -set that does not contain the vertex v, a contradiction. Therefore, for every $\gamma_{t2}(T)$ -set S, we have $N[v] \cap S = \{v\}$. Moreover, this result together with our earlier observation that u' is the only leaf-neighbor of v in T imply that v is an essential support vertex in T, a contradiction (recalling that here v = t). Hence, $v \in \mathcal{A}_{t2}(T')$. This completes the proof of part (a).

(b) Suppose that $v \in \mathcal{N}_{t2}(T')$. We show that $v \in \mathcal{N}_{t2}(T)$. Suppose to the contrary that there exists a $\gamma_{t2}(T)$ -set, D, that contains the vertex v. Then, $D \cup \{w, y\}$ is a semi-TD-set of T' of cardinality $|D| + 2 = \gamma_{t2}(T) + 2 = \gamma_{t2}(T')$. Consequently, $D \cup \{w, y\}$ is a $\gamma_{t2}(T')$ -set that contains v, a contradiction. Therefore, $v \in \mathcal{N}_{t2}(T)$.

Conversely, suppose that $v \in \mathcal{N}_{t2}(T)$. We show that $v \in \mathcal{N}_{t2}(T')$. Suppose to the contrary that there exists a $\gamma_{t2}(T')$ -set, D', that contains the vertex v. Let $D = D' \cap V(T)$. Proceeding as in the proof of Lemma 6, we can choose D' so that $D' \cap \{w, x, y, z, u\} = \{w, y\}$. Thus, $D = D' \setminus \{w, y\}$. If $v \neq u'$, then proceeding as in the proof of Lemma 6, we can further choose D' so that $D' \cap \{u', t\} = \{t\}$, implying that the set D is a $\gamma_{t2}(T)$ -set containing v, a contradiction. Hence, v = u'. If D is a semi-TD-set in T, then the set D is a $\gamma_{t2}(T)$ -set containing v, a contradiction. Hence, D is not a semi-TD-set in T, implying that no vertex in Dis at distance 1 or 2 from u'. Thus, $D \cap N[t] = \{u'\}$. In particular, this implies that u' is the only leaf-neighbor of t in T. An analogous proof to that employed in the proof of part (a) shows the vertex t is an essential support vertex in T, contradicting the fact that in this case v = u'. Therefore, $v \in \mathcal{N}_{t2}(T')$.

5. Proof of Theorem 1

Proof. Let T be a tree with order at least 4 that is not a star and is rooted at a vertex v such that $d(u) \leq 2$ for each $u \in V(T) \setminus \{v\}$. For each $w \in L(v)$ such that $d_T(v,w) \geq 6$, let T' be the tree obtained by replacing the (v,w)path in T with a (v,w)-path of length $j, j \in \{5,6,2,3,4\}$ if $w \in L^i(v), i \in \{0,1,2,3,4\}$, respectively. By repeated applications of Lemma 7, $v \in \mathcal{A}_{t2}(T)$ $(\mathcal{N}_{t2}(T), \text{ respectively})$ if and only if $v \in \mathcal{A}_{t2}(T')$ $(\mathcal{N}_{t2}(T'), \text{ respectively})$. Hence, in what follows, we assume T = T'. If v is a leaf of T, then by our earlier assumptions, T is a path P_n where $n \in \{4,5,6,7\}$. If $n \in \{4,6\}$, then $v \notin \mathcal{A}_{t2}(T) \cup \mathcal{N}_{t2}(T)$. If $n \in \{5,7\}$, then by Observation 4, $v \in \mathcal{N}_{t2}(T)$. Hence, we may assume that v is not a leaf in T. Let D be an arbitrary $\gamma_{t2}(T)$ -set and let W be the set of vertices at distance 3 from a leaf of some $L_2^1(v)$ -path. We proceed further with a series of claims. Claim A. If $|L_1^1(v)| \ge 2$, then $v \in \mathcal{A}_{t2}(T)$.

Proof. Suppose $|L_1^1(v)| \ge 2$. Thus, v is a strong support vertex in T and therefore has at least two leaf-neighbors. Moreover, $|L^0(v) \cup L_2^1(v) \cup L^2(v) \cup L^3(v) \cup L^4(v)| \ge 1$ since T is not a star. Let w be a neighbor of v that is not a leaf. Suppose, to the contrary, that $v \notin \mathcal{A}_{t2}(T)$. Let S be a $\gamma_{t2}(T)$ -set that does not contain the vertex v. The set S contains all leaf-neighbors of v. Since $N[w] \cap S \neq \emptyset$, we note that v is within distance 2 from at least one vertex in $N[w] \cap S$. Further, no vertex in $N[w] \cap S$ is a leaf-neighbor of v. Replacing the leaf-neighbors of v in S with the vertex v produces a semi-TD-set in T of cardinality less than $|S| = \gamma_{t2}(T)$, a contradiction. Hence, $v \in \mathcal{A}_{t2}(T)$.

By Claim A, we may assume that $|L_1^1(v)| \leq 1$.

Claim B. If $L(v) = L^0(v)$, then $v \notin \mathcal{A}_{t2}(T) \cup \mathcal{N}_{t2}(T)$.

Proof. Suppose $L(v) = L^0(v)$. Then, $L^1(v) \cup L^2(v) \cup L^3(v) \cup L^4(v) = \emptyset$. Let $S = \operatorname{Gr}(v) \cup S(T) \cup \{v\}$. The set S is a semi-TD-set of T, and so $\gamma_{t2}(T) \leq |S| = 2|L^0(v)| + 1$. Recall that D is an arbitrary $\gamma_{t2}(T)$ -set. If $vv_1v_2v_3v_4v_5$ is a path emanating from v in T, then v_5 is a leaf in T and $|D \cap \{v_2, v_3, v_4, v_5\}| \geq 2$, implying that the set D contains at least two vertices from each path of order 5 attached to v and at least one vertex in N[v]. Thus, $\gamma_{t2}(T) = |D| \geq 2|L^0(v)| + 1 = |S| \geq \gamma_{t2}(T)$. Consequently, we must have equality throughout this inequality chain. In particular, $|S| = \gamma_{t2}(T) = 2|L^0(v)| + 1$ and S is a $\gamma_{t2}(T)$ -set. Replacing v in S with an arbitrary neighbor of v produces a $\gamma_{t2}(T)$ -set not containing v. Hence, $v \notin \mathcal{A}_{t2}(T) \cup \mathcal{N}_{t2}(T)$.

By Claim B, we may assume that $L(v) \neq L^0(v)$.

Claim C. If $L(v) = L^0(v) \cup L^1_1(v)$ where $|L^1_1(v)| = 1$ and $|L^0(v)| \ge 1$, then v is an essential support vertex in T. In particular, $v \in \mathcal{A}_{t2}(T)$.

Proof. Suppose $L(v) = L^0(v) \cup L_1^1(v)$ where $|L_1^1(v)| = 1$ and $|L^0(v)| = k \ge 1$. In this case, $L_2^1(v) \cup L^2(v) \cup L^3(v) \cup L^4(v) = \emptyset$. Let $L_1^1(v) = \{u\}$. We note that u is the only leaf-neighbor of v in T. We show that $v \in \mathcal{A}_{t2}(T)$ and $N(v) \subseteq \mathcal{N}_{t2}(T)$, implying that v is an essential support vertex of T. Let $S = \operatorname{Gr}(v) \cup S(T) \cup \{v\}$. The set S is a semi-TD-set of T, and so $\gamma_{t2}(T) \le |S| = 2k + 1$. If $vv_1v_2v_3v_4v_5$ is a path emanating from v in T, then v_5 is a leaf in T and $|D \cap \{v_2, v_3, v_4, v_5\}| \ge 2$. In particular, the set D contains at least two vertices from each path of order 5 attached to v. Further, D contains at least one of u and v. Thus, $\gamma_{t2}(T) =$ $|D| \ge 2k + 1 = |S| \ge \gamma_{t2}(T)$. Consequently, we must have equality throughout this inequality chain. In particular, $|S| = \gamma_{t2}(T) = 2k + 1$, implying that S is a $\gamma_{t2}(T)$ -set. Suppose that there exists a $\gamma_{t2}(T)$ -set, D', that does not contain v. In this case, $u \in D'$. Further, in order to semitotally dominate u, we note that $|(D' \setminus \{u\}) \cap N(v)| \geq 1$. This, however, implies that along one of P_5 's attached to v in T, at least three of its vertices belong to D', which in turn implies that $|D'| \geq 2k + 2 > |S|$, a contradiction. Hence, $v \in \mathcal{A}_{t2}(T)$. As observed earlier, if $vv_1v_2v_3v_4v_5$ is a path emanating from v in T, then $|D \cap \{v_2, v_3, v_4, v_5\}| \geq 2$. Further, since $v \in \mathcal{A}_{t2}(T)$, we note that $v \in D$. Thus if $|D \cap N(v)| \geq 1$, then $\gamma_{t2}(T) = |D| \geq 2k + 2$, a contradiction. Therefore, $N(v) \cap D = \emptyset$, implying that $N(v) \subseteq \mathcal{N}_{t2}(T)$. Thus, v is an essential support vertex in T.

By our earlier assumptions, $|L_1^1(v)| \leq 1$ and $L(v) \neq L^0(v)$. By Claim C, we may assume that $L(v) \neq L^0(v) \cup L_1^1(v)$.

Claim D. Suppose $|L^3(v)| \ge 1$. Then the following hold.

- (a) If $|L^3(v)| \ge 2$, then $v \in \mathcal{A}_{t2}(T)$.
- (b) If $|L^3(v)| = 1$ and $|L^1(v)| \ge 1$, then $v \in \mathcal{A}_{t2}(T)$.
- (c) If $|L^3(v)| = 1$, $L^1(v) = \emptyset$ and $|L^0(v) \cup L^2(v) \cup L^4(v)| \ge 1$, then $v \notin \mathcal{A}_{t2}(T) \cup \mathcal{N}_{t2}(T)$.

Proof. (a) Suppose $|L^3(v)| \geq 2$. Let $\{u_3, v_3\} \subseteq L^3(v)$ and let $vu_1u_2u_3$ and $vv_1v_2v_3$ be the (v, u_3) -path and the (v, v_3) -path. By our earlier assumptions, the vertex v has at most one leaf-neighbor. Further, we remark that there may exist leaves at distance 2, 4, 5 and 6 from v in T. The set $S(T)\cup C^{(4)}(v)\cup \text{Gr}(v)\cup W\cup \{v\}$ is a semi-TD-set of cardinality $2(|L^0(v)|+|L_2^1(v)|+|L^4(v)|)+|L^2(v)|+|L^3(v)|+1$, and so $\gamma_{t2}(T) \leq 2(|L^0(v)|+|L_2^1(v)|+|L^4(v)|)+|L^2(v)|+|L^3(v)|+1$.

Suppose D does not contain v. Then, D will contain at least two vertices from each $L^0(v)$ -path, at least three vertices from each $L_2^1(v)$ -path, at least one vertex from each $L^2(v)$ -path, at least two vertices from each $L^3(v)$ -path, and at least two vertices from each $L^4(v)$ -path. Further, if $|L_1^1(v)| = 1$, then D contains the leaf-neighbor of v. If $u_3 \in D$, we can replace u_3 in D with u_2 . Hence, we may choose D so that $D \cap \{u_1, u_2, u_3\} = \{u_1, u_2\}$. This implies that $\gamma_{t2}(T) = |D| \ge$ $2(|L^0(v)| + |L^4(v)|) + 3|L_2^1(v)| + |L^2(v)| + 2|L^3(v)| + |L_1^1(v)| \ge 2(|L^0(v)| + |L_2^1(v)| + |L^4(v)|) + |L^2(v)| + 2|L^3(v)| \ge 2(|L^0(v)| + |L^2(v)| + |L^3(v)| + 1,$ a contradiction. Hence, $v \in D$. Since D is an arbitrary $\gamma_{t2}(T)$ -set, we deduce that $v \in \mathcal{A}_{t2}(T)$.

(b) Suppose that $|L^3(v)| = 1$ and $|L^1(v)| \ge 1$. Let $L^3(v) = \{u_3\}$ and let $vu_1u_2u_3$ be the (v, u_3) -path. Suppose firstly that $L_1^1(v) = \emptyset$, and so $L^1(v) = L_2^1(v)$. In this case, the set $S(T) \cup C^{(4)}(v) \cup \operatorname{Gr}(v) \cup W \cup \{v\}$ is a semi-TD-set of cardinality $2(|L^0(v)| + |L^1(v)| + |L^4(v)|) + |L^2(v)| + 2$, and so $\gamma_{t2}(T) \le 2(|L^0(v)| + |L^1(v)| + |L^2(v)| + 2$. Suppose D does not contain v. Then, D contains at least two vertices on the path $u_1u_2u_3$ and at least three vertices from

each $L_2^1(v)$ -path. Further, D contains at least two vertices from each $L^0(v)$ -path, two vertices from each $L^4(v)$ -path and one vertex from each $L^2(v)$ -path. However, this implies that $\gamma_{t2}(T) = |D| \ge 2(|L^0(v)| + |L^4(v)|) + 3|L^1(v)| + |L^2(v)| + 2 > 2(|L^0(v)| + |L^1(v)| + |L^4(v)|) + |L^2(v)| + 2$, a contradiction. Hence, $v \in D$, and since D is an arbitrary $\gamma_{t2}(T)$ -set, $v \in \mathcal{A}_{t2}(T)$.

Suppose secondly that $|L_1^1(v)| = 1$. Let $L_1^1(v) = \{u\}$. In this case, the set $S(T) \cup C^{(4)}(v) \cup \operatorname{Gr}(v) \cup W \cup \{v\}$ is a semi-TD-set of cardinality $2(|L^0(v)| + |L_2^1(v)| + |L^4(v)|) + |L^2(v)| + 2$, and so $\gamma_{t2}(T) \leq 2(|L^0(v)| + |L_2^1(v)| + |L^4(v)|) + |L^2(v)| + 2$. Suppose D does not contain v. Then, $u \in D$ and D contains at least two vertices on the path $u_1u_2u_3$ and at least three vertices from each $L_2^1(v)$ -path. The number of vertices needed from each $L^0(v)$ -path, $L^2(v)$ -path and $L^4(v)$ -path remains unchanged. However, this implies that $\gamma_{t2}(T) = |D| \geq 2(|L^0(v)| + |L^4(v)|) + 3|L_2^1(v)| + |L^2(v)| + 2|L^3(v)| + |L_1^1(v)| = 2(|L^0(v)| + |L^4(v)|) + 3|L_2^1(v)| + |L_2^1(v)| + |L^4(v)|) + |L^2(v)| + 2$, a contradiction. Hence, $v \in D$, and since D is an arbitrary $\gamma_{t2}(T)$ -set, $v \in \mathcal{A}_{t2}(T)$.

(c) Suppose that $|L^3(v)| = 1$, $L^1(v) = \emptyset$ and $|L^0(v) \cup L^2(v) \cup L^4(v)| \ge 1$. Let $L^3(v) = \{u_3\}$ and let $vu_1u_2u_3$ be the (v, u_3) -path. Every leaf of T, different from u_3 , is at distance 2, 4 or 5 from v, and so $L(v) \setminus \{u_3\} = L^0(v) \cup L^2(v) \cup L^4(v)$. By Observation 5, there is a $\gamma_{t2}(T)$ -set, say D', that contains no leaf of T, implying that $S(T) \subseteq D'$. The set D' contains at least two vertices from each $L^0(v)$ -path and at least two vertices from each $L^2(v)$ -path and at least two vertices from the (v, u_3) -path. This implies that $\gamma_{t2}(T) \ge 2(|L^0(v)| + |L^4(v)|) + |L^2(v)| + 2$. On the other hand, the set of children of v that do not belong to any $L^0(v)$ -path, together with the set $S(T) \cup \operatorname{Gr}(v)$ form a semi-TD-set, say S, of T of cardinality $2(|L^0(v)| + |L^4(v)|) + |L^2(v)| + 2$. Consequently, $\gamma_{t2}(T) = 2(|L^0(v)| + |L^4(v)|) + |L^2(v)| + 2$. Moreover, S and $(S \setminus \{u_1\}) \cup \{v\}$ are $\gamma_{t2}(T)$ -sets, implying that $v \notin \mathcal{A}_{t2}(T) \cup \mathcal{N}_{t2}(T)$.

By Claim D, we may assume that $L^3(v) = \emptyset$.

Claim E. If $|L^1(v)| \ge 3$, then $v \in \mathcal{A}_{t2}(T)$.

Proof. Suppose, firstly, that $L^0(v) \cup L^2(v) \cup L^4(v) \neq \emptyset$. The vertex set $S(T) \cup C^{(4)}(v) \cup \operatorname{Gr}(v) \cup W \cup \{v\}$ is a semi-TD-set of cardinality $2(|L^0(v)| + |L_2^1(v)| + |L^4(v)|) + |L^2(v)| + 1$, and so $\gamma_{t2}(T) \leq 2(|L^0(v)| + |L_2^1(v)| + |L^4(v)|) + |L^2(v)| + 1$. Suppose D does not contain v. If $L_1^1(v) = \emptyset$, then every leaf is at distance 2, 4, 5 or 6 from v in T and $L^1(v) = L_2^1(v)$. In this case, D contains at least three vertices from each $L_2^1(v)$ -path, two vertices from each $L^0(v)$ -path, two vertices from each $L^4(v)$ -path and one vertex from each $L^2(v)$ -path. Hence, $\gamma_{t2}(T) = |D| > 3|L^1(v)| + 2(|L^0(v) + |L^4(v)|) + |L^2(v)| > 2(|L^0(v)| + |L^4(v)|) + |L^2(v)| + 1$, a contradiction. Therefore, $L_1^1(v) \neq \emptyset$. Let $L_1^1(v) = \{u\}$. Every leaf is at distance 1, 2, 4, 5 or 6 from v in T. In this case, D contains the leaf u, implying that $\gamma_{t2}(T) = |D| > 3|L_2^1(v)| + 2(|L^0(v) + |L^4(v)|) + |L^2(v)| + |L_1^1(v)| > 2(|L^0(v)| + |L_2^1(v)| + |L^4(v)|) + |L^2(v)| + 1$, a contradiction. Hence, $v \in D$, and since D is an arbitrary $\gamma_{t2}(T)$ -set, $v \in \mathcal{A}_{t2}(T)$.

Suppose, secondly, that $L^0(v) \cup L^2(v) \cup L^4(v) = \emptyset$. Thus, $L(v) = L^1(v)$. Let $u_6 \in L^1(v)$ and let $vu_1u_2u_3u_4u_5u_6$ be the (v, u_6) -path. The vertex set $S(T) \cup W \cup \{u_1, v\}$ is a semi-TD-set of cardinality $2|L_2^1(v)| + 2$, and so $\gamma_{t2}(T) \leq 2|L_2^1(v)| + 2$. Suppose D does not contain v. If $L_1^1(v) = \emptyset$, then every leaf is at distance 6 from v in T and $L(v) = L^1(v) = L_2^1(v)$. In this case, D contains at least three vertices from each $L^1(v)$ -path. Hence, $\gamma_{t2}(T) = |D| \geq 3|L^1(v)| > 2|L^1(v)| + 2$, a contradiction. If $L_1^1(v) \neq \emptyset$, then letting $L_1^1(v) = \{u\}$, every leaf in $L^1(v) \setminus \{u\}$ is at distance 6 from v in T. In this case, D contains at least three vertices from each $L_2^1(v)$ -path and the leaf u. Hence, $\gamma_{t2}(T) = |D| \geq 3|L_2^1(v)| + 1 > 2|L_2^1(v)| + 2$, a contradiction. Hence, $v \in D$, and since D is an arbitrary $\gamma_{t2}(T)$ -set, $v \in \mathcal{A}_{t2}(T)$.

By Claim E, we may assume that $|L^1(v)| \leq 2$.

Claim F. Suppose $|L^1(v)| = 2$. Then the following hold. (a) If $|L^0(v) \cup L^2(v) \cup L^4(v)| \ge 1$, then $v \in \mathcal{A}_{t2}(T)$. (b) If $L^0(v) = L^2(v) = L^4(v) = \emptyset$, then $v \notin \mathcal{A}_{t2}(T) \cup \mathcal{N}_{t2}(T)$.

Proof. (a) Suppose $|L^0(v) \cup L^2(v) \cup L^4(v)| \ge 1$. The vertex set $S(T) \cup C^{(4)}(v) \cup Gr(v) \cup W \cup \{v\}$ is a semi-TD-set of cardinality $2(|L^0(v)| + |L_2^1(v)| + |L^4(v)|) + |L^2(v)| + 1$, and so $\gamma_{t2}(T) \le 2(|L^0(v)| + |L_2^1(v)| + |L^4(v)|) + |L^2(v)| + 1$. Suppose D does not contain v. If $L_1^1(v) = \emptyset$, then $L^1(v) = L_2^1(v)$ and $|L_2^1(v)| = 2$. In this case, D contains at least three vertices from each $L_2^1(v)$ -path, two vertices from each $L^2(v)$ -path. Hence, $\gamma_{t2}(T) = |D| \ge 2(|L^0(v) + |L^4(v)|) + |L^2(v)| + 6 > 2(|L^0(v) + |L^4(v)|) + |L^2(v)| + 5 = 2(|L^0(v)| + |L_2^1(v)| + |L^4(v)|) + |L^2(v)| + 1$, a contradiction. Therefore, $L_1^1(v) \ne \emptyset$. Let $L_1^1(v) = \{u\}$ and let $L_2^1(v) = \{u_6\}$. Additionally, let $vu_1u_2u_3u_4u_5u_6$ be the (v, u_6) -path. In this case, D contains the leaf u and at least three vertices from each $L^0(v)$ -path and $L^4(v)$ -path, implying that $\gamma_{t2}(T) = |D| \ge 2(|L^0(v) + |L^4(v)|) + |L^2(v)| + 4 > 2(|L^0(v)| + |L^4(v)|) + |L^2(v)| + 1 = 2(|L^0(v)| + |L^4(v)|) + |L^2(v)| + 4 > 2(|L^0(v)| + |L^4(v)|) + |L^2(v)| + 1 = 2(|L^0(v)| + 1 = 2(|L^0(v$

(b) Suppose $L^0(v) = L^2(v) = L^4(v) = \emptyset$. Let $u_6 \in L_2^1(v)$ and let the path $vu_1u_2u_3u_4u_5u_6$ be the (v, u_6) -path. Suppose firstly that $L_1^1(v) = \emptyset$. Then, $L^1(v) = L_2^1(v)$. Let $v_6 \in L_2^1(v) \setminus \{u_6\}$ and let $vv_1v_2v_3v_4v_5v_6$ be the (v, v_6) -path. In this case, $T = P_{13}$ and $\gamma_{t2}(T) = 6$. Further, the set $S = \{u_1, u_3, u_5, v_1, v_3, v_5\}$

is a $\gamma_{t2}(T)$ -set not containing v, while $(S \setminus \{u_1\}) \cup \{v\}$ is a $\gamma_{t2}(T)$ -set containing v. Hence, $v \notin \mathcal{A}_{t2}(T) \cup \mathcal{N}_{t2}(T)$. Suppose secondly that $L_1^1(v) \neq \emptyset$ and let $L_1^1(v) = \{u\}$. In this case, $T = P_8$ and $\gamma_{t2}(T) = 4$. Further, the set $S = \{u, u_1, u_3, u_5\}$ is a $\gamma_{t2}(T)$ -set not containing v. Moreover, $(S \setminus \{u_1\}) \cup \{v\}$ is a $\gamma_{t2}(T)$ -set containing v. Hence, once again $v \notin \mathcal{A}_{t2}(T) \cup \mathcal{N}_{t2}(T)$.

By Claim F, we may assume that $|L^1(v)| \leq 1$.

Claim G. If $|L^1(v)| = 1$, then $v \notin \mathcal{A}_{t2}(T) \cup \mathcal{N}_{t2}(T)$.

Proof. Suppose firstly that $L^2(v) = L^4(v) = \emptyset$. By our earlier assumptions, the vertex v is not a leaf in T, $L^3(v) = \emptyset$ and $L(v) \neq L^0(v) \cup L_1^1(v)$, implying that $|L^0(v)| \geq 1$ and $L^1(v) = L_2^1(v)$. Let $L_2^1(v) = \{u_6\}$ and let $vu_1u_2u_3u_4u_5u_6$ be the (v, u_6) -path. Every semi-TD-set of T contains at least two vertices from each $L^0(v)$ -path and at least three vertices from the (v, u_6) -path, and so $\gamma_{t2}(T) \geq 2|L^0(v)| + 3$. However, the set $S = S(T) \cup \text{Gr}(v) \cup \{v, u_3\}$ is a semi-TD-set of T of cardinality $2|L^0(v)| + 3$, and so $\gamma_{t2}(T) \leq |S| = 2|L^0(v)| + 3$. Consequently, $\gamma_{t2}(T) = 2|L^0(v)| + 3$ and S is a $\gamma_{t2}(T)$ -set containing v. Moreover, $S' = (S \setminus \{v\}) \cup \{u_1\}$ is $\gamma_{t2}(T)$ -set containing v. Hence, $v \notin \mathcal{A}_{t2}(T) \cup \mathcal{N}_{t2}(T)$.

Suppose secondly that $|L^2(v) \cup L^4(v)| \ge 1$. The vertex set $S = S(T) \cup$ $C^{(4)}(v) \cup \operatorname{Gr}(v) \cup W \cup \{v\}$ is a semi-TD-set of cardinality $2(|L^0(v)| + |L_2^1(v)| +$ $|L^4(v)| + |L^2(v)| + 1$, and so $\gamma_{t2}(T) \le 2(|L^0(v)| + |L_2^1(v)| + |L^4(v)|) + |L^2(v)| + 1$. Suppose $L_1^1(v) = \emptyset$, and so $L^1(v) = L_2^1(v)$ and $|L_2^1(v)| = 1$. In this case, let $L^{1}(v) = \{u_{6}\}$ and let $vu_{1}u_{2}u_{3}u_{4}u_{5}u_{6}$ be the (v, u_{6}) -path. The set D contains at least three vertices from the (v, u_6) -path, at least one vertex from each $L^2(v)$ path and at least two vertices from each $L^0(v)$ -path and $L^4(v)$ -path, implying that $\gamma_{t2}(T) = |D| \ge 2(|L^0(v)| + |L^4(v)|) + |L^2(v)| + 3 = 2(|L^0(v)| + |L_2^1(v)| + 3)$ $|L^{4}(v)| + |L^{2}(v)| + 1$. Consequently, $\gamma_{t2}(T) = 2(|L^{0}(v)| + |L^{4}(v)|) + |L^{2}(v)| + 3$ and S is a $\gamma_{t2}(T)$ -set containing v. Moreover, the set $(S \setminus \{v\}) \cup \{u_1\}$ is a $\gamma_{t2}(T)$ -set that does not contain v. Hence, $v \notin \mathcal{A}_{t2}(T) \cup \mathcal{N}_{t2}(T)$. Suppose next that $L^1(v) = L^1_1(v) = \{u\}$. In this case, $|L^1_2(v)| = 0$ and the set D contains at least one of u and v, at least one vertex from each $L^{2}(v)$ -path and at least two vertices from each $L^0(v)$ -path and $L^4(v)$ -path, implying that $\gamma_{t2}(T) = |D| \geq$ $2(|L^{0}(v)| + |L^{4}(v)|) + |L^{2}(v)| + 1 = 2(|L^{0}(v)| + |L^{1}(v)| + |L^{4}(v)|) + |L^{2}(v)| + 1.$ Consequently, $\gamma_{t2}(T) = 2(|L^0(v)| + |L^4(v)|) + |L^2(v)| + 1$ and S is a $\gamma_{t2}(T)$ -set containing v. Moreover, the set $(S \setminus \{v\}) \cup \{u\}$ is a $\gamma_{t2}(T)$ -set that does not contain v. Hence, once again $v \notin \mathcal{A}_{t2}(T) \cup \mathcal{N}_{t2}(T)$.

By Claim G, we may assume that $L^1(v) = \emptyset$.

Claim H. Suppose $L^1(v) = \emptyset$. Then the following hold. (a) If $|L^4(v)| \ge 1$, then $v \in \mathcal{N}_{t2}(T)$. (b) If $|L^2(v)| = 1$ and $L^4(v) = \emptyset$, then $v \notin \mathcal{A}_{t2}(T) \cup \mathcal{N}_{t2}(T)$. (c) If $|L^2(v)| \ge 2$ and $L^4(v) = \emptyset$, then $v \in \mathcal{N}_{t2}(T)$.

Proof. (a) Suppose $|L^4(v)| \ge 1$. Every leaf is at distance 2, 4 or 5 from v in T. The set D contains at least one vertex from each $L^2(v)$ -path and at least two vertices from each $L^0(v)$ -path and each $L^4(v)$ -path. Thus, $\gamma_{t2}(T) = |D| \ge 2(|L^0(v)| + |L^4(v)|) + |L^2(v)|$ with strict inequality if $v \in D$. The set $C^{(4)}(v) \cup S(T) \cup \operatorname{Gr}(v)$ is a semi-TD-set of T of cardinality $2(|L^0(v)| + |L^4(v)|) + |L^2(v)|$, and so $\gamma_{t2}(T) \le 2(|L^0(v)| + |L^4(v)|) + |L^2(v)|$. Consequently, $\gamma_{t2}(T) = |D| = 2(|L^0(v)| + |L^4(v)|) + |L^2(v)|$ and $v \notin D$. Since D is an arbitrary $\gamma_{t2}(T)$ -set, $v \in \mathcal{N}_{t2}(T)$.

(b) Suppose $|L^2(v)| = 1$ and $L^4(v) = \emptyset$. Let $L^2(v) = \{u_2\}$ and let vu_1u_2 be the (v, u_2) -path. Then, $L^0(v) = L(v) \setminus \{u_2\}$ and $S = S(T) \cup \operatorname{Gr}(v) \cup \{v, u_1\}$ is a semi-TD-set of cardinality $2|L^0(v)| + 2$, and so $\gamma_{t2}(T) \leq |S| = 2|L^0(v)| + 2$. The set D contains at least two vertices from the set $N[v] \cup \{u_2\}$ and at least two vertices not in N[v] from each $L^0(v)$ -path. Thus, $\gamma_{t2}(T) = |D| \geq 2|L^0(v)| + 2$. Consequently, $\gamma_{t2}(T) = 2|L^0(v)| + 2$ and S is a $\gamma_{t2}(T)$ -set that contains the vertex v. Moreover, the set $(S \setminus \{v\}) \cup \{u_2\}$ is a $\gamma_{t2}(T)$ -set that does not contain v. Hence, $v \notin \mathcal{A}_{t2}(T) \cup \mathcal{N}_{t2}(T)$.

(c) Suppose that $|L^2(v)| \geq 2$ and $L^4(v) = \emptyset$. Every leaf is at distance 2 or 5 from v in T. The set D contains at least one vertex from each $L^2(v)$ path and at least two vertices from each $L^0(v)$ -path. Thus, $\gamma_{t2}(T) = |D| \geq 2|L^0(v)| + |L^2(v)|$ with strict inequality if $v \in D$. The set $S(T) \cup \operatorname{Gr}(v)$ is a semi-TD-set of cardinality $2|L^0(v)| + |L^2(v)|$, and so $\gamma_{t2}(T) \leq 2|L^0(v)| + |L^2(v)|$. Consequently, $\gamma_{t2}(T) = |D| = 2|L^0(v)| + |L^2(v)|$ and $v \notin D$. Since D is an arbitrary $\gamma_{t2}(T)$ -set, $v \in \mathcal{N}_{t2}(T)$.

Theorem 1 now follows from Claims A, B, C, D, E, F, G and H.

_

6. Proof of Theorem 2

Let T be a rooted tree that is not a star with root v that contains at least one branch vertex different from v. We shall adopt the following notation. Let u be a branch vertex at maximum distance from v and let $k_0 = |L^0(u)|$, $k_1 = |L^1(u)|$, $k_2 = |L^2(u)|$, $k_3 = |L^3(u)|$ and $k_4 = |L^4(u)|$. Let w be the parent of u (possibly, v = w). Let T' be the tree obtained from T by applying the following operations.

- \mathcal{O}_1 : For $k_3 \geq 1$, let T' be the tree obtained from T by deleting D(u) and attaching a path P_3 to u.
- \mathcal{O}_2 : For $k_3 = 0$, $k_1 \ge 1$ and $k_0 + k_2 + k_4 \ge 1$, let T' be the tree obtained from T by deleting D(u) and attaching a path P_3 to u.

- \mathcal{O}_3 : For $k_0 = k_2 = k_3 = k_4 = 0$ and $k_1 \ge 2$, let T' be the tree obtained from T by deleting D(u) and attaching a path P_1 to u.
- \mathcal{O}_4 : For $k_1 = k_3 = 0$ and $k_4 \ge 1$, let T' be the tree obtained from T by deleting D(u) and attaching a path P_4 to u.
- \mathcal{O}_5 : For $k_1 = k_3 = k_4 = 0$, $k_2 = 1$ and $k_0 \ge 1$, let T' be the tree obtained from T by deleting D(u) and attaching a path P_2 to u.
- \mathcal{O}_6 : For $k_1 = k_3 = k_4 = 0$ and $k_2 \ge 2$, let T' be the tree obtained from T by deleting D(u) and attaching a path P_4 to u.
- \mathcal{O}_7 : For $k_1 = k_2 = k_3 = k_4 = 0$, let T' be the tree obtained from T by deleting D(u) and attaching a path P_5 to u.

Our next result, namely Theorem 2, establishes a key result relating the semitotal domination numbers of the trees T and T'. Theorem 2 follows immediately from Theorem 1 and Theorem 8. We use the standard notation $[k] = \{1, 2, ..., k\}$ once again.

Theorem 8. Let T be a tree with order at least 4 that is not a star and is rooted at a vertex v such that T contains at least one branch vertex u different from v and let T' be the tree defined immediately before the statement of the theorem. Let w be the parent of u (possibly, w = v). Suppose that T' is obtained from T by applying operation \mathcal{O}_i for some $i \in [7]$. Then,

$$\gamma_{t2}(T') = \begin{cases} \gamma_{t2}(T) - 2k_0 - k_2 - k_3 - 2k_4 + 1 & \text{for } i = 1, \\ \gamma_{t2}(T) - 2k_0 - k_2 - 2k_4 + 1 & \text{for } i = 2, \\ \gamma_{t2}(T) & \text{for } i = 3, \\ \gamma_{t2}(T) - 2k_0 - k_2 - 2k_4 + 2 & \text{for } i = 4, \\ \gamma_{t2}(T) - 2k_0 & \text{for } i = 5, \\ \gamma_{t2}(T) - 2k_0 - k_2 + 2 & \text{for } i = 6, \\ \gamma_{t2}(T) - 2k_0 + 2 & \text{for } i = 7. \end{cases}$$

Further, in all cases, the following properties P_A and P_N hold:

 $P_{\mathcal{A}}: v \in \mathcal{A}_{t2}(T) \text{ if and only if } v \in \mathcal{A}_{t2}(T').$ $P_{\mathcal{N}}: v \in \mathcal{N}_{t2}(T) \text{ if and only if } v \in \mathcal{N}_{t2}(T').$

Proof. For each vertex $x \in L(u)$ replace the (u, x)-path in T with a (u, x)-path of length j, where $j \in \{5, 1, 2, 3, 4\}$ if $x \in L^i(u)$ when $i \in \{0, 1, 2, 3, 4\}$, respectively. Let T'' denote the resulting tree. By repeated applications of Lemma 7, we deduce that $v \in \mathcal{A}_{t2}(T)$ ($\mathcal{N}_{t2}(T)$, respectively) if and only if $v \in \mathcal{A}_{t2}(T'')$ ($\mathcal{N}_{t2}(T'')$, respectively). Hence, we assume T = T''. With this assumption, every leaf of T that is a descendant of u is within distance 5 from u. We proceed further with a series of five claims.

Claim I. Suppose $k_3 \ge 1$. Then, T' is obtained from T by operation \mathcal{O}_1 and $\gamma_{t2}(T') = \gamma_{t2}(T) - 2k_0 - k_2 - k_3 - 2k_4 + 1$ and properties $P_{\mathcal{A}}$ and $P_{\mathcal{N}}$ hold.

Proof. Suppose $k_3 \geq 1$. Thus, T' is obtained from T by operation \mathcal{O}_1 . Let $u_3 \in L^3(u)$ and let $uu_1u_2u_3$ be the (u, u_3) -path. Renaming vertices, if necessary, we may assume that $T' = T - (D(u) \setminus \{u_1, u_2, u_3\})$. Let $H = T[D(u) \setminus \{u_1, u_2, u_3\}]$ and let $X_H = (S(T) \cup \operatorname{Gr}(u) \cup C^{(4)}(u)) \cap V(H)$. We note that $|X_H| = 2k_0 + k_2 + k_3 + 2k_4 - 1$. By Observation 5, there exists a $\gamma_{t2}(T')$ -set S that contains the vertex u_2 . If $u_1 \in S$, then we can replace u_1 in S with u. Thus, we may assume $S \cap \{u, u_1, u_2, u_3\} = \{u, u_2\}$. The set S can be extended to a semi-TD-set of T by adding to it the set X_H , implying that $\gamma_{t2}(T) \leq |S| + |X_H| = \gamma_{t2}(T') + |X_H|$.

Conversely, let D be a $\gamma_{t2}(T)$ -set and let $D_u = D \cap D(u)$. The set D contains at least two vertices from each $L^0(u)$ -path and $L^4(u)$ -path, and at least one vertex from each $L^2(u)$ -path and $L^3(u)$ -path, implying that $|D_u| \ge 2k_0 + k_2 + k_3 + 2k_4 =$ $|X_H| + 1$. By Observation 5, we can choose D so that $S(T) \subseteq D$. In particular, $u_2 \in D$. If $u_1 \in D$, then we can replace u_1 in D with u. Hence, we may assume that $D \cap \{u, u_1, u_2, u_3\} = \{u, u_2\}$, implying that $D \cap V(T') = (D \setminus D_u) \cup \{u_2\}$ is a semi-TD-set of T'. Therefore, $\gamma_{t2}(T') \le |D| - |D_u| + 1 \le |D| - (|X_H| + 1) + 1 =$ $|D| - |X_H| = \gamma_{t2}(T) - |X_H|$. Consequently, $\gamma_{t2}(T) = \gamma_{t2}(T') + |X_H| = \gamma_{t2}(T') +$ $2k_0 + k_2 + k_3 + 2k_4 - 1$.

Suppose $v \notin \mathcal{A}_{t2}(T')$ and let S' be a $\gamma_{t2}(T')$ -set that does not contain the vertex v. If $u_3 \in S'$, then we can replace u_3 in S' by u_2 . Hence, we may assume that $u_2 \in S'$. If $u_1 \in S'$, then we can replace u_1 in S' by u. Hence, we may assume that $S' \cap \{u, u_1, u_2, u_3\} = \{u, u_2\}$. With these assumptions, the set $S' \cup X_H$ is a semi-TD-set of T of cardinality $|S'| + |X_H| = \gamma_{t2}(T') + |X_H| = \gamma_{t2}(T)$. Hence, $S' \cup X_H$ is a $\gamma_{t2}(T)$ -set not containing v, implying that $v \notin \mathcal{A}_{t2}(T)$. Therefore, by contraposition, if $v \in \mathcal{A}_{t2}(T)$, then $v \in \mathcal{A}_{t2}(T')$.

Conversely, suppose $v \in \mathcal{A}_{t2}(T')$. Suppose to the contrary that $v \notin \mathcal{A}_{t2}(T)$. Let D be a $\gamma_{t2}(T)$ -set that does not contain v. Analogous to our earlier arguments, we can choose such a set D so that $D \cap D[u] = X_H \cup \{u, u_2\}$. Therefore, $D \cap V(T')$ is a $\gamma_{t2}(T')$ -set that does not contain v, a contradiction. Hence, if $v \in \mathcal{A}_{t2}(T')$, then $v \in \mathcal{A}_{t2}(T)$. Thus, property $P_{\mathcal{A}}$ holds. Analogous arguments show that property $P_{\mathcal{N}}$ holds.

By Claim I, we may assume that $k_3 = 0$, for otherwise the desired result follows.

Claim J. Suppose $k_1 \ge 1$. Then, T' is obtained from T by operation \mathcal{O}_i for some $i \in \{2, 3\}$ and

$$\gamma_{t2}(T') = \begin{cases} \gamma_{t2}(T) - 2k_0 - k_2 - 2k_4 + 1 & \text{for } i = 2, \\ \gamma_{t2}(T) & \text{for } i = 3. \end{cases}$$

Further, the properties $P_{\mathcal{A}}$ and $P_{\mathcal{N}}$ hold in both cases.

Proof. Suppose $k_1 \ge 1$. Let u' be a leaf-neighbor of u. We proceed further with a series of two subclaims.

Claim J.1. If $k_0 + k_2 + k_4 \ge 1$, then $\gamma_{t2}(T') = \gamma_{t2}(T) - 2k_0 - k_2 - 2k_4 + 1$ and properties P_A and P_N hold.

Proof. Suppose $k_0 + k_2 + k_4 \ge 1$. Thus, T' is obtained from T by operation \mathcal{O}_2 . Let $P: u_1u_2u_3$ be the path P_3 added to T - D(u) when constructing T', where u is adjacent to u_1 . Let H = T[D(u)] and let $X_H = (S(T) \cup \operatorname{Gr}(u) \cup C^{(4)}(u)) \cap V(H)$. We note that $|X_H| = 2k_0 + k_2 + 2k_4$. By Observation 5 there exists a $\gamma_{t2}(T')$ -set, S, such that $u_2 \in S$. If $u_1 \in S$, then we can replace u_1 in D with u. Hence, we may assume that $S \cap \{u, u_1, u_2, u_3\} = \{u, u_2\}$. Since $k_0 + k_2 + k_4 \ge 1$, the set $S \setminus \{u_2\}$ can be extended to a semi-TD-set of T by adding to it the set X_H , implying that $\gamma_{t2}(T) \le |S \setminus \{u_2\}| + |X_H| = \gamma_{t2}(T') + |X_H| - 1$.

Conversely, let D be a $\gamma_{t2}(T)$ -set and let $D_u = D \cap D(u)$. The set D contains at least two vertices from each $L^0(u)$ -path and $L^4(u)$ -path, and at least one vertex from each $L^2(u)$ -path, implying that $|D_u| \ge 2k_0 + k_2 + 2k_4 = |X_H|$. By Observation 5, we can choose D so that $S(T) \subseteq D$. In particular, $u \in D$, implying that $(D \setminus D_u) \cup \{u_2\}$ is a semi-TD-set of T', and so $\gamma_{t2}(T') \le |D| - |D_u| + 1$. If $|D_u| > |X_H|$, then $(D \setminus D_u) \cup X_H$ is a semi-TD-set of T of cardinality less than |D|, a contradiction. Hence, $|D_u| = |X_H|$ and $\gamma_{t2}(T') \le |D| - |D_u| + 1 = \gamma_{t2}(T) - |X_H| + 1$. Consequently, $\gamma_{t2}(T) = \gamma_{t2}(T') + |X_H| - 1 = \gamma_{t2}(T') + 2k_0 + k_2 + 2k_4 - 1$.

Suppose $v \notin \mathcal{A}_{t2}(T')$ and let S' be a $\gamma_{t2}(T')$ -set that does not contain the vertex v. If $u_3 \in S'$, then we can replace u_3 in S' by u_2 . Hence, we may assume that $u_2 \in S'$. If $u_1 \in S'$, then we can replace u_1 in S' by u. Hence, we may assume that $S' \cap \{u, u_1, u_2, u_3\} = \{u, u_2\}$. With these assumptions, the set $S = (S' \setminus \{u_2\}) \cup X_H$ is a semi-TD-set of T of cardinality $|S'| + |X_H| - 1 = \gamma_{t2}(T') + |X_H| - 1 = \gamma_{t2}(T)$. Hence, S is a $\gamma_{t2}(T)$ -set not containing v, implying that $v \notin \mathcal{A}_{t2}(T)$. Therefore, by contraposition, if $v \in \mathcal{A}_{t2}(T)$, then $v \in \mathcal{A}_{t2}(T')$.

Conversely, suppose $v \in \mathcal{A}_{t2}(T')$. Suppose to the contrary that $v \notin \mathcal{A}_{t2}(T)$. Let D be a $\gamma_{t2}(T)$ -set that does not contain v. Analogous to our earlier arguments, we can choose such a set D so that $D \cap D[u] = X_H \cup \{u\}$. Therefore, $(D \cap V(T')) \cup \{u_2\}$ is a $\gamma_{t2}(T')$ -set that does not contain v, a contradiction. Hence, if $v \in \mathcal{A}_{t2}(T')$, then $v \in \mathcal{A}_{t2}(T)$. Thus, property $P_{\mathcal{A}}$ holds. Analogous arguments show that property $P_{\mathcal{N}}$ holds.

Claim J.2. If $k_0 + k_2 + k_4 = 0$, then $\gamma_{t2}(T') = \gamma_{t2}(T)$ and properties P_A and P_N hold.

Proof. Since $k_0 + k_2 + k_4 = 0$, we have $k_1 \ge 2$. Thus, T' is obtained from T by operation \mathcal{O}_3 . Renaming vertices if necessary, $T' = T - (D(u) \setminus \{u'\})$. By assumption, the tree T is not a star, implying that the tree T' is not a star. By Observation 5, there exists a $\gamma_{t2}(T')$ -set S that contains the vertex u and

no leaf in T'. Thus, we assume $u \in S$ and that no leaf of T' is contained in S. Thus, the set S is a semi-TD-set of T, implying that $\gamma_{t2}(T) \leq |S| = \gamma_{t2}(T')$. Conversely, let D be a $\gamma_{t2}(T)$ -set. By Observation 5, we can choose D so that $S(T) \subseteq D$. In particular, $u \in D$ and no leaf-neighbor of u belongs to D, implying that D is a semi-TD-set of T', and so $\gamma_{t2}(T') \leq |D| = \gamma_{t2}(T)$. Consequently, $\gamma_{t2}(T) = \gamma_{t2}(T')$.

Suppose $v \notin \mathcal{A}_{t2}(T')$ and let S' be a $\gamma_{t2}(T')$ -set that does not contain the vertex v. If $u' \in S'$, then if $u \in S'$ we replace u' in S with a vertex from $x \in N[w] \setminus \{u\}$ such that $x \neq v$, else we replace u' in S with u. Hence we may assume that $u' \notin S'$ (which is possible since T' is not a star). Thus the set S' is a $\gamma_{t2}(T)$ -set not containing v, implying that $v \notin \mathcal{A}_{t2}(T)$. Therefore, by contraposition, if $v \in \mathcal{A}_{t2}(T)$, then $v \in \mathcal{A}_{t2}(T')$.

Conversely, suppose $v \in \mathcal{A}_{t2}(T')$. Suppose to the contrary that $v \notin \mathcal{A}_{t2}(T)$. Let D be a $\gamma_{t2}(T)$ -set that does not contain v. If D contains a leaf-neighbor z of u, then if $u \in D$ we can replace z in D with a vertex from $x \in N[w] \setminus \{u\}$ such that $x \neq v$ else we replace z in D with u to produce a new $\gamma_{t2}(T)$ -set that does not contain v. Hence, we may choose the set D so that $D \cap D[u] = \{u\}$. Therefore, D is a $\gamma_{t2}(T')$ -set that does not contain v, a contradiction. Hence, if $v \in \mathcal{A}_{t2}(T')$, then $v \in \mathcal{A}_{t2}(T)$. Thus, property $P_{\mathcal{A}}$ holds. Analogous arguments show that property $P_{\mathcal{N}}$ holds.

Claim J follows immediately from Claim J.1 and Claim J.2.

By Claim J, we may assume that $k_1 = 0$, for otherwise the desired result follows.

Claim K. Suppose $k_4 \ge 1$. Then, T' is obtained from T by operation \mathcal{O}_4 and $\gamma_{t2}(T') = \gamma_{t2}(T) - 2k_0 - k_2 - 2k_4 + 2$ and properties P_A and P_N hold.

Proof. Suppose $k_4 \geq 1$. Thus, T' is obtained from T by operation \mathcal{O}_4 . By our earlier assumptions, $k_1 = k_3 = 0$. Let $u_4 \in L^4(u)$ and let $uu_1u_2u_3u_4$ be the (u, u_4) -path. Renaming vertices if necessary, we may assume that T' = $T - (D(u) \setminus \{u_1, u_2, u_3, u_4\})$. Let $H = T[D(u) \setminus \{u_1, u_2, u_3, u_4\}]$ and let $X_H =$ $(S(T) \cup C^{(4)}(u) \cup \operatorname{Gr}(u)) \cap V(H)$. We note that $|X_H| = 2k_0 + k_2 + 2(k_4 - 1)$. By Observation 5, there exists a $\gamma_{t2}(T')$ -set S that contains the vertex u_3 . If $u_2 \in S$, then we can replace u_2 in S with u_1 . Thus, we may assume $S \cap \{u_1, u_2, u_3, u_4\} =$ $\{u_1, u_3\}$. Then the set S can therefore be extended to a semi-TD-set of T by adding to it the set X_H , implying that $\gamma_{t2}(T) \leq |S| + |X_H| = \gamma_{t2}(T') + |X_H|$.

Conversely, let D be a $\gamma_{t2}(T)$ -set and let $D_u = D \cap D(u)$. The set D contains at least two vertices from each $L^0(u)$ -path and $L^4(u)$ -path, and at least one vertex from each $L^2(u)$ -path, implying that $|D_u| \ge 2k_0 + k_2 + 2k_4 = |X_H| + 2$. On the other hand, the set $(D \setminus D_u) \cup \{u_1, u_3\}$ is a semi-TD-set of T', and so $\gamma_{t2}(T') \leq \gamma_{t2}(T) - |D_u| + 2 \leq \gamma_{t2}(T) - |X_H|$. Consequently, $\gamma_{t2}(T) = \gamma_{t2}(T') + |X_H| = \gamma_{t2}(T') + 2k_0 + k_2 + 2k_4 - 2$.

Suppose $v \notin \mathcal{A}_{t2}(T')$ and let S' be a $\gamma_{t2}(T')$ -set that does not contain the vertex v. If $u_4 \in S'$, then we can replace u_4 in S' with u_3 . Hence we may choose S' so that $u_3 \in S'$. If $u_2 \in S'$, then we can replace u_2 in S' with u_1 . Thus, we may assume $S' \cap \{u_1, u_2, u_3, u_4\} = \{u_1, u_3\}$. The set $S' \cup X_H$ is therefore a semi-TD-set of T of cardinality $|S'| + |X_H| = \gamma_{t2}(T') + |X_H| = \gamma_{t2}(T)$. Thus, $S' \cup X_H$ is a $\gamma_{t2}(T)$ -set not containing the vertex v, implying that $v \notin \mathcal{A}_{t2}(T)$. Therefore, by contraposition, if $v \in \mathcal{A}_{t2}(T)$, then $v \in \mathcal{A}_{t2}(T')$.

Conversely, suppose $v \in \mathcal{A}_{t2}(T')$. Suppose to the contrary that $v \notin \mathcal{A}_{t2}(T)$. Let D be a $\gamma_{t2}(T)$ -set that does not contain v and let $D_u = D \cap D(u)$. If $|D_u| > |X_H|+2$, then the set $(D \setminus D_u) \cup (X_H \cup \{u_1, u_3\})$ is a semi-TD-set of T of cardinality less than |D|, a contradiction. Hence, $|D_u| \leq |X_H|+2$. Analogous to our earlier arguments, $|D_u| \geq |X_H|+2$. Consequently, $|D_u| = |X_H|+2$ and $(D \setminus D_u) \cup \{u_1, u_3\}$ is a semi-TD-set of T' of cardinality $|D| - |D_u| + 2 = \gamma_{t2}(T) - |X_H| = \gamma_{t2}(T')$. Thus, $(D \setminus D_u) \cup \{u_1, u_3\}$ is a $\gamma_{t2}(T')$ -set that does not contain v, a contradiction. Hence, if $v \in \mathcal{A}_{t2}(T')$, then $v \in \mathcal{A}_{t2}(T)$. Thus, property $P_{\mathcal{A}}$ holds. Analogous arguments show that property $P_{\mathcal{N}}$ holds.

By Claim K, we may assume that $k_4 = 0$, for otherwise the desired result follows.

Claim L. Suppose $k_2 \geq 1$. Then, T' is obtained from T by operation \mathcal{O}_i for some $i \in \{5, 6\}$ and

$$\gamma_{t2}(T') = \begin{cases} \gamma_{t2}(T) - 2k_0 & \text{for } i = 5, \\ \gamma_{t2}(T) - 2k_0 - k_2 + 2 & \text{for } i = 6. \end{cases}$$

Further, the properties $P_{\mathcal{A}}$ and $P_{\mathcal{N}}$ hold in both cases.

Proof. Suppose $k_2 \ge 1$. Let $u_2 \in L^2(u)$ and let uu_1u_2 be the (u, u_2) -path in T. By our earlier assumptions, $k_1 = k_3 = k_4 = 0$. We proceed further with a series of two subclaims.

Claim L.1. If $k_2 = 1$, then $\gamma_{t2}(T') = \gamma_{t2}(T) - 2k_0$ and properties P_A and P_N hold.

Proof. Suppose that $k_2 = 1$ and hence, $k_0 \ge 1$ and $L^2(u) = \{u_2\}$. Thus, T' is obtained from T by operation \mathcal{O}_5 . Let uu_1u_2 be the (u, u_2) -path. Renaming vertices if necessary, $T' = T - (D(u) \setminus \{u_1, u_2\})$. Let $H = T[D(u) \setminus \{u_1, u_2\}]$ and let $X_H = (S(T) \cup \operatorname{Gr}(u)) \cap V(H)$. We note that $|X_H| = 2k_0$. Every $\gamma_{t2}(T')$ -set S can be extended to a semi-TD-set of T by adding to it the set X_H , implying that $\gamma_{t2}(T) \le |S| + |X_H| = \gamma_{t2}(T') + |X_H|$.

Conversely, let D be an $\gamma_{t2}(T)$ -set and let $D_u = D \cap D(u)$. The set D_u contains at least two vertices from each $L^0(u)$ -path and one of the vertices u_1 or u_2 , implying that $|D_u| \ge 2k_0 + 1 = |X_H| + 1$. The set $(D \setminus D_u) \cup \{u_1\}$ is a semi-TD-set of T', and so $\gamma_{t2}(T') \le |D| - |D_u| + 1 \le \gamma_{t2}(T) - |X_H|$. Consequently, $\gamma_{t2}(T) = \gamma_{t2}(T') + |X_H| = \gamma_{t2}(T') + 2k_0$.

Suppose $v \notin \mathcal{A}_{t2}(T')$ and let S' be a $\gamma_{t2}(T')$ -set that does not contain the vertex v. Then, the set $S' \cup X_H$ is a $\gamma_{t2}(T)$ -set not containing v, implying that $v \notin \mathcal{A}_{t2}(T)$. Therefore, by contraposition, if $v \in \mathcal{A}_{t2}(T)$, then $v \in \mathcal{A}_{t2}(T')$.

Conversely, suppose $v \in \mathcal{A}_{t2}(T')$. Suppose to the contrary that $v \notin \mathcal{A}_{t2}(T)$. Let D be a $\gamma_{t2}(T)$ -set that does not contain v. Analogous to our earlier arguments, we can choose such a set D so that $D \cap D(u) = X_H \cup \{u_1\}$. Thus, $D \setminus X_H$ is a semi-TD-set of T' of cardinality $|D| - |X_H| = \gamma_{t2}(T) - |X_H| = \gamma_{t2}(T')$. The set $D \setminus X_H$ is therefore a $\gamma_{t2}(T')$ -set that does not contain v, a contradiction. Hence, if $v \in \mathcal{A}_{t2}(T')$, then $v \in \mathcal{A}_{t2}(T)$. Thus, property $P_{\mathcal{A}}$ holds. Analogous arguments show that property $P_{\mathcal{N}}$ holds.

Claim L.2. If $k_2 \ge 2$, then $\gamma_{t2}(T') = \gamma_{t2}(T) - 2k_0 - k_2 + 2$ and properties P_A and P_N hold.

Proof. Suppose $k_2 \geq 2$. Thus, T' is obtained from T by operation \mathcal{O}_6 . Let $P: u_1u_2u_3u_4$ be the path P_4 added to T - D(u) when constructing T', where u is adjacent to u_1 . Let H = T[D(u)] and let $X_H = (S(T) \cup \operatorname{Gr}(u)) \cap V(H)$. We note that $|X_H| = 2k_0 + k_2$. By Observation 5, there exists a $\gamma_{t2}(T')$ -set S that contains the vertex u_3 . If $u_2 \in S$, then we may replace u_2 in S with u_1 . Hence we may choose S so that $S \cap \{u_1, u_2, u_3, u_4\} = \{u_1, u_3\}$. The set $S \setminus \{u_1, u_3\}$ can therefore be extended to a semi-TD-set of T by adding to it the set X_H , implying that $\gamma_{t2}(T) \leq |S \setminus \{u_1, u_3\}| + |X_H| = \gamma_{t2}(T') + |X_H| - 2$.

Conversely, let D be a $\gamma_{t2}(T)$ -set and let $D_u = D \cap D(u)$. The set D_u contains at least two vertices from each $L^0(u)$ -path and one vertex from each $L^2(u)$ -path, implying that $|D_u| \ge 2k_0 + k_2 = |X_H|$. The set $(D \setminus D_u) \cup \{u_1, u_3\}$ is a semi-TDset of T', and so $\gamma_{t2}(T') \le |D| - |D_u| + 2 \le \gamma_{t2}(T) - |X_H| + 2$. Consequently, $\gamma_{t2}(T) = \gamma_{t2}(T') + |X_H| - 2 = \gamma_{t2}(T') + 2k_0 + k_2 - 2$.

Suppose $v \notin \mathcal{A}_{t2}(T')$ and let S' be a $\gamma_{t2}(T')$ -set that does not contain the vertex v. Analogous to our earlier arguments, we can choose such a set S' so that $S' \cap \{u_1, u_2, u_3, u_4\} = \{u_1, u_3\}$. The set $(S' \setminus \{u_1, u_3\}) \cup X_H$ is a semi-TD-set of cardinality $|S'| + |X_H| - 2 = \gamma_{t2}(T') + |X_H| - 2 = \gamma_{t2}(T)$ and is thus a $\gamma_{t2}(T)$ -set not containing v, implying that $v \notin \mathcal{A}_{t2}(T)$. Therefore, by contraposition, if $v \in \mathcal{A}_{t2}(T)$, then $v \in \mathcal{A}_{t2}(T')$.

Conversely, suppose $v \in \mathcal{A}_{t2}(T')$. Suppose to the contrary that $v \notin \mathcal{A}_{t2}(T)$. Let D be a $\gamma_{t2}(T)$ -set that does not contain v. Analogous to our earlier arguments, we can choose a set D so that $D \cap D(u) = X_H$. Therefore, $(D \setminus X_H) \cup \{u_1, u_3\}$ is a semi-TD-set of cardinality $|D| - |X_H| + 2 = \gamma_{t2}(T) - |X_H| + 2 = \gamma_{t2}(T')$ and is thus a $\gamma_{t2}(T')$ -set that does not contain v, a contradiction. Hence, if $v \in \mathcal{A}_{t2}(T')$, then $v \in \mathcal{A}_{t2}(T)$. Thus, property $P_{\mathcal{A}}$ holds. Analogous arguments show that property $P_{\mathcal{N}}$ holds.

Claim L follows from Claim L.1 and Claim L.2. This completes the proof of Claim L. $\hfill \Box$

By Claim L, we may assume that $k_2 = 0$, for otherwise the desired result follows. By our earlier assumptions, $k_1 = k_3 = k_4 = 0$. Thus, $L(u) = L^0(u)$. Since u is a branch vertex, $k_0 \ge 2$.

Claim M. Suppose $k_0 \geq 2$. Then, T' is obtained from T by operation \mathcal{O}_7 and $\gamma_{t2}(T') = \gamma_{t2}(T) - 2k_0 + 2$ and properties $P_{\mathcal{A}}$ and $P_{\mathcal{N}}$ hold.

Proof. Let $\{u_5, v_5\} \subseteq L^0(u)$ and let $uu_1u_2u_3u_4u_5$ and $uv_1v_2v_3v_4v_5$ be the respective (u, u_5) -path and (u, v_5) -path in T. Thus, T' is obtained from T by operation \mathcal{O}_7 . Renaming vertices if necessary, we may assume that $T' = T - (D(u) \setminus \{u_1, u_2, u_3, u_4, u_5\})$. Let $H = T[D(u) \setminus \{u_1, u_2, u_3, u_4, u_5\}$ and let $X_H = (S(T) \cup \operatorname{Gr}(u)) \cap V(H)$. We note that $|X_H| = 2k_0 - 2$. Every $\gamma_{t2}(T')$ -set can be extended to a semi-TD-set of T by adding to it the set X_H , implying that $\gamma_{t2}(T) \leq \gamma_{t2}(T') + |X_H|$.

Conversely, let D be a $\gamma_{t2}(T)$ -set and let $D_u = D \cap D(u)$. The set D_u contains at least two vertices from each $L^0(u)$ -path, implying that $|D_u| \ge 2k_0 = |X_H| + 2$. The set $(D \setminus D_u) \cup \{u_2, u_4\}$ is a semi-TD-set of T', and so $\gamma_{t2}(T') \le |D| - |D_u| + 2 \le \gamma_{t2}(T) - |X_H|$. Consequently, $\gamma_{t2}(T) = \gamma_{t2}(T') + |X_H| = \gamma_{t2}(T') + 2k_0 - 2$.

Suppose $v \notin \mathcal{A}_{t2}(T')$ and let S' be a $\gamma_{t2}(T')$ -set that does not contain the vertex v. Then, the set $S' \cup X_H$ is a $\gamma_{t2}(T)$ -set not containing v, implying that $v \notin \mathcal{A}_{t2}(T)$. Therefore, by contraposition, if $v \in \mathcal{A}_{t2}(T)$, then $v \in \mathcal{A}_{t2}(T')$.

Conversely, suppose $v \in \mathcal{A}_{t2}(T')$. Suppose to the contrary that $v \notin \mathcal{A}_{t2}(T)$. Let D be a $\gamma_{t2}(T)$ -set that does not contain v and chosen so that $|D \cap D(u)|$ is a minimum. Let $D_u = D \cap D(u)$. If $|D_u| \ge |X_H| + 3$, then the set $(D \setminus D_u) \cup (X_H \cup \{u, u_2, u_4\})$ is a semi-TD-set of T of cardinality $|D| - |D_u| + |X_H| + 3 \le |D| = \gamma_{t2}(T)$ and is therefore a $\gamma_{t2}(T)$ -set containing fewer vertices of D(u) than does D, a contradiction. Hence, $|D_u| \le |X_H| + 2$. Analogous to our earlier arguments, $|D_u| \ge |X_H| + 2$. Consequently, $|D_u| = |X_H| + 2$ and $(D \setminus D_u) \cup \{u_2, u_4\}$ is a semi-TD-set of T' of cardinality $|D| - |D_u| + 2 = \gamma_{t2}(T) - |X_H| = \gamma_{t2}(T')$. Thus, $(D \setminus D_u) \cup \{u_2, u_4\}$ is a $\gamma_{t2}(T')$ -set that does not contain v, a contradiction. Hence, if $v \in \mathcal{A}_{t2}(T')$, then $v \in \mathcal{A}_{t2}(T)$. Thus, property $P_{\mathcal{A}}$ holds. Analogous arguments

Theorem 8 follows from Claims I, J, K, L and M.

-

References

- M. Blidia, M. Chellali and S. Khelifi, Vertices belonging to all or no minimum double dominating sets in trees, AKCE Int. J. Graphs. Comb. 2 (2005) 1–9.
- [2] E.J. Cockayne, M.A. Henning and C.M. Mynhardt, Vertices contained in all or in no minimum total dominating set of a tree, Discrete Math. 260 (2003) 37–44. doi:10.1016/S0012-365X(02)00447-8
- W. Goddard, M.A. Henning and C.A. McPillan, Semitotal domination in graphs, Util. Math. 94 (2014) 67–81.
- [4] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc. New York, 1998).
- [5] M.A. Henning, Recent results on total domination in graphs: A survey, Discrete Math. 309 (2009) 32–63. doi:10.1016/j.disc.2007.12.044
- M.A. Henning and A.J. Marcon, On matching and semitotal domination in graphs, Discrete Math. 324 (2014) 13–18. doi:10.1016/j.disc.2014.01.021
- [7] M.A. Henning and A.J. Marcon, Semitotal domination in graphs: Partition and algorithmic results, Util. Math., to appear.
- [8] M.A. Henning and M.D. Plummer, Vertices contained in all or in no minimum paired-dominating set of a tree, J. Comb. Optim. 10 (2005) 283–294. doi:10.1007/s10878-005-4107-3
- [9] M.A. Henning and A. Yeo, Total domination in graphs (Springer Monographs in Mathematics, 2013).
- [10] C.M. Mynhardt, Vertices contained in every minimum dominating set of a tree, J. Graph Theory **31** (1999) 163–177.
 doi:10.1002/(SICI)1097-0118(199907)31:3(163::AID-JGT2)3.0.CO;2-T

Appendix

We now present an example to illustrate Theorem 2. Applying our pruning process discussed in Section 2 to the rooted tree T with root v illustrated in Figure 1(a), we proceed as follows.

• The branch vertices b_3 and b_4 are both at maximum distance 3 from v in T. We select b_3 , where $|L^3(b_3)| = 1$. Thus, b_3 is a type-(T.1) branch vertex and we delete $D(b_3)$ and attach a path of length 3 to b_3 .

• The branch vertex at maximum distance from v in the resulting tree (illustrated in Figure 1(b)) is the vertex b_4 . Since $|L^1(b_4)| > 2$ and every leaf-descendant of b_4 belongs to $L^1(b_4)$, the vertex b_4 is therefore a type-(T.3) branch vertex and we delete $D(b_4)$ and attach a path of length 1 to b_4 .

Figure 1. The pruning of a tree rooted at v.

• The branch vertex at maximum distance from v in the resulting tree (illustrated in Figure 1(c)) is the vertex b_2 . Since $|L^4(b_2)| = 1$ and $L^1(b_2) = L^3(b_2) = \emptyset$, the vertex b_2 is a type-(T.4) branch vertex and we delete $D(b_2)$ and attach a path of length 4 to b_2 .

• The branch vertex at maximum distance from v in the resulting tree (illustrated in Figure 1(d)) is the vertex b_1 . Since $|L^3(b_1)| = 1$, the vertex b_1 is a type-(T.1) branch vertex and we delete $D(b_1)$ and attach a path of length 3 to b_1 . The resulting pruned tree \overline{T}_v is illustrated in Figure 1(e).

• Since $|\overline{L}^1(v)| = 1$ and $|\overline{L}^4(v)| = 1$, by Theorem 2, we deduce that $v \notin \mathcal{A}_{t2}(T) \cup \mathcal{N}_{t2}(T)$.

Received 18 December 2014 Revised 13 April 2015 Accepted 13 April 2015