VERTICES CONTAINED IN ALL OR IN NO MINIMUM SEMITOTAL DOMINATING SET OF A TREE

Michael A. Henning ${ }^{1}$
AND
Alister J. Marcon ${ }^{2}$
Department of Pure and Applied Mathematics
University of Johannesburg Auckland Park, 2006, South Africa
e-mail: mahenning@uj.ac.za
alister.marcon@gmail.com

Abstract

Let G be a graph with no isolated vertex. In this paper, we study a parameter that is squeezed between arguably the two most important domination parameters; namely, the domination number, $\gamma(G)$, and the total domination number, $\gamma_{t}(G)$. A set S of vertices in a graph G is a semitotal dominating set of G if it is a dominating set of G and every vertex in S is within distance 2 of another vertex of S. The semitotal domination number, $\gamma_{t 2}(G)$, is the minimum cardinality of a semitotal dominating set of G. We observe that $\gamma(G) \leq \gamma_{t 2}(G) \leq \gamma_{t}(G)$. We characterize the set of vertices that are contained in all, or in no minimum semitotal dominating set of a tree.

Keywords: domination, semitotal domination, trees.
2010 Mathematics Subject Classification: 05C69.

1. Introduction

In this paper, we continue the study of a parameter, called the semitotal domination number, that is squeezed between arguably the two most important domination parameters; namely, the domination number and the total domination

[^0]number. A dominating set in a graph G is a set S of vertices of G such that every vertex in $V(G) \backslash S$ is adjacent to at least one vertex in S. The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of G. A total dominating set, abbreviated a TD-set, of a graph G with no isolated vertex is a set S of vertices of G such that every vertex in $V(G)$ is adjacent to at least one vertex in S. The total domination number of G, denoted by $\gamma_{t}(G)$, is the minimum cardinality of a TD-set of G. The literature on the subject of domination parameters in graphs up to the year 1997 has been surveyed and detailed in the so-called domination book [4]. Total domination is now well studied in graph theory. For a recent book on the topic, see [9]. A survey of total domination in graphs can also be found in [5].

The concept of semitotal domination in graphs was introduced and studied by Goddard, Henning and McPillan [3], and studied further in $[6,7]$ and elsewhere. A set S of vertices in a graph G with no isolated vertices is a semitotal dominating set, abbreviated semi-TD-set, of G if it is a dominating set of G and every vertex in S is within distance 2 of another vertex of S. The semitotal domination number, denoted by $\gamma_{t 2}(G)$, is the minimum cardinality of a semi-TD-set of G. A semi-TD-set of G of cardinality $\gamma_{t 2}(G)$ is called a $\gamma_{t 2}(G)$-set. Since every TD-set is a semi-TD-set, and since every semi-TD-set is a dominating set, we have the following observation first observed in [3]. For every graph G with no isolated vertex, $\gamma(G) \leq \gamma_{t 2}(G) \leq \gamma_{t}(G)$.

Mynhardt [10] characterized all the vertices that are in all, or in no minimum dominating set. Moreover, the same type of results were established by Cockayne, Henning and Mynhardt in [2] for total domination, Henning and Plummer [8] for paired domination and Blidia, Chellali and Khelifi [1] for double domination. Motivated by these results, we aim to characterize all the vertices that are in all, or in no minimum semitotal dominating set in a rooted tree T.

1.1. Terminology and Notation

For notation and graph theory terminology that are not defined herein, we refer the reader to [9]. Let $G=(V, E)$ be a graph with vertex set $V=V(G)$ of order $n=|V|$ and edge set $E=E(G)$ of size $m=|E|$, and let v be a vertex in V. We denote the degree of v in G by $d_{G}(v)$. A leaf of G is a vertex of degree 1 , while a support vertex of G is a vertex adjacent to a leaf. A strong support vertex is a support vertex with at least two leaf-neighbors. We define a branch vertex as a vertex of degree at least 3. A star is a tree with at most one vertex that is not a leaf.

For a set $S \subseteq V$, the subgraph induced by S is denoted by $G[S]$. A cycle and path on n vertices are denoted by C_{n} and P_{n}, respectively. For two vertices u and v in a connected graph G, the distance $d_{G}(u, v)$ between u and v is the length of a shortest (u, v)-path in G. The distance $d_{G}(v, S)$ between a vertex
v and a set S of vertices in a graph G is the minimum distance from v to a vertex of S in G. The maximum distance among all pairs of vertices of G is the diameter of a graph G which is denoted by diam (G). The open neighborhood of a vertex v is the set $N_{G}(v)=\{u \in V \mid u v \in E\}$ and the closed neighborhood of v is $N_{G}[v]=\{v\} \cup N_{G}(v)$. For a set $S \subseteq V$, its open neighborhood is the set

$$
N_{G}(S)=\bigcup_{v \in S} N_{G}(v)
$$

and its closed neighborhood is the set $N_{G}[S]=N_{G}(S) \cup S$. If the graph G is clear from the context, we omit it in the above expressions. For example, we write $d(u), d(u, v), N(v)$ and $N[v]$ rather than $d_{G}(u), d_{G}(u, v), N_{G}(v)$ and $N_{G}[v]$, respectively.

Let X and Y be subsets of vertices in G. If $Y \subseteq N[X]$, then we say the set X dominates the set Y in G and that the set Y is dominated by X. Furthermore, if $Y=\{y\}$, then we simply say that y is dominated by X rather than $\{y\}$ is dominated by X. Thus, if a vertex v is dominated by X, then $N[v] \cap X \neq \emptyset$. We note that if X dominates V, then X is a dominating set in G. Hence, if X is a dominating set in G, then $N[X]=V$. Additionally, we say that X semitotally dominates the set Y in G if each vertex in X lies within distance 2 of another vertex in X, and in turn the set Y is said to be semitotally dominated by X.

For a graph G, we define the sets $\mathcal{A}_{t 2}(G)$ and $\mathcal{N}_{t 2}(G)$ as follows:

$$
\mathcal{A}_{t 2}(G)=\left\{v \in V(G) \mid v \text { is in every } \gamma_{t 2}(G) \text {-set }\right\}
$$

and

$$
\mathcal{N}_{t 2}(G)=\left\{v \in V(G) \mid v \text { is in no } \gamma_{t 2}(G) \text {-set }\right\} .
$$

A rooted tree T distinguishes one vertex r called the root. For each vertex $v \neq r$ of T, the parent of v is the neighbor of v on the unique (r, v)-path, while a child of v is any other neighbor of v. We denote all the children of a vertex v by $C(v)$. A descendant of v is a vertex $u \neq v$ such that the unique (r, u)-path contains v. Thus, every child of v is a descendant of v. A grandchild of v is a descendant of v at distance 2 from v. We let $D(v)$ denote the set of descendants of v, and we define $D[v]=D(v) \cup\{v\}$. The set of leaves in T is denoted by $L(T)$ and the set of support vertices is denoted by $S(T)$. The maximal subtree at v is the subtree of T induced by $D[v]$, and is denoted by T_{v}. The set of leaves in T_{v} distinct from v we denote by $L(v)$; that is, $L(v)=D(v) \cap L(T)$. The set of branch vertices of T is denoted by $B(T)$. For $j \in\{0,1,2,3,4\}$, we define

$$
L^{j}(v)=\{u \in L(v) \mid d(u, v) \equiv j(\bmod 5)\} .
$$

Furthermore, let

$$
L_{1}^{1}(v)=\left\{x \in L^{1}(v) \mid d(v, x)=1\right\} \quad \text { and } \quad L_{2}^{1}(v)=L^{1}(v) \backslash L_{1}^{1}(v) .
$$

We sometimes write $L_{T}^{j}(v)$ to emphasize the tree (or subtree) concerned. Additionally, we define the path from v to a leaf in $L^{j}(v)$ to be a $L^{j}(v)$-path. Given a vertex x of a tree T, we say we attach a path of length q to x if we add a vertex-disjoint path P_{q} on q vertices and join x to a leaf of the path P_{q}. In this case, we simply write that we attach P_{q} to x. We next define an essential support vertex in a tree.

Definition 1. A vertex v in a tree T is an essential support vertex in T if and only if v has exactly one leaf-neighbor, $v \in \mathcal{A}_{t 2}(T)$ and $N(v) \subseteq \mathcal{N}_{t 2}(T)$.

We note that if v is an essential support vertex in a tree T, then v has exactly one leaf-neighbor and $N[v] \cap D=\{v\}$ for every $\gamma_{t 2}(T)$-set D.

2. Tree Pruning

In this paper, we use a method called tree pruning to characterize the sets $\mathcal{A}_{t 2}(T)$ and $\mathcal{N}_{t 2}(T)$ for an arbitrary tree T. Let T be a tree rooted at a vertex v. Suppose that T is not a star. We let $C^{(4)}(v)$ denote the set of children of v that belong to P_{4} 's that are attached to v. Furthermore, we let the descendants at distance 2 from v along P_{5} 's that are attached to v be denoted by $\operatorname{Gr}(v)$ and we call them special grandchildren of v. The pruning of T is performed with respect to its root, v. If $d(u) \leq 2$ for each $u \in V\left(T_{v}\right) \backslash\{v\}$, then let $\bar{T}_{v}=T$. Otherwise, let u be a branch vertex at maximum distance from v (we note that $|C(u)| \geq 2$ and $d(x) \leq 2$ for each $x \in D(u))$. We identify the following types of branch vertices:
(T.1) $\left|L^{3}(u)\right| \geq 1$.
(T.2) $L^{3}(u)=\emptyset,\left|L^{1}(u)\right| \geq 1$ and $\left|L^{0}(u) \cup L^{2}(u) \cup L^{4}(u)\right| \geq 1$.
(T.3) $L^{3}(u)=L^{0}(u)=L^{2}(u)=L^{4}(u)=\emptyset$ and $\left|L^{1}(u)\right| \geq 2$.
(T.4) $L^{3}(u)=L^{1}(u)=\emptyset$ and $\left|L^{4}(u)\right| \geq 1$.
(T.5) $L^{3}(u)=L^{1}(u)=L^{4}(u)=\emptyset,\left|L^{2}(u)\right|=1$ and $\left|L^{0}(u)\right| \geq 1$.
(T.6) $L^{3}(u)=L^{1}(u)=L^{4}(u)=\emptyset$ and $\left|L^{2}(u)\right| \geq 2$.
(T.7) $L^{3}(u)=L^{1}(u)=L^{4}(u)=L^{2}(u)=\emptyset$.

We now apply the following pruning process.
(a) If u is type (T.1) or (T.2), then delete $D(u)$ and attach a P_{3} to u.
(b) If u is type (T.3), then delete $D(u)$ and attach a P_{1} to u.
(c) If u is type (T.4) or (T.6), then delete $D(u)$ and attach a P_{4} to u.
(d) If u is type (T.5), then delete $D(u)$ and attach a P_{2} to u.
(e) If u is type (T.7), then delete $D(u)$ and attach a P_{5} to u.

This step of the pruning process, where all the descendants of u are deleted and a path of length $1,2,3,4$ or 5 is attached to u to give a tree in which u has degree 2, is called a pruning of T_{v} at u. Repeat the above process until a tree
\bar{T}_{v} is obtained with $d(u) \leq 2$ for each $u \in V\left(\bar{T}_{v}\right) \backslash\{v\}$. The tree \bar{T}_{v} is called the pruning of T_{v}. To simplify notation, we write $\bar{L}^{j}(v)$ instead of $L_{\bar{T}_{v}}^{j}(v)$.

3. Main Results

In this paper, we aim to establish a characterization of the set of vertices contained in all or none of the minimum semi-TD-sets in a tree T of order $n \geq 2$.

In the trivial case when $T=P_{2}$, we note that $\mathcal{A}_{t 2}(T)=V(T)$, while if $T=P_{3}$, then $\mathcal{A}_{t 2}(T)=\mathcal{N}_{t 2}(T)=\emptyset$. If T is a star $K_{1, n-1}$ with central vertex v and $n \geq 4$, then $\mathcal{A}_{t 2}(T)=\{v\}$ and $\mathcal{N}_{t 2}(T)=\emptyset$. Hence in what follows we restrict our attention to the more interesting case when $n \geq 4$ and T is not a star. We shall prove the following main results. ${ }^{3}$

Theorem 1. Let T be a tree with order at least 4 that is not a star and is rooted at a vertex v such that $d(u) \leq 2$ for each $u \in V(T) \backslash\{v\}$. Then,
(a) $v \in \mathcal{A}_{t 2}(T)$ if and only if one of the following hold:
(i) $\left|L^{3}(v)\right| \geq 1$ and $\left|L^{1}(v) \cup L^{3}(v)\right| \geq 2$.
(ii) $L^{3}(v)=\emptyset$ and $\left|L^{1}(v)\right| \geq 3$.
(iii) $L^{3}(v)=\emptyset$ and $\left|L_{1}^{1}(v)\right|=2$.
(iv) $L^{3}(v)=\emptyset,\left|L_{1}^{1}(v)\right| \leq 1,\left|L^{1}(v)\right|=2$ and $\left|L^{0}(v) \cup L^{2}(v) \cup L^{4}(v)\right| \geq 1$.
(v) $L^{2}(v)=L^{3}(v)=L^{4}(v)=\emptyset,\left|L^{1}(v)\right|=\left|L_{1}^{1}(v)\right|=1$ and $\left|L^{0}(v)\right| \geq 1$.
(b) $v \in \mathcal{N}_{t 2}(T)$ if and only if one of the following hold:
(i) $L^{1}(v)=L^{3}(v)=\emptyset$ and $\left|L^{4}(v)\right| \geq 1$, or
(ii) $L^{1}(v)=L^{3}(v)=L^{4}(v)=\emptyset$ and $\left|L^{2}(v)\right| \geq 2$.

Theorem 2. Let v be a vertex of a tree T with order at least 4 that is not a star. Then,
(a) $v \in \mathcal{A}_{t 2}(T)$ if and only if one of the following hold:
(i) $\left|\bar{L}^{3}(v)\right| \geq 1$ and $\left|\bar{L}^{1}(v) \cup \bar{L}^{3}(v)\right| \geq 2$.
(ii) $\bar{L}^{3}(v)=\emptyset$ and $\left|\bar{L}^{1}(v)\right| \geq 3$.
(iii) $\bar{L}^{3}(v)=\emptyset$ and $\left|\bar{L}_{1}^{1}(v)\right|=2$.
(iv) $\bar{L}^{3}(v)=\emptyset,\left|\bar{L}_{1}^{1}(v)\right| \leq 1,\left|\bar{L}^{1}(v)\right|=2$ and $\left|\bar{L}^{0}(v) \cup \bar{L}^{2}(v) \cup \bar{L}^{4}(v)\right| \geq 1$.
(v) $\bar{L}^{2}(v)=\bar{L}^{3}(v)=\bar{L}^{4}(v)=\emptyset,\left|\bar{L}^{1}(v)\right|=\left|\bar{L}_{1}^{1}(v)\right|=1$ and $\left|\bar{L}^{0}(v)\right| \geq 1$.
(b) $v \in \mathcal{N}_{t 2}(T)$ if and only if one of the following hold:
(i) $\bar{L}^{1}(v)=\bar{L}^{3}(v)=\emptyset$ and $\left|\bar{L}^{4}(v)\right| \geq 1$, or
(ii) $\bar{L}^{1}(v)=\bar{L}^{3}(v)=\bar{L}^{4}(v)=\emptyset$ and $\left|\bar{L}^{2}(v)\right| \geq 2$.

[^1]
4. Preliminary Results

The semitotal domination number of a path and a cycle is determined in [3].
Lemma 3 [3]. For $n \geq 3, \gamma_{t 2}\left(P_{n}\right)=\gamma_{t 2}\left(C_{n}\right)=\left\lceil\frac{2 n}{5}\right\rceil$.
Lemma 3 immediately infers that every path P_{n} where $n \equiv 0(\bmod 5)$ has a unique $\gamma_{t 2}\left(P_{n}\right)$-set. That is, if we number the vertices in $V\left(P_{n}\right)$ consecutively starting at 1 , then the $\gamma_{t 2}\left(P_{n}\right)$-set is the set of all vertices with numbers congruent to $2(\bmod 5)$ and $4(\bmod 5)$. Additionally, the paths P_{2} and P_{7} also have unique minimum semi-TD-sets. We state this formally as follows.

Observation 4. The paths P_{2}, P_{7} and P_{n}, where $n \equiv 0(\bmod 5)$, all have unique minimum semi-TD-sets.

We shall need the following result first observed in [6].
Observation 5. If G is a connected graph that is not a star, then there is a $\gamma_{t 2}(G)$-set that contains no leaf of G.

We proceed with the following two lemmas that will be useful when proving our main results. We use the standard notation $[k]=\{1,2, \ldots, k\}$.

Lemma 6. Let T be a tree of order at least 3 . Let t be a support vertex in T and let u^{\prime} be a leaf-neighbor of t. If T^{\prime} is the tree obtained from T by attaching a path of length 5 to u^{\prime}, then $\gamma_{t 2}\left(T^{\prime}\right)=\gamma_{t 2}(T)+2$.

Proof. Suppose T^{\prime} is obtained from T by adding to u^{\prime} the path uwxyz together with the edge $u u^{\prime}$. Every $\gamma_{t 2}(T)$-set can be extended to a semi-TD-set of T^{\prime} by adding to it the vertices w and y, and so $\gamma_{t 2}\left(T^{\prime}\right) \leq \gamma_{t 2}(T)+2$. Let D^{\prime} be a $\gamma_{t 2}\left(T^{\prime}\right)$-set. If $z \in D^{\prime}$, then we can replace z in D^{\prime} by y. Hence we may choose D^{\prime} so that $D^{\prime} \cap\{y, z\}=\{y\}$. In order to semitotally dominate the vertex y, we note that x or w belong to D^{\prime}. If $x \in D^{\prime}$, then we can replace x in D^{\prime} by w. Hence we may choose D^{\prime} so that $D^{\prime} \cap\{x, w\}=\{w\}$. If $u \in D^{\prime}$, then we can replace u in D^{\prime} by u^{\prime}. Hence we may choose D^{\prime} so that $u \notin D^{\prime}$. If $t \in D^{\prime}$, then we can replace u^{\prime} in D^{\prime} with a neighbor of t different from u^{\prime}. If $t \notin D^{\prime}$ and $\left|D^{\prime} \cap N(t)\right| \geq 2$, then we can replace u^{\prime} in D^{\prime} with the vertex t. If $t \notin D^{\prime}$ and $D^{\prime} \cap N[t]=\left\{u^{\prime}\right\}$, then in order to dominate the neighbors of t different from u^{\prime}, the set D^{\prime} contains at least one vertex at distance 2 from t in T, implying once again that we can replace u^{\prime} in D^{\prime} with the vertex t. Hence, we may choose D^{\prime} so that $u^{\prime} \notin D^{\prime}$. In order to dominate the vertex u^{\prime}, we note that $t \in D^{\prime}$. Since D^{\prime} is a semi-TD-set of T^{\prime}, the set $D^{\prime} \backslash\{w, y\}$ is necessarily a semi-TD-set of T, implying that $\gamma_{t 2}(T) \leq\left|D^{\prime}\right|-2=\gamma_{t 2}\left(T^{\prime}\right)-2$. Consequently, $\gamma_{t 2}\left(T^{\prime}\right)=\gamma_{t 2}(T)+2$.

Lemma 7. Let T be a tree with order at least 3. Let t be a support vertex in T and let u^{\prime} be a leaf-neighbor of t. Let T^{\prime} be the tree obtained from T by attaching a path of length 5 to u^{\prime}. Ift is an essential support vertex in T, let $v \in V(T) \backslash\left\{u^{\prime}, t\right\}$. If t is not an essential support vertex in T, let $v \in V(T)$. Then the following hold.
(a) $v \in \mathcal{A}_{t 2}(T)$ if and only if $v \in \mathcal{A}_{t 2}\left(T^{\prime}\right)$.
(b) $v \in \mathcal{N}_{t 2}(T)$ if and only if $v \in \mathcal{N}_{t 2}\left(T^{\prime}\right)$.

Proof. Suppose T^{\prime} is obtained from T by adding to u^{\prime} the path $u w x y z$ together with the edge $u u^{\prime}$.
(a) Suppose that $v \notin \mathcal{A}_{t 2}(T)$. Let D be a $\gamma_{t 2}(T)$-set that does not contain v. Then, $D \cup\{w, y\}$ is a semi-TD-set of T^{\prime} of cardinality $|D|+2=\gamma_{t 2}(T)+2=\gamma_{t 2}\left(T^{\prime}\right)$ by Lemma 6. Consequently, $D \cup\{w, y\}$ is a $\gamma_{t 2}\left(T^{\prime}\right)$-set that does not contain v, implying that $v \notin \mathcal{A}_{t 2}\left(T^{\prime}\right)$. Therefore, by contraposition, if $v \in \mathcal{A}_{t 2}\left(T^{\prime}\right)$, then $v \in \mathcal{A}_{t 2}(T)$.

Conversely, suppose that $v \in \mathcal{A}_{t 2}(T)$. Suppose to the contrary that $v \notin$ $\mathcal{A}_{t 2}\left(T^{\prime}\right)$. Let D^{\prime} be a $\gamma_{t 2}\left(T^{\prime}\right)$-set that does not contain the vertex v, and let $D=D^{\prime} \cap V(T)$. If $v=u^{\prime}$, then by Observation 5 , there exists a $\gamma_{t 2}(T)$-set that does not contain v, contradicting our assumption that $v \in \mathcal{A}_{t 2}(T)$. Hence, $v \neq u^{\prime}$. Proceeding as in the proof of Lemma 6 , we can choose D^{\prime} so that $D^{\prime} \cap\{w, x, y, z, u\}=\{w, y\}$. Thus, $D=D^{\prime} \backslash\{w, y\}$ and, by Lemma $6,|D|=$ $\left|D^{\prime}\right|-2=\gamma_{t 2}\left(T^{\prime}\right)-2=\gamma_{t 2}(T)$. If $v \neq t$, then proceeding as in the proof of Lemma 6 , we can additionally choose D^{\prime} so that $D^{\prime} \cap\left\{u^{\prime}, t\right\}=\{t\}$, implying that the set D is a $\gamma_{t 2}(T)$-set that does not contain v, a contradiction. Hence, $v=t$. By supposition, $v \notin D^{\prime}$, and so neither neighbor of u^{\prime} in T^{\prime} belongs to D^{\prime}, implying that $u^{\prime} \in D^{\prime}$.

If D is a semi-TD-set in T, then D is a $\gamma_{t 2}(T)$-set that does not contain the vertex v, contradicting our supposition that $v \in \mathcal{A}_{t 2}(T)$. Hence, D is not a semi-TD-set in T, implying that no vertex in D is at distance 1 or 2 from u^{\prime}. Thus, $D \cap N[v]=\left\{u^{\prime}\right\}$. In particular, we note that u^{\prime} is the only leaf-neighbor of v in T.

We show next that for every $\gamma_{t 2}(T)$-set $S, N[v] \cap S=\{v\}$. For notational convenience, let T be rooted at the vertex v and let $N(v) \backslash\left\{u^{\prime}\right\}=\left\{v_{1}, \ldots, v_{k}\right\}$. For $i \in[k]$, let T_{i} denote the maximal subtree of T rooted at v_{i} (and so, $T_{i}=T_{v_{i}}$) and let $D_{i}=D \cap V\left(T_{i}\right)$. We note that $v_{i} \notin D_{i}$ and that the set D_{i} is a semi-TD-set in T_{i} for all $i \in[k]$. Suppose that there exists a $\gamma_{t 2}(T)$-set, S, such that $|N[v] \cap S| \geq 2$. Since $v \in \mathcal{A}_{t 2}(T)$, we note that $v \in S$. If $u^{\prime} \in S$, we can simply replace u^{\prime} in S with a neighbor of v that is not a leaf. Renaming the children of v if necessary, we may therefore assume that $v_{1} \in S$. Let $S_{1}=S \cap V\left(T_{1}\right)$. Since the set D_{1} contains a vertex at distance 2 from v in T, we note that the set $\left(S \backslash S_{1}\right) \cup D_{1}$ is a semi-TD-set of T, implying that $|S|=\gamma_{t 2}(T) \leq|S|-\left|S_{1}\right|+\left|D_{1}\right|$,
or, equivalently, $\left|S_{1}\right| \leq\left|D_{1}\right|$. We now consider the set $S^{*}=\left(D \backslash D_{1}\right) \cup S_{1}$. Since u^{\prime} and v_{1} are at distance 2 apart in T, the set S^{*} is a semi-TD-set of T, implying that $\gamma_{t 2}(T) \leq\left|S^{*}\right| \leq|D|-\left|D_{1}\right|+\left|S_{1}\right| \leq|D|=\gamma_{t 2}(T)$. Consequently, $\left|S^{*}\right|=\gamma_{t 2}(T)$ and S^{*} is a $\gamma_{t 2}(T)$-set that does not contain the vertex v, a contradiction. Therefore, for every $\gamma_{t 2}(T)$-set S, we have $N[v] \cap S=\{v\}$. Moreover, this result together with our earlier observation that u^{\prime} is the only leaf-neighbor of v in T imply that v is an essential support vertex in T, a contradiction (recalling that here $v=t$). Hence, $v \in \mathcal{A}_{t 2}\left(T^{\prime}\right)$. This completes the proof of part (a).
(b) Suppose that $v \in \mathcal{N}_{t 2}\left(T^{\prime}\right)$. We show that $v \in \mathcal{N}_{t 2}(T)$. Suppose to the contrary that there exists a $\gamma_{t 2}(T)$-set, D, that contains the vertex v. Then, $D \cup\{w, y\}$ is a semi-TD-set of T^{\prime} of cardinality $|D|+2=\gamma_{t 2}(T)+2=\gamma_{t 2}\left(T^{\prime}\right)$. Consequently, $D \cup\{w, y\}$ is a $\gamma_{t 2}\left(T^{\prime}\right)$-set that contains v, a contradiction. Therefore, $v \in \mathcal{N}_{t 2}(T)$.

Conversely, suppose that $v \in \mathcal{N}_{t 2}(T)$. We show that $v \in \mathcal{N}_{t 2}\left(T^{\prime}\right)$. Suppose to the contrary that there exists a $\gamma_{t 2}\left(T^{\prime}\right)$-set, D^{\prime}, that contains the vertex v. Let $D=D^{\prime} \cap V(T)$. Proceeding as in the proof of Lemma 6 , we can choose D^{\prime} so that $D^{\prime} \cap\{w, x, y, z, u\}=\{w, y\}$. Thus, $D=D^{\prime} \backslash\{w, y\}$. If $v \neq u^{\prime}$, then proceeding as in the proof of Lemma 6 , we can further choose D^{\prime} so that $D^{\prime} \cap\left\{u^{\prime}, t\right\}=\{t\}$, implying that the set D is a $\gamma_{t 2}(T)$-set containing v, a contradiction. Hence, $v=u^{\prime}$. If D is a semi-TD-set in T, then the set D is a $\gamma_{t 2}(T)$-set containing v, a contradiction. Hence, D is not a semi-TD-set in T, implying that no vertex in D is at distance 1 or 2 from u^{\prime}. Thus, $D \cap N[t]=\left\{u^{\prime}\right\}$. In particular, this implies that u^{\prime} is the only leaf-neighbor of t in T. An analogous proof to that employed in the proof of part (a) shows the vertex t is an essential support vertex in T, contradicting the fact that in this case $v=u^{\prime}$. Therefore, $v \in \mathcal{N}_{t 2}\left(T^{\prime}\right)$.

5. Proof of Theorem 1

Proof. Let T be a tree with order at least 4 that is not a star and is rooted at a vertex v such that $d(u) \leq 2$ for each $u \in V(T) \backslash\{v\}$. For each $w \in L(v)$ such that $d_{T}(v, w) \geq 6$, let T^{\prime} be the tree obtained by replacing the (v, w) path in T with a (v, w)-path of length $j, j \in\{5,6,2,3,4\}$ if $w \in L^{i}(v), i \in$ $\{0,1,2,3,4\}$, respectively. By repeated applications of Lemma $7, v \in \mathcal{A}_{t 2}(T)$ $\left(\mathcal{N}_{t 2}(T)\right.$, respectively) if and only if $v \in \mathcal{A}_{t 2}\left(T^{\prime}\right)\left(\mathcal{N}_{t 2}\left(T^{\prime}\right)\right.$, respectively $)$. Hence, in what follows, we assume $T=T^{\prime}$. If v is a leaf of T, then by our earlier assumptions, T is a path P_{n} where $n \in\{4,5,6,7\}$. If $n \in\{4,6\}$, then $v \notin$ $\mathcal{A}_{t 2}(T) \cup \mathcal{N}_{t 2}(T)$. If $n \in\{5,7\}$, then by Observation $4, v \in \mathcal{N}_{t 2}(T)$. Hence, we may assume that v is not a leaf in T. Let D be an arbitrary $\gamma_{t 2}(T)$-set and let W be the set of vertices at distance 3 from a leaf of some $L_{2}^{1}(v)$-path. We proceed further with a series of claims.

Claim A. If $\left|L_{1}^{1}(v)\right| \geq 2$, then $v \in \mathcal{A}_{t 2}(T)$.
Proof. Suppose $\left|L_{1}^{1}(v)\right| \geq 2$. Thus, v is a strong support vertex in T and therefore has at least two leaf-neighbors. Moreover, $\mid L^{0}(v) \cup L_{2}^{1}(v) \cup L^{2}(v) \cup L^{3}(v) \cup$ $L^{4}(v) \mid \geq 1$ since T is not a star. Let w be a neighbor of v that is not a leaf. Suppose, to the contrary, that $v \notin \mathcal{A}_{t 2}(T)$. Let S be a $\gamma_{t 2}(T)$-set that does not contain the vertex v. The set S contains all leaf-neighbors of v. Since $N[w] \cap S \neq \emptyset$, we note that v is within distance 2 from at least one vertex in $N[w] \cap S$. Further, no vertex in $N[w] \cap S$ is a leaf-neighbor of v. Replacing the leaf-neighbors of v in S with the vertex v produces a semi-TD-set in T of cardinality less than $|S|=\gamma_{t 2}(T)$, a contradiction. Hence, $v \in \mathcal{A}_{t 2}(T)$.

By Claim A, we may assume that $\left|L_{1}^{1}(v)\right| \leq 1$.
Claim B. If $L(v)=L^{0}(v)$, then $v \notin \mathcal{A}_{t 2}(T) \cup \mathcal{N}_{t 2}(T)$.
Proof. Suppose $L(v)=L^{0}(v)$. Then, $L^{1}(v) \cup L^{2}(v) \cup L^{3}(v) \cup L^{4}(v)=\emptyset$. Let $S=\operatorname{Gr}(v) \cup S(T) \cup\{v\}$. The set S is a semi-TD-set of T, and so $\gamma_{t 2}(T) \leq$ $|S|=2\left|L^{0}(v)\right|+1$. Recall that D is an arbitrary $\gamma_{t 2}(T)$-set. If $v v_{1} v_{2} v_{3} v_{4} v_{5}$ is a path emanating from v in T, then v_{5} is a leaf in T and $\left|D \cap\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}\right| \geq 2$, implying that the set D contains at least two vertices from each path of order 5 attached to v and at least one vertex in $N[v]$. Thus, $\gamma_{t 2}(T)=|D| \geq 2\left|L^{0}(v)\right|+1=$ $|S| \geq \gamma_{t 2}(T)$. Consequently, we must have equality throughout this inequality chain. In particular, $|S|=\gamma_{t 2}(T)=2\left|L^{0}(v)\right|+1$ and S is a $\gamma_{t 2}(T)$-set. Replacing v in S with an arbitrary neighbor of v produces a $\gamma_{t 2}(T)$-set not containing v. Hence, $v \notin \mathcal{A}_{t 2}(T) \cup \mathcal{N}_{t 2}(T)$.

By Claim B, we may assume that $L(v) \neq L^{0}(v)$.
Claim C. If $L(v)=L^{0}(v) \cup L_{1}^{1}(v)$ where $\left|L_{1}^{1}(v)\right|=1$ and $\left|L^{0}(v)\right| \geq 1$, then v is an essential support vertex in T. In particular, $v \in \mathcal{A}_{t 2}(T)$.

Proof. Suppose $L(v)=L^{0}(v) \cup L_{1}^{1}(v)$ where $\left|L_{1}^{1}(v)\right|=1$ and $\left|L^{0}(v)\right|=k \geq 1$. In this case, $L_{2}^{1}(v) \cup L^{2}(v) \cup L^{3}(v) \cup L^{4}(v)=\emptyset$. Let $L_{1}^{1}(v)=\{u\}$. We note that u is the only leaf-neighbor of v in T. We show that $v \in \mathcal{A}_{t 2}(T)$ and $N(v) \subseteq \mathcal{N}_{t 2}(T)$, implying that v is an essential support vertex of T. Let $S=\operatorname{Gr}(v) \cup S(T) \cup\{v\}$. The set S is a semi-TD-set of T, and so $\gamma_{t 2}(T) \leq|S|=2 k+1$. If $v v_{1} v_{2} v_{3} v_{4} v_{5}$ is a path emanating from v in T, then v_{5} is a leaf in T and $\left|D \cap\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}\right| \geq 2$. In particular, the set D contains at least two vertices from each path of order 5 attached to v. Further, D contains at least one of u and v. Thus, $\gamma_{t 2}(T)=$ $|D| \geq 2 k+1=|S| \geq \gamma_{t 2}(T)$. Consequently, we must have equality throughout this inequality chain. In particular, $|S|=\gamma_{t 2}(T)=2 k+1$, implying that S is a $\gamma_{t 2}(T)$-set.

Suppose that there exists a $\gamma_{t 2}(T)$-set, D^{\prime}, that does not contain v. In this case, $u \in D^{\prime}$. Further, in order to semitotally dominate u, we note that $\mid\left(D^{\prime} \backslash\right.$ $\{u\}) \cap N(v) \mid \geq 1$. This, however, implies that along one of P_{5} 's attached to v in T, at least three of its vertices belong to D^{\prime}, which in turn implies that $\left|D^{\prime}\right| \geq 2 k+2>|S|$, a contradiction. Hence, $v \in \mathcal{A}_{t 2}(T)$. As observed earlier, if $v v_{1} v_{2} v_{3} v_{4} v_{5}$ is a path emanating from v in T, then $\left|D \cap\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}\right| \geq 2$. Further, since $v \in \mathcal{A}_{t 2}(T)$, we note that $v \in D$. Thus if $|D \cap N(v)| \geq 1$, then $\gamma_{t 2}(T)=|D| \geq 2 k+2$, a contradiction. Therefore, $N(v) \cap D=\emptyset$, implying that $N(v) \subseteq \mathcal{N}_{t 2}(T)$. Thus, v is an essential support vertex in T.

By our earlier assumptions, $\left|L_{1}^{1}(v)\right| \leq 1$ and $L(v) \neq L^{0}(v)$. By Claim C, we may assume that $L(v) \neq L^{0}(v) \cup L_{1}^{1}(v)$.

Claim D. Suppose $\left|L^{3}(v)\right| \geq 1$. Then the following hold.
(a) If $\left|L^{3}(v)\right| \geq 2$, then $v \in \mathcal{A}_{t 2}(T)$.
(b) If $\left|L^{3}(v)\right|=1$ and $\left|L^{1}(v)\right| \geq 1$, then $v \in \mathcal{A}_{t 2}(T)$.
(c) If $\left|L^{3}(v)\right|=1, L^{1}(v)=\emptyset$ and $\left|L^{0}(v) \cup L^{2}(v) \cup L^{4}(v)\right| \geq 1$, then $v \notin \mathcal{A}_{t 2}(T) \cup$ $\mathcal{N}_{t 2}(T)$.

Proof. (a) Suppose $\left|L^{3}(v)\right| \geq 2$. Let $\left\{u_{3}, v_{3}\right\} \subseteq L^{3}(v)$ and let $v u_{1} u_{2} u_{3}$ and $v v_{1} v_{2} v_{3}$ be the $\left(v, u_{3}\right)$-path and the $\left(v, v_{3}\right)$-path. By our earlier assumptions, the vertex v has at most one leaf-neighbor. Further, we remark that there may exist leaves at distance $2,4,5$ and 6 from v in T. The set $S(T) \cup C^{(4)}(v) \cup \operatorname{Gr}(v) \cup W \cup\{v\}$ is a semi-TD-set of cardinality $2\left(\left|L^{0}(v)\right|+\left|L_{2}^{1}(v)\right|+\left|L^{4}(v)\right|\right)+\left|L^{2}(v)\right|+\left|L^{3}(v)\right|+1$, and so $\gamma_{t 2}(T) \leq 2\left(\left|L^{0}(v)\right|+\left|L_{2}^{1}(v)\right|+\left|L^{4}(v)\right|\right)+\left|L^{2}(v)\right|+\left|L^{3}(v)\right|+1$.

Suppose D does not contain v. Then, D will contain at least two vertices from each $L^{0}(v)$-path, at least three vertices from each $L_{2}^{1}(v)$-path, at least one vertex from each $L^{2}(v)$-path, at least two vertices from each $L^{3}(v)$-path, and at least two vertices from each $L^{4}(v)$-path. Further, if $\left|L_{1}^{1}(v)\right|=1$, then D contains the leaf-neighbor of v. If $u_{3} \in D$, we can replace u_{3} in D with u_{2}. Hence, we may choose D so that $D \cap\left\{u_{1}, u_{2}, u_{3}\right\}=\left\{u_{1}, u_{2}\right\}$. This implies that $\gamma_{t 2}(T)=|D| \geq$ $2\left(\left|L^{0}(v)\right|+\left|L^{4}(v)\right|\right)+3\left|L_{2}^{1}(v)\right|+\left|L^{2}(v)\right|+2\left|L^{3}(v)\right|+\left|L_{1}^{1}(v)\right| \geq 2\left(\left|L^{0}(v)\right|+\left|L_{2}^{1}(v)\right|+\right.$ $\left.\left|L^{4}(v)\right|\right)+\left|L^{2}(v)\right|+2\left|L^{3}(v)\right|>2\left(\left|L^{0}(v)\right|+\left|L_{2}^{1}(v)\right|+\left|L^{4}(v)\right|\right)+\left|L^{2}(v)\right|+\left|L^{3}(v)\right|+1$, a contradiction. Hence, $v \in D$. Since D is an arbitrary $\gamma_{t 2}(T)$-set, we deduce that $v \in \mathcal{A}_{t 2}(T)$.
(b) Suppose that $\left|L^{3}(v)\right|=1$ and $\left|L^{1}(v)\right| \geq 1$. Let $L^{3}(v)=\left\{u_{3}\right\}$ and let $v u_{1} u_{2} u_{3}$ be the $\left(v, u_{3}\right)$-path. Suppose firstly that $L_{1}^{1}(v)=\emptyset$, and so $L^{1}(v)=$ $L_{2}^{1}(v)$. In this case, the set $S(T) \cup C^{(4)}(v) \cup \operatorname{Gr}(v) \cup W \cup\{v\}$ is a semi-TDset of cardinality $2\left(\left|L^{0}(v)\right|+\left|L^{1}(v)\right|+\left|L^{4}(v)\right|\right)+\left|L^{2}(v)\right|+2$, and so $\gamma_{t 2}(T) \leq$ $2\left(\left|L^{0}(v)\right|+\left|L^{1}(v)\right|+\left|L^{4}(v)\right|\right)+\left|L^{2}(v)\right|+2$. Suppose D does not contain v. Then, D contains at least two vertices on the path $u_{1} u_{2} u_{3}$ and at least three vertices from
each $L_{2}^{1}(v)$-path. Further, D contains at least two vertices from each $L^{0}(v)$-path, two vertices from each $L^{4}(v)$-path and one vertex from each $L^{2}(v)$-path. However, this implies that $\gamma_{t 2}(T)=|D| \geq 2\left(\left|L^{0}(v)\right|+\left|L^{4}(v)\right|\right)+3\left|L^{1}(v)\right|+\left|L^{2}(v)\right|+2>$ $2\left(\left|L^{0}(v)\right|+\left|L^{1}(v)\right|+\left|L^{4}(v)\right|\right)+\left|L^{2}(v)\right|+2$, a contradiction. Hence, $v \in D$, and since D is an arbitrary $\gamma_{t 2}(T)$-set, $v \in \mathcal{A}_{t 2}(T)$.

Suppose secondly that $\left|L_{1}^{1}(v)\right|=1$. Let $L_{1}^{1}(v)=\{u\}$. In this case, the set $S(T) \cup C^{(4)}(v) \cup G r(v) \cup W \cup\{v\}$ is a semi-TD-set of cardinality $2\left(\left|L^{0}(v)\right|+\left|L_{2}^{1}(v)\right|+\right.$ $\left.\left|L^{4}(v)\right|\right)+\left|L^{2}(v)\right|+2$, and so $\gamma_{t 2}(T) \leq 2\left(\left|L^{0}(v)\right|+\left|L_{2}^{1}(v)\right|+\left|L^{4}(v)\right|\right)+\left|L^{2}(v)\right|+2$. Suppose D does not contain v. Then, $u \in D$ and D contains at least two vertices on the path $u_{1} u_{2} u_{3}$ and at least three vertices from each $L_{2}^{1}(v)$-path. The number of vertices needed from each $L^{0}(v)$-path, $L^{2}(v)$-path and $L^{4}(v)$-path remains unchanged. However, this implies that $\gamma_{t 2}(T)=|D| \geq 2\left(\left|L^{0}(v)\right|+\left|L^{4}(v)\right|\right)+$ $3\left|L_{2}^{1}(v)\right|+\left|L^{2}(v)\right|+2\left|L^{3}(v)\right|+\left|L_{1}^{1}(v)\right|=2\left(\left|L^{0}(v)\right|+\left|L^{4}(v)\right|\right)+3\left|L_{2}^{1}(v)\right|+\left|L^{2}(v)\right|+3>$ $2\left(\left|L^{0}(v)\right|+\left|L_{2}^{1}(v)\right|+\left|L^{4}(v)\right|\right)+\left|L^{2}(v)\right|+2$, a contradiction. Hence, $v \in D$, and since D is an arbitrary $\gamma_{t 2}(T)$-set, $v \in \mathcal{A}_{t 2}(T)$.
(c) Suppose that $\left|L^{3}(v)\right|=1, L^{1}(v)=\emptyset$ and $\left|L^{0}(v) \cup L^{2}(v) \cup L^{4}(v)\right| \geq 1$. Let $L^{3}(v)=\left\{u_{3}\right\}$ and let $v u_{1} u_{2} u_{3}$ be the $\left(v, u_{3}\right)$-path. Every leaf of T, different from u_{3}, is at distance 2,4 or 5 from v, and so $L(v) \backslash\left\{u_{3}\right\}=L^{0}(v) \cup L^{2}(v) \cup L^{4}(v)$. By Observation 5, there is a $\gamma_{t 2}(T)$-set, say D^{\prime}, that contains no leaf of T, implying that $S(T) \subseteq D^{\prime}$. The set D^{\prime} contains at least two vertices from each $L^{0}(v)$-path and at least two vertices from each $L^{4}(v)$-path. Further, D^{\prime} contains at least one vertex from each $L^{2}(v)$-path and at least two vertices from the $\left(v, u_{3}\right)$-path. This implies that $\gamma_{t 2}(T) \geq 2\left(\left|L^{0}(v)\right|+\left|L^{4}(v)\right|\right)+\left|L^{2}(v)\right|+2$. On the other hand, the set of children of v that do not belong to any $L^{0}(v)$-path, together with the set $S(T) \cup \operatorname{Gr}(v)$ form a semi-TD-set, say S, of T of cardinality $2\left(\left|L^{0}(v)\right|+\left|L^{4}(v)\right|\right)+$ $\left|L^{2}(v)\right|+2$, implying that $\gamma_{t 2}(T) \leq 2\left(\left|L^{0}(v)\right|+\left|L^{4}(v)\right|\right)+\left|L^{2}(v)\right|+2$. Consequently, $\gamma_{t 2}(T)=2\left(\left|L^{0}(v)\right|+\left|L^{4}(v)\right|\right)+\left|L^{2}(v)\right|+2$. Moreover, S and $\left(S \backslash\left\{u_{1}\right\}\right) \cup\{v\}$ are $\gamma_{t 2}(T)$-sets, implying that $v \notin \mathcal{A}_{t 2}(T) \cup \mathcal{N}_{t 2}(T)$.

By Claim D, we may assume that $L^{3}(v)=\emptyset$.
Claim E. If $\left|L^{1}(v)\right| \geq 3$, then $v \in \mathcal{A}_{t 2}(T)$.
Proof. Suppose, firstly, that $L^{0}(v) \cup L^{2}(v) \cup L^{4}(v) \neq \emptyset$. The vertex set $S(T) \cup$ $C^{(4)}(v) \cup \operatorname{Gr}(v) \cup W \cup\{v\}$ is a semi-TD-set of cardinality $2\left(\left|L^{0}(v)\right|+\left|L_{2}^{1}(v)\right|+\right.$ $\left.\left|L^{4}(v)\right|\right)+\left|L^{2}(v)\right|+1$, and so $\gamma_{t 2}(T) \leq 2\left(\left|L^{0}(v)\right|+\left|L_{2}^{1}(v)\right|+\left|L^{4}(v)\right|\right)+\left|L^{2}(v)\right|+1$. Suppose D does not contain v. If $L_{1}^{1}(v)=\emptyset$, then every leaf is at distance 2,4 , 5 or 6 from v in T and $L^{1}(v)=L_{2}^{1}(v)$. In this case, D contains at least three vertices from each $L_{2}^{1}(v)$-path, two vertices from each $L^{0}(v)$-path, two vertices from each $L^{4}(v)$-path and one vertex from each $L^{2}(v)$-path. Hence, $\gamma_{t 2}(T)=$ $|D|>3\left|L^{1}(v)\right|+2\left(\left|L^{0}(v)+\left|L^{4}(v)\right|\right)+\left|L^{2}(v)\right|>2\left(\left|L^{0}(v)\right|+\left|L^{1}(v)\right|+\left|L^{4}(v)\right|\right)+\right.$ $\left|L^{2}(v)\right|+1$, a contradiction. Therefore, $L_{1}^{1}(v) \neq \emptyset$. Let $L_{1}^{1}(v)=\{u\}$. Every leaf
is at distance $1,2,4,5$ or 6 from v in T. In this case, D contains the leaf u, implying that $\gamma_{t 2}(T)=|D|>3\left|L_{2}^{1}(v)\right|+2\left(\left|L^{0}(v)+\left|L^{4}(v)\right|\right)+\left|L^{2}(v)\right|+\left|L_{1}^{1}(v)\right|>\right.$ $2\left(\left|L^{0}(v)\right|+\left|L_{2}^{1}(v)\right|+\left|L^{4}(v)\right|\right)+\left|L^{2}(v)\right|+1$, a contradiction. Hence, $v \in D$, and since D is an arbitrary $\gamma_{t 2}(T)$-set, $v \in \mathcal{A}_{t 2}(T)$.

Suppose, secondly, that $L^{0}(v) \cup L^{2}(v) \cup L^{4}(v)=\emptyset$. Thus, $L(v)=L^{1}(v)$. Let $u_{6} \in L^{1}(v)$ and let $v u_{1} u_{2} u_{3} u_{4} u_{5} u_{6}$ be the $\left(v, u_{6}\right)$-path. The vertex set $S(T) \cup W \cup$ $\left\{u_{1}, v\right\}$ is a semi-TD-set of cardinality $2\left|L_{2}^{1}(v)\right|+2$, and so $\gamma_{t 2}(T) \leq 2\left|L_{2}^{1}(v)\right|+2$. Suppose D does not contain v. If $L_{1}^{1}(v)=\emptyset$, then every leaf is at distance 6 from v in T and $L(v)=L^{1}(v)=L_{2}^{1}(v)$. In this case, D contains at least three vertices from each $L^{1}(v)$-path. Hence, $\gamma_{t 2}(T)=|D| \geq 3\left|L^{1}(v)\right|>2\left|L^{1}(v)\right|+2$, a contradiction. If $L_{1}^{1}(v) \neq \emptyset$, then letting $L_{1}^{1}(v)=\{u\}$, every leaf in $L^{1}(v) \backslash\{u\}$ is at distance 6 from v in T. In this case, D contains at least three vertices from each $L_{2}^{1}(v)$-path and the leaf u. Hence, $\gamma_{t 2}(T)=|D| \geq 3\left|L_{2}^{1}(v)\right|+1>2\left|L_{2}^{1}(v)\right|+2$, a contradiction. Hence, $v \in D$, and since D is an arbitrary $\gamma_{t 2}(T)$-set, $v \in$ $\mathcal{A}_{t 2}(T)$.

By Claim E, we may assume that $\left|L^{1}(v)\right| \leq 2$.
Claim F. Suppose $\left|L^{1}(v)\right|=2$. Then the following hold.
(a) If $\left|L^{0}(v) \cup L^{2}(v) \cup L^{4}(v)\right| \geq 1$, then $v \in \mathcal{A}_{t 2}(T)$.
(b) If $L^{0}(v)=L^{2}(v)=L^{4}(v)=\emptyset$, then $v \notin \mathcal{A}_{t 2}(T) \cup \mathcal{N}_{t 2}(T)$.

Proof. (a) Suppose $\left|L^{0}(v) \cup L^{2}(v) \cup L^{4}(v)\right| \geq 1$. The vertex set $S(T) \cup C^{(4)}(v) \cup$ $\operatorname{Gr}(v) \cup W \cup\{v\}$ is a semi-TD-set of cardinality $2\left(\left|L^{0}(v)\right|+\left|L_{2}^{1}(v)\right|+\left|L^{4}(v)\right|\right)+$ $\left|L^{2}(v)\right|+1$, and so $\gamma_{t 2}(T) \leq 2\left(\left|L^{0}(v)\right|+\left|L_{2}^{1}(v)\right|+\left|L^{4}(v)\right|\right)+\left|L^{2}(v)\right|+1$. Suppose D does not contain v. If $L_{1}^{1}(v)=\emptyset$, then $L^{1}(v)=L_{2}^{1}(v)$ and $\left|L_{2}^{1}(v)\right|=2$. In this case, D contains at least three vertices from each $L_{2}^{1}(v)$-path, two vertices from each $L^{0}(v)$-path, two vertices from each $L^{4}(v)$-path and one vertex from each $L^{2}(v)$-path. Hence, $\gamma_{t 2}(T)=|D| \geq 2\left(\left|L^{0}(v)+\left|L^{4}(v)\right|\right)+\left|L^{2}(v)\right|+6>\right.$ $2\left(\left|L^{0}(v)+\left|L^{4}(v)\right|\right)+\left|L^{2}(v)\right|+5=2\left(\left|L^{0}(v)\right|+\left|L_{2}^{1}(v)\right|+\left|L^{4}(v)\right|\right)+\left|L^{2}(v)\right|+1\right.$, a contradiction. Therefore, $L_{1}^{1}(v) \neq \emptyset$. Let $L_{1}^{1}(v)=\{u\}$ and let $L_{2}^{1}(v)=\left\{u_{6}\right\}$. Additionally, let $v u_{1} u_{2} u_{3} u_{4} u_{5} u_{6}$ be the (v, u_{6})-path. In this case, D contains the leaf u and at least three vertices from the $\left(u_{1}, u_{6}\right)$-path, at least one vertex from each $L^{2}(v)$-path and at least two vertices from each $L^{0}(v)$-path and $L^{4}(v)$ path, implying that $\gamma_{t 2}(T)=|D| \geq 2\left(\left|L^{0}(v)+\left|L^{4}(v)\right|\right)+\left|L^{2}(v)\right|+4>2\left(\left|L^{0}(v)\right|+\right.\right.$ $\left.\left|L^{4}(v)\right|\right)+\left|L^{2}(v)\right|+3=2\left(\left|L^{0}(v)\right|+\left|L_{2}^{1}(v)\right|+\left|L^{4}(v)\right|\right)+\left|L^{2}(v)\right|+1$, a contradiction. Hence, $v \in D$, and since D is an arbitrary $\gamma_{t 2}(T)$-set, $v \in \mathcal{A}_{t 2}(T)$.
(b) Suppose $L^{0}(v)=L^{2}(v)=L^{4}(v)=\emptyset$. Let $u_{6} \in L_{2}^{1}(v)$ and let the path $v u_{1} u_{2} u_{3} u_{4} u_{5} u_{6}$ be the $\left(v, u_{6}\right)$-path. Suppose firstly that $L_{1}^{1}(v)=\emptyset$. Then, $L^{1}(v)=L_{2}^{1}(v)$. Let $v_{6} \in L_{2}^{1}(v) \backslash\left\{u_{6}\right\}$ and let $v v_{1} v_{2} v_{3} v_{4} v_{5} v_{6}$ be the $\left(v, v_{6}\right)$-path. In this case, $T=P_{13}$ and $\gamma_{t 2}(T)=6$. Further, the set $S=\left\{u_{1}, u_{3}, u_{5}, v_{1}, v_{3}, v_{5}\right\}$
is a $\gamma_{t 2}(T)$-set not containing v, while $\left(S \backslash\left\{u_{1}\right\}\right) \cup\{v\}$ is a $\gamma_{t 2}(T)$-set containing v. Hence, $v \notin \mathcal{A}_{t 2}(T) \cup \mathcal{N}_{t 2}(T)$. Suppose secondly that $L_{1}^{1}(v) \neq \emptyset$ and let $L_{1}^{1}(v)=$ $\{u\}$. In this case, $T=P_{8}$ and $\gamma_{t 2}(T)=4$. Further, the set $S=\left\{u, u_{1}, u_{3}, u_{5}\right\}$ is a $\gamma_{t 2}(T)$-set not containing v. Moreover, $\left(S \backslash\left\{u_{1}\right\}\right) \cup\{v\}$ is a $\gamma_{t 2}(T)$-set containing v. Hence, once again $v \notin \mathcal{A}_{t 2}(T) \cup \mathcal{N}_{t 2}(T)$.

By Claim F, we may assume that $\left|L^{1}(v)\right| \leq 1$.
Claim G. If $\left|L^{1}(v)\right|=1$, then $v \notin \mathcal{A}_{t 2}(T) \cup \mathcal{N}_{t 2}(T)$.
Proof. Suppose firstly that $L^{2}(v)=L^{4}(v)=\emptyset$. By our earlier assumptions, the vertex v is not a leaf in $T, L^{3}(v)=\emptyset$ and $L(v) \neq L^{0}(v) \cup L_{1}^{1}(v)$, implying that $\left|L^{0}(v)\right| \geq 1$ and $L^{1}(v)=L_{2}^{1}(v)$. Let $L_{2}^{1}(v)=\left\{u_{6}\right\}$ and let $v u_{1} u_{2} u_{3} u_{4} u_{5} u_{6}$ be the $\left(v, u_{6}\right)$-path. Every semi-TD-set of T contains at least two vertices from each $L^{0}(v)$-path and at least three vertices from the $\left(v, u_{6}\right)$-path, and so $\gamma_{t 2}(T) \geq$ $2\left|L^{0}(v)\right|+3$. However, the set $S=S(T) \cup \operatorname{Gr}(v) \cup\left\{v, u_{3}\right\}$ is a semi-TD-set of T of cardinality $2\left|L^{0}(v)\right|+3$, and so $\gamma_{t 2}(T) \leq|S|=2\left|L^{0}(v)\right|+3$. Consequently, $\gamma_{t 2}(T)=2\left|L^{0}(v)\right|+3$ and S is a $\gamma_{t 2}(T)$-set containing v. Moreover, $S^{\prime}=(S \backslash$ $\{v\}) \cup\left\{u_{1}\right\}$ is $\gamma_{t 2}(T)$-set containing v. Hence, $v \notin \mathcal{A}_{t 2}(T) \cup \mathcal{N}_{t 2}(T)$.

Suppose secondly that $\left|L^{2}(v) \cup L^{4}(v)\right| \geq 1$. The vertex set $S=S(T) \cup$ $C^{(4)}(v) \cup \operatorname{Gr}(v) \cup W \cup\{v\}$ is a semi-TD-set of cardinality $2\left(\left|L^{0}(v)\right|+\left|L_{2}^{1}(v)\right|+\right.$ $\left.\left|L^{4}(v)\right|\right)+\left|L^{2}(v)\right|+1$, and so $\gamma_{t 2}(T) \leq 2\left(\left|L^{0}(v)\right|+\left|L_{2}^{1}(v)\right|+\left|L^{4}(v)\right|\right)+\left|L^{2}(v)\right|+1$. Suppose $L_{1}^{1}(v)=\emptyset$, and so $L^{1}(v)=L_{2}^{1}(v)$ and $\left|L_{2}^{1}(v)\right|=1$. In this case, let $L^{1}(v)=\left\{u_{6}\right\}$ and let $v u_{1} u_{2} u_{3} u_{4} u_{5} u_{6}$ be the $\left(v, u_{6}\right)$-path. The set D contains at least three vertices from the $\left(v, u_{6}\right)$-path, at least one vertex from each $L^{2}(v)$ path and at least two vertices from each $L^{0}(v)$-path and $L^{4}(v)$-path, implying that $\gamma_{t 2}(T)=|D| \geq 2\left(\left|L^{0}(v)\right|+\left|L^{4}(v)\right|\right)+\left|L^{2}(v)\right|+3=2\left(\left|L^{0}(v)\right|+\left|L_{2}^{1}(v)\right|+\right.$ $\left.\left|L^{4}(v)\right|\right)+\left|L^{2}(v)\right|+1$. Consequently, $\gamma_{t 2}(T)=2\left(\left|L^{0}(v)\right|+\left|L^{4}(v)\right|\right)+\left|L^{2}(v)\right|+3$ and S is a $\gamma_{t 2}(T)$-set containing v. Moreover, the set $(S \backslash\{v\}) \cup\left\{u_{1}\right\}$ is a $\gamma_{t 2}(T)$-set that does not contain v. Hence, $v \notin \mathcal{A}_{t 2}(T) \cup \mathcal{N}_{t 2}(T)$. Suppose next that $L^{1}(v)=L_{1}^{1}(v)=\{u\}$. In this case, $\left|L_{2}^{1}(v)\right|=0$ and the set D contains at least one of u and v, at least one vertex from each $L^{2}(v)$-path and at least two vertices from each $L^{0}(v)$-path and $L^{4}(v)$-path, implying that $\gamma_{t 2}(T)=|D| \geq$ $2\left(\left|L^{0}(v)\right|+\left|L^{4}(v)\right|\right)+\left|L^{2}(v)\right|+1=2\left(\left|L^{0}(v)\right|+\left|L_{2}^{1}(v)\right|+\left|L^{4}(v)\right|\right)+\left|L^{2}(v)\right|+1$. Consequently, $\gamma_{t 2}(T)=2\left(\left|L^{0}(v)\right|+\left|L^{4}(v)\right|\right)+\left|L^{2}(v)\right|+1$ and S is a $\gamma_{t 2}(T)$-set containing v. Moreover, the set $(S \backslash\{v\}) \cup\{u\}$ is a $\gamma_{t 2}(T)$-set that does not contain v. Hence, once again $v \notin \mathcal{A}_{t 2}(T) \cup \mathcal{N}_{t 2}(T)$.

By Claim G, we may assume that $L^{1}(v)=\emptyset$.
Claim H. Suppose $L^{1}(v)=\emptyset$. Then the following hold.
(a) If $\left|L^{4}(v)\right| \geq 1$, then $v \in \mathcal{N}_{t 2}(T)$.
(b) If $\left|L^{2}(v)\right|=1$ and $L^{4}(v)=\emptyset$, then $v \notin \mathcal{A}_{t 2}(T) \cup \mathcal{N}_{t 2}(T)$.
(c) If $\left|L^{2}(v)\right| \geq 2$ and $L^{4}(v)=\emptyset$, then $v \in \mathcal{N}_{t 2}(T)$.

Proof. (a) Suppose $\left|L^{4}(v)\right| \geq 1$. Every leaf is at distance 2, 4 or 5 from v in T. The set D contains at least one vertex from each $L^{2}(v)$-path and at least two vertices from each $L^{0}(v)$-path and each $L^{4}(v)$-path. Thus, $\gamma_{t 2}(T)=|D| \geq$ $2\left(\left|L^{0}(v)\right|+\left|L^{4}(v)\right|\right)+\left|L^{2}(v)\right|$ with strict inequality if $v \in D$. The set $C^{(4)}(v) \cup$ $S(T) \cup \operatorname{Gr}(v)$ is a semi-TD-set of T of cardinality $2\left(\left|L^{0}(v)\right|+\left|L^{4}(v)\right|\right)+\left|L^{2}(v)\right|$, and so $\gamma_{t 2}(T) \leq 2\left(\left|L^{0}(v)\right|+\left|L^{4}(v)\right|\right)+\left|L^{2}(v)\right|$. Consequently, $\gamma_{t 2}(T)=|D|=$ $2\left(\left|L^{0}(v)\right|+\left|L^{4}(v)\right|\right)+\left|L^{2}(v)\right|$ and $v \notin D$. Since D is an arbitrary $\gamma_{t 2}(T)$-set, $v \in \mathcal{N}_{t 2}(T)$.
(b) Suppose $\left|L^{2}(v)\right|=1$ and $L^{4}(v)=\emptyset$. Let $L^{2}(v)=\left\{u_{2}\right\}$ and let $v u_{1} u_{2}$ be the $\left(v, u_{2}\right)$-path. Then, $L^{0}(v)=L(v) \backslash\left\{u_{2}\right\}$ and $S=S(T) \cup \operatorname{Gr}(v) \cup\left\{v, u_{1}\right\}$ is a semi-TD-set of cardinality $2\left|L^{0}(v)\right|+2$, and so $\gamma_{t 2}(T) \leq|S|=2\left|L^{0}(v)\right|+2$. The set D contains at least two vertices from the set $N[v] \cup\left\{u_{2}\right\}$ and at least two vertices not in $N[v]$ from each $L^{0}(v)$-path. Thus, $\gamma_{t 2}(T)=|D| \geq 2\left|L^{0}(v)\right|+2$. Consequently, $\gamma_{t 2}(T)=2\left|L^{0}(v)\right|+2$ and S is a $\gamma_{t 2}(T)$-set that contains the vertex v. Moreover, the set $(S \backslash\{v\}) \cup\left\{u_{2}\right\}$ is a $\gamma_{t 2}(T)$-set that does not contain v. Hence, $v \notin \mathcal{A}_{t 2}(T) \cup \mathcal{N}_{t 2}(T)$.
(c) Suppose that $\left|L^{2}(v)\right| \geq 2$ and $L^{4}(v)=\emptyset$. Every leaf is at distance 2 or 5 from v in T. The set D contains at least one vertex from each $L^{2}(v)$ path and at least two vertices from each $L^{0}(v)$-path. Thus, $\gamma_{t 2}(T)=|D| \geq$ $2\left|L^{0}(v)\right|+\left|L^{2}(v)\right|$ with strict inequality if $v \in D$. The set $S(T) \cup \operatorname{Gr}(v)$ is a semi-TD-set of cardinality $2\left|L^{0}(v)\right|+\left|L^{2}(v)\right|$, and so $\gamma_{t 2}(T) \leq 2\left|L^{0}(v)\right|+\left|L^{2}(v)\right|$. Consequently, $\gamma_{t 2}(T)=|D|=2\left|L^{0}(v)\right|+\left|L^{2}(v)\right|$ and $v \notin D$. Since D is an arbitrary $\gamma_{t 2}(T)$-set, $v \in \mathcal{N}_{t 2}(T)$.

Theorem 1 now follows from Claims A, B, C, D, E, F, G and H.

6. Proof of Theorem 2

Let T be a rooted tree that is not a star with root v that contains at least one branch vertex different from v. We shall adopt the following notation. Let u be a branch vertex at maximum distance from v and let $k_{0}=\left|L^{0}(u)\right|, k_{1}=\left|L^{1}(u)\right|$, $k_{2}=\left|L^{2}(u)\right|, k_{3}=\left|L^{3}(u)\right|$ and $k_{4}=\left|L^{4}(u)\right|$. Let w be the parent of u (possibly, $v=w$). Let T^{\prime} be the tree obtained from T by applying the following operations.
\mathcal{O}_{1} : For $k_{3} \geq 1$, let T^{\prime} be the tree obtained from T by deleting $D(u)$ and attaching a path P_{3} to u.
\mathcal{O}_{2} : For $k_{3}=0, k_{1} \geq 1$ and $k_{0}+k_{2}+k_{4} \geq 1$, let T^{\prime} be the tree obtained from T by deleting $D(u)$ and attaching a path P_{3} to u.
\mathcal{O}_{3} : For $k_{0}=k_{2}=k_{3}=k_{4}=0$ and $k_{1} \geq 2$, let T^{\prime} be the tree obtained from T by deleting $D(u)$ and attaching a path P_{1} to u.
\mathcal{O}_{4} : For $k_{1}=k_{3}=0$ and $k_{4} \geq 1$, let T^{\prime} be the tree obtained from T by deleting $D(u)$ and attaching a path P_{4} to u.
\mathcal{O}_{5} : For $k_{1}=k_{3}=k_{4}=0, k_{2}=1$ and $k_{0} \geq 1$, let T^{\prime} be the tree obtained from T by deleting $D(u)$ and attaching a path P_{2} to u.
\mathcal{O}_{6} : For $k_{1}=k_{3}=k_{4}=0$ and $k_{2} \geq 2$, let T^{\prime} be the tree obtained from T by deleting $D(u)$ and attaching a path P_{4} to u.
\mathcal{O}_{7} : For $k_{1}=k_{2}=k_{3}=k_{4}=0$, let T^{\prime} be the tree obtained from T by deleting $D(u)$ and attaching a path P_{5} to u.

Our next result, namely Theorem 2, establishes a key result relating the semitotal domination numbers of the trees T and T^{\prime}. Theorem 2 follows immediately from Theorem 1 and Theorem 8. We use the standard notation $[k]=\{1,2, \ldots, k\}$ once again.

Theorem 8. Let T be a tree with order at least 4 that is not a star and is rooted at a vertex v such that T contains at least one branch vertex u different from v and let T^{\prime} be the tree defined immediately before the statement of the theorem. Let w be the parent of u (possibly, $w=v$). Suppose that T^{\prime} is obtained from T by applying operation \mathcal{O}_{i} for some $i \in[7]$. Then,

$$
\gamma_{t 2}\left(T^{\prime}\right)= \begin{cases}\gamma_{t 2}(T)-2 k_{0}-k_{2}-k_{3}-2 k_{4}+1 & \text { for } i=1, \\ \gamma_{t 2}(T)-2 k_{0}-k_{2}-2 k_{4}+1 & \text { for } i=2, \\ \gamma_{t 2}(T) & \text { for } i=3, \\ \gamma_{t 2}(T)-2 k_{0}-k_{2}-2 k_{4}+2 & \text { for } i=4, \\ \gamma_{t 2}(T)-2 k_{0} & \text { for } i=5, \\ \gamma_{t 2}(T)-2 k_{0}-k_{2}+2 & \text { for } i=6, \\ \gamma_{t 2}(T)-2 k_{0}+2 & \text { for } i=7 .\end{cases}
$$

Further, in all cases, the following properties $P_{\mathcal{A}}$ and $P_{\mathcal{N}}$ hold:
$P_{\mathcal{A}}: v \in \mathcal{A}_{t 2}(T)$ if and only if $v \in \mathcal{A}_{t 2}\left(T^{\prime}\right)$.
$P_{\mathcal{N}}: v \in \mathcal{N}_{t 2}(T)$ if and only if $v \in \mathcal{N}_{t 2}\left(T^{\prime}\right)$.
Proof. For each vertex $x \in L(u)$ replace the (u, x)-path in T with a (u, x)-path of length j, where $j \in\{5,1,2,3,4\}$ if $x \in L^{i}(u)$ when $i \in\{0,1,2,3,4\}$, respectively. Let $T^{\prime \prime}$ denote the resulting tree. By repeated applications of Lemma 7 , we deduce that $v \in \mathcal{A}_{t 2}(T)\left(\mathcal{N}_{t 2}(T)\right.$, respectively) if and only if $v \in \mathcal{A}_{t 2}\left(T^{\prime \prime}\right)\left(\mathcal{N}_{t 2}\left(T^{\prime \prime}\right)\right.$, respectively). Hence, we assume $T=T^{\prime \prime}$. With this assumption, every leaf of T that is a descendant of u is within distance 5 from u. We proceed further with a series of five claims.

Claim I. Suppose $k_{3} \geq 1$. Then, T^{\prime} is obtained from T by operation \mathcal{O}_{1} and $\gamma_{t 2}\left(T^{\prime}\right)=\gamma_{t 2}(T)-2 k_{0}-k_{2}-k_{3}-2 k_{4}+1$ and properties $P_{\mathcal{A}}$ and $P_{\mathcal{N}}$ hold.
Proof. Suppose $k_{3} \geq 1$. Thus, T^{\prime} is obtained from T by operation \mathcal{O}_{1}. Let $u_{3} \in L^{3}(u)$ and let $u u_{1} u_{2} u_{3}$ be the (u, u_{3})-path. Renaming vertices, if necessary, we may assume that $T^{\prime}=T-\left(D(u) \backslash\left\{u_{1}, u_{2}, u_{3}\right\}\right)$. Let $H=T\left[D(u) \backslash\left\{u_{1}, u_{2}, u_{3}\right\}\right]$ and let $X_{H}=\left(S(T) \cup \operatorname{Gr}(u) \cup C^{(4)}(u)\right) \cap V(H)$. We note that $\left|X_{H}\right|=2 k_{0}+k_{2}+$ $k_{3}+2 k_{4}-1$. By Observation 5, there exists a $\gamma_{t 2}\left(T^{\prime}\right)$-set S that contains the vertex u_{2}. If $u_{1} \in S$, then we can replace u_{1} in S with u. Thus, we may assume $S \cap\left\{u, u_{1}, u_{2}, u_{3}\right\}=\left\{u, u_{2}\right\}$. The set S can be extended to a semi-TD-set of T by adding to it the set X_{H}, implying that $\gamma_{t 2}(T) \leq|S|+\left|X_{H}\right|=\gamma_{t 2}\left(T^{\prime}\right)+\left|X_{H}\right|$.

Conversely, let D be a $\gamma_{t 2}(T)$-set and let $D_{u}=D \cap D(u)$. The set D contains at least two vertices from each $L^{0}(u)$-path and $L^{4}(u)$-path, and at least one vertex from each $L^{2}(u)$-path and $L^{3}(u)$-path, implying that $\left|D_{u}\right| \geq 2 k_{0}+k_{2}+k_{3}+2 k_{4}=$ $\left|X_{H}\right|+1$. By Observation 5 , we can choose D so that $S(T) \subseteq D$. In particular, $u_{2} \in D$. If $u_{1} \in D$, then we can replace u_{1} in D with u. Hence, we may assume that $D \cap\left\{u, u_{1}, u_{2}, u_{3}\right\}=\left\{u, u_{2}\right\}$, implying that $D \cap V\left(T^{\prime}\right)=\left(D \backslash D_{u}\right) \cup\left\{u_{2}\right\}$ is a semi-TD-set of T^{\prime}. Therefore, $\gamma_{t 2}\left(T^{\prime}\right) \leq|D|-\left|D_{u}\right|+1 \leq|D|-\left(\left|X_{H}\right|+1\right)+1=$ $|D|-\left|X_{H}\right|=\gamma_{t 2}(T)-\left|X_{H}\right|$. Consequently, $\gamma_{t 2}(T)=\gamma_{t 2}\left(T^{\prime}\right)+\left|X_{H}\right|=\gamma_{t 2}\left(T^{\prime}\right)+$ $2 k_{0}+k_{2}+k_{3}+2 k_{4}-1$.

Suppose $v \notin \mathcal{A}_{t 2}\left(T^{\prime}\right)$ and let S^{\prime} be a $\gamma_{t 2}\left(T^{\prime}\right)$-set that does not contain the vertex v. If $u_{3} \in S^{\prime}$, then we can replace u_{3} in S^{\prime} by u_{2}. Hence, we may assume that $u_{2} \in S^{\prime}$. If $u_{1} \in S^{\prime}$, then we can replace u_{1} in S^{\prime} by u. Hence, we may assume that $S^{\prime} \cap\left\{u, u_{1}, u_{2}, u_{3}\right\}=\left\{u, u_{2}\right\}$. With these assumptions, the set $S^{\prime} \cup X_{H}$ is a semi-TD-set of T of cardinality $\left|S^{\prime}\right|+\left|X_{H}\right|=\gamma_{t 2}\left(T^{\prime}\right)+\left|X_{H}\right|=\gamma_{t 2}(T)$. Hence, $S^{\prime} \cup X_{H}$ is a $\gamma_{t 2}(T)$-set not containing v, implying that $v \notin \mathcal{A}_{t 2}(T)$. Therefore, by contraposition, if $v \in \mathcal{A}_{t 2}(T)$, then $v \in \mathcal{A}_{t 2}\left(T^{\prime}\right)$.

Conversely, suppose $v \in \mathcal{A}_{t 2}\left(T^{\prime}\right)$. Suppose to the contrary that $v \notin \mathcal{A}_{t 2}(T)$. Let D be a $\gamma_{t 2}(T)$-set that does not contain v. Analogous to our earlier arguments, we can choose such a set D so that $D \cap D[u]=X_{H} \cup\left\{u, u_{2}\right\}$. Therefore, $D \cap V\left(T^{\prime}\right)$ is a $\gamma_{t 2}\left(T^{\prime}\right)$-set that does not contain v, a contradiction. Hence, if $v \in \mathcal{A}_{t 2}\left(T^{\prime}\right)$, then $v \in \mathcal{A}_{t 2}(T)$. Thus, property $P_{\mathcal{A}}$ holds. Analogous arguments show that property $P_{\mathcal{N}}$ holds.

By Claim I, we may assume that $k_{3}=0$, for otherwise the desired result follows.

Claim J. Suppose $k_{1} \geq 1$. Then, T^{\prime} is obtained from T by operation \mathcal{O}_{i} for some $i \in\{2,3\}$ and

$$
\gamma_{t 2}\left(T^{\prime}\right)= \begin{cases}\gamma_{t 2}(T)-2 k_{0}-k_{2}-2 k_{4}+1 & \text { for } i=2 \\ \gamma_{t 2}(T) & \text { for } i=3\end{cases}
$$

Further, the properties $P_{\mathcal{A}}$ and $P_{\mathcal{N}}$ hold in both cases.

Proof. Suppose $k_{1} \geq 1$. Let u^{\prime} be a leaf-neighbor of u. We proceed further with a series of two subclaims.

Claim J.1. If $k_{0}+k_{2}+k_{4} \geq 1$, then $\gamma_{t 2}\left(T^{\prime}\right)=\gamma_{t 2}(T)-2 k_{0}-k_{2}-2 k_{4}+1$ and properties $P_{\mathcal{A}}$ and $P_{\mathcal{N}}$ hold.

Proof. Suppose $k_{0}+k_{2}+k_{4} \geq 1$. Thus, T^{\prime} is obtained from T by operation \mathcal{O}_{2}. Let $P: u_{1} u_{2} u_{3}$ be the path P_{3} added to $T-D(u)$ when constructing T^{\prime}, where u is adjacent to u_{1}. Let $H=T[D(u)]$ and let $X_{H}=\left(S(T) \cup \operatorname{Gr}(u) \cup C^{(4)}(u)\right) \cap V(H)$. We note that $\left|X_{H}\right|=2 k_{0}+k_{2}+2 k_{4}$. By Observation 5 there exists a $\gamma_{t 2}\left(T^{\prime}\right)$-set, S, such that $u_{2} \in S$. If $u_{1} \in S$, then we can replace u_{1} in D with u. Hence, we may assume that $S \cap\left\{u, u_{1}, u_{2}, u_{3}\right\}=\left\{u, u_{2}\right\}$. Since $k_{0}+k_{2}+k_{4} \geq 1$, the set $S \backslash\left\{u_{2}\right\}$ can be extended to a semi-TD-set of T by adding to it the set X_{H}, implying that $\gamma_{t 2}(T) \leq\left|S \backslash\left\{u_{2}\right\}\right|+\left|X_{H}\right|=\gamma_{t 2}\left(T^{\prime}\right)+\left|X_{H}\right|-1$.

Conversely, let D be a $\gamma_{t 2}(T)$-set and let $D_{u}=D \cap D(u)$. The set D contains at least two vertices from each $L^{0}(u)$-path and $L^{4}(u)$-path, and at least one vertex from each $L^{2}(u)$-path, implying that $\left|D_{u}\right| \geq 2 k_{0}+k_{2}+2 k_{4}=\left|X_{H}\right|$. By Observation 5 , we can choose D so that $S(T) \subseteq D$. In particular, $u \in D$, implying that $\left(D \backslash D_{u}\right) \cup\left\{u_{2}\right\}$ is a semi-TD-set of T^{\prime}, and so $\gamma_{t 2}\left(T^{\prime}\right) \leq|D|-\left|D_{u}\right|+1$. If $\left|D_{u}\right|>\left|X_{H}\right|$, then $\left(D \backslash D_{u}\right) \cup X_{H}$ is a semi-TD-set of T of cardinality less than $|D|$, a contradiction. Hence, $\left|D_{u}\right|=\left|X_{H}\right|$ and $\gamma_{t 2}\left(T^{\prime}\right) \leq|D|-\left|D_{u}\right|+1=\gamma_{t 2}(T)-$ $\left|X_{H}\right|+1$. Consequently, $\gamma_{t 2}(T)=\gamma_{t 2}\left(T^{\prime}\right)+\left|X_{H}\right|-1=\gamma_{t 2}\left(T^{\prime}\right)+2 k_{0}+k_{2}+2 k_{4}-1$.

Suppose $v \notin \mathcal{A}_{t 2}\left(T^{\prime}\right)$ and let S^{\prime} be a $\gamma_{t 2}\left(T^{\prime}\right)$-set that does not contain the vertex v. If $u_{3} \in S^{\prime}$, then we can replace u_{3} in S^{\prime} by u_{2}. Hence, we may assume that $u_{2} \in S^{\prime}$. If $u_{1} \in S^{\prime}$, then we can replace u_{1} in S^{\prime} by u. Hence, we may assume that $S^{\prime} \cap\left\{u, u_{1}, u_{2}, u_{3}\right\}=\left\{u, u_{2}\right\}$. With these assumptions, the set $S=\left(S^{\prime} \backslash\left\{u_{2}\right\}\right) \cup X_{H}$ is a semi-TD-set of T of cardinality $\left|S^{\prime}\right|+\left|X_{H}\right|-1=$ $\gamma_{t 2}\left(T^{\prime}\right)+\left|X_{H}\right|-1=\gamma_{t 2}(T)$. Hence, S is a $\gamma_{t 2}(T)$-set not containing v, implying that $v \notin \mathcal{A}_{t 2}(T)$. Therefore, by contraposition, if $v \in \mathcal{A}_{t 2}(T)$, then $v \in \mathcal{A}_{t 2}\left(T^{\prime}\right)$.

Conversely, suppose $v \in \mathcal{A}_{t 2}\left(T^{\prime}\right)$. Suppose to the contrary that $v \notin \mathcal{A}_{t 2}(T)$. Let D be a $\gamma_{t 2}(T)$-set that does not contain v. Analogous to our earlier arguments, we can choose such a set D so that $D \cap D[u]=X_{H} \cup\{u\}$. Therefore, $(D \cap$ $\left.V\left(T^{\prime}\right)\right) \cup\left\{u_{2}\right\}$ is a $\gamma_{t 2}\left(T^{\prime}\right)$-set that does not contain v, a contradiction. Hence, if $v \in \mathcal{A}_{t 2}\left(T^{\prime}\right)$, then $v \in \mathcal{A}_{t 2}(T)$. Thus, property $P_{\mathcal{A}}$ holds. Analogous arguments show that property $P_{\mathcal{N}}$ holds.

Claim J.2. If $k_{0}+k_{2}+k_{4}=0$, then $\gamma_{t 2}\left(T^{\prime}\right)=\gamma_{t 2}(T)$ and properties $P_{\mathcal{A}}$ and $P_{\mathcal{N}}$ hold.

Proof. Since $k_{0}+k_{2}+k_{4}=0$, we have $k_{1} \geq 2$. Thus, T^{\prime} is obtained from T by operation \mathcal{O}_{3}. Renaming vertices if necessary, $T^{\prime}=T-\left(D(u) \backslash\left\{u^{\prime}\right\}\right)$. By assumption, the tree T is not a star, implying that the tree T^{\prime} is not a star. By Observation 5, there exists a $\gamma_{t 2}\left(T^{\prime}\right)$-set S that contains the vertex u and
no leaf in T^{\prime}. Thus, we assume $u \in S$ and that no leaf of T^{\prime} is contained in S. Thus, the set S is a semi-TD-set of T, implying that $\gamma_{t 2}(T) \leq|S|=\gamma_{t 2}\left(T^{\prime}\right)$. Conversely, let D be a $\gamma_{t 2}(T)$-set. By Observation 5, we can choose D so that $S(T) \subseteq D$. In particular, $u \in D$ and no leaf-neighbor of u belongs to D, implying that D is a semi-TD-set of T^{\prime}, and so $\gamma_{t 2}\left(T^{\prime}\right) \leq|D|=\gamma_{t 2}(T)$. Consequently, $\gamma_{t 2}(T)=\gamma_{t 2}\left(T^{\prime}\right)$.

Suppose $v \notin \mathcal{A}_{t 2}\left(T^{\prime}\right)$ and let S^{\prime} be a $\gamma_{t 2}\left(T^{\prime}\right)$-set that does not contain the vertex v. If $u^{\prime} \in S^{\prime}$, then if $u \in S^{\prime}$ we replace u^{\prime} in S with a vertex from $x \in N[w] \backslash\{u\}$ such that $x \neq v$, else we replace u^{\prime} in S with u. Hence we may assume that $u^{\prime} \notin S^{\prime}$ (which is possible since T^{\prime} is not a star). Thus the set S^{\prime} is a $\gamma_{t 2}(T)$-set not containing v, implying that $v \notin \mathcal{A}_{t 2}(T)$. Therefore, by contraposition, if $v \in \mathcal{A}_{t 2}(T)$, then $v \in \mathcal{A}_{t 2}\left(T^{\prime}\right)$.

Conversely, suppose $v \in \mathcal{A}_{t 2}\left(T^{\prime}\right)$. Suppose to the contrary that $v \notin \mathcal{A}_{t 2}(T)$. Let D be a $\gamma_{t 2}(T)$-set that does not contain v. If D contains a leaf-neighbor z of u, then if $u \in D$ we can replace z in D with a vertex from $x \in N[w] \backslash\{u\}$ such that $x \neq v$ else we replace z in D with u to produce a new $\gamma_{t 2}(T)$-set that does not contain v. Hence, we may choose the set D so that $D \cap D[u]=\{u\}$. Therefore, D is a $\gamma_{t 2}\left(T^{\prime}\right)$-set that does not contain v, a contradiction. Hence, if $v \in \mathcal{A}_{t 2}\left(T^{\prime}\right)$, then $v \in \mathcal{A}_{t 2}(T)$. Thus, property $P_{\mathcal{A}}$ holds. Analogous arguments show that property $P_{\mathcal{N}}$ holds.

Claim J follows immediately from Claim J. 1 and Claim J.2.
By Claim J, we may assume that $k_{1}=0$, for otherwise the desired result follows.

Claim K. Suppose $k_{4} \geq 1$. Then, T^{\prime} is obtained from T by operation \mathcal{O}_{4} and $\gamma_{t 2}\left(T^{\prime}\right)=\gamma_{t 2}(T)-2 k_{0}-k_{2}-2 k_{4}+2$ and properties $P_{\mathcal{A}}$ and $P_{\mathcal{N}}$ hold.

Proof. Suppose $k_{4} \geq 1$. Thus, T^{\prime} is obtained from T by operation \mathcal{O}_{4}. By our earlier assumptions, $k_{1}=k_{3}=0$. Let $u_{4} \in L^{4}(u)$ and let $u u_{1} u_{2} u_{3} u_{4}$ be the $\left(u, u_{4}\right)$-path. Renaming vertices if necessary, we may assume that $T^{\prime}=$ $T-\left(D(u) \backslash\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}\right)$. Let $H=T\left[D(u) \backslash\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}\right]$ and let $X_{H}=$ $\left(S(T) \cup C^{(4)}(u) \cup \operatorname{Gr}(u)\right) \cap V(H)$. We note that $\left|X_{H}\right|=2 k_{0}+k_{2}+2\left(k_{4}-1\right)$. By Observation 5, there exists a $\gamma_{t 2}\left(T^{\prime}\right)$-set S that contains the vertex u_{3}. If $u_{2} \in S$, then we can replace u_{2} in S with u_{1}. Thus, we may assume $S \cap\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}=$ $\left\{u_{1}, u_{3}\right\}$. Then the set S can therefore be extended to a semi-TD-set of T by adding to it the set X_{H}, implying that $\gamma_{t 2}(T) \leq|S|+\left|X_{H}\right|=\gamma_{t 2}\left(T^{\prime}\right)+\left|X_{H}\right|$.

Conversely, let D be a $\gamma_{t 2}(T)$-set and let $D_{u}=D \cap D(u)$. The set D contains at least two vertices from each $L^{0}(u)$-path and $L^{4}(u)$-path, and at least one vertex from each $L^{2}(u)$-path, implying that $\left|D_{u}\right| \geq 2 k_{0}+k_{2}+2 k_{4}=\left|X_{H}\right|+2$. On the other hand, the set $\left(D \backslash D_{u}\right) \cup\left\{u_{1}, u_{3}\right\}$ is a semi-TD-set of T^{\prime}, and so
$\gamma_{t 2}\left(T^{\prime}\right) \leq \gamma_{t 2}(T)-\left|D_{u}\right|+2 \leq \gamma_{t 2}(T)-\left|X_{H}\right|$. Consequently, $\gamma_{t 2}(T)=\gamma_{t 2}\left(T^{\prime}\right)+$ $\left|X_{H}\right|=\gamma_{t 2}\left(T^{\prime}\right)+2 k_{0}+k_{2}+2 k_{4}-2$.

Suppose $v \notin \mathcal{A}_{t 2}\left(T^{\prime}\right)$ and let S^{\prime} be a $\gamma_{t 2}\left(T^{\prime}\right)$-set that does not contain the vertex v. If $u_{4} \in S^{\prime}$, then we can replace u_{4} in S^{\prime} with u_{3}. Hence we may choose S^{\prime} so that $u_{3} \in S^{\prime}$. If $u_{2} \in S^{\prime}$, then we can replace u_{2} in S^{\prime} with u_{1}. Thus, we may assume $S^{\prime} \cap\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}=\left\{u_{1}, u_{3}\right\}$. The set $S^{\prime} \cup X_{H}$ is therefore a semi-TD-set of T of cardinality $\left|S^{\prime}\right|+\left|X_{H}\right|=\gamma_{t 2}\left(T^{\prime}\right)+\left|X_{H}\right|=\gamma_{t 2}(T)$. Thus, $S^{\prime} \cup X_{H}$ is a $\gamma_{t 2}(T)$-set not containing the vertex v, implying that $v \notin \mathcal{A}_{t 2}(T)$. Therefore, by contraposition, if $v \in \mathcal{A}_{t 2}(T)$, then $v \in \mathcal{A}_{t 2}\left(T^{\prime}\right)$.

Conversely, suppose $v \in \mathcal{A}_{t 2}\left(T^{\prime}\right)$. Suppose to the contrary that $v \notin \mathcal{A}_{t 2}(T)$. Let D be a $\gamma_{t 2}(T)$-set that does not contain v and let $D_{u}=D \cap D(u)$. If $\left|D_{u}\right|>$ $\left|X_{H}\right|+2$, then the set $\left(D \backslash D_{u}\right) \cup\left(X_{H} \cup\left\{u_{1}, u_{3}\right\}\right)$ is a semi-TD-set of T of cardinality less than $|D|$, a contradiction. Hence, $\left|D_{u}\right| \leq\left|X_{H}\right|+2$. Analogous to our earlier arguments, $\left|D_{u}\right| \geq\left|X_{H}\right|+2$. Consequently, $\left|D_{u}\right|=\left|X_{H}\right|+2$ and $\left(D \backslash D_{u}\right) \cup\left\{u_{1}, u_{3}\right\}$ is a semi-TD-set of T^{\prime} of cardinality $|D|-\left|D_{u}\right|+2=\gamma_{t 2}(T)-\left|X_{H}\right|=\gamma_{t 2}\left(T^{\prime}\right)$. Thus, $\left(D \backslash D_{u}\right) \cup\left\{u_{1}, u_{3}\right\}$ is a $\gamma_{t 2}\left(T^{\prime}\right)$-set that does not contain v, a contradiction. Hence, if $v \in \mathcal{A}_{t 2}\left(T^{\prime}\right)$, then $v \in \mathcal{A}_{t 2}(T)$. Thus, property $P_{\mathcal{A}}$ holds. Analogous arguments show that property $P_{\mathcal{N}}$ holds.

By Claim K, we may assume that $k_{4}=0$, for otherwise the desired result follows.

Claim L. Suppose $k_{2} \geq 1$. Then, T^{\prime} is obtained from T by operation \mathcal{O}_{i} for some $i \in\{5,6\}$ and

$$
\gamma_{t 2}\left(T^{\prime}\right)= \begin{cases}\gamma_{t 2}(T)-2 k_{0} & \text { for } i=5 \\ \gamma_{t 2}(T)-2 k_{0}-k_{2}+2 & \text { for } i=6\end{cases}
$$

Further, the properties $P_{\mathcal{A}}$ and $P_{\mathcal{N}}$ hold in both cases.
Proof. Suppose $k_{2} \geq 1$. Let $u_{2} \in L^{2}(u)$ and let $u u_{1} u_{2}$ be the $\left(u, u_{2}\right)$-path in T. By our earlier assumptions, $k_{1}=k_{3}=k_{4}=0$. We proceed further with a series of two subclaims.

Claim L.1. If $k_{2}=1$, then $\gamma_{t 2}\left(T^{\prime}\right)=\gamma_{t 2}(T)-2 k_{0}$ and properties $P_{\mathcal{A}}$ and $P_{\mathcal{N}}$ hold.

Proof. Suppose that $k_{2}=1$ and hence, $k_{0} \geq 1$ and $L^{2}(u)=\left\{u_{2}\right\}$. Thus, T^{\prime} is obtained from T by operation \mathcal{O}_{5}. Let $u u_{1} u_{2}$ be the $\left(u, u_{2}\right)$-path. Renaming vertices if necessary, $T^{\prime}=T-\left(D(u) \backslash\left\{u_{1}, u_{2}\right\}\right)$. Let $H=T\left[D(u) \backslash\left\{u_{1}, u_{2}\right\}\right]$ and let $X_{H}=(S(T) \cup \operatorname{Gr}(u)) \cap V(H)$. We note that $\left|X_{H}\right|=2 k_{0}$. Every $\gamma_{t 2}\left(T^{\prime}\right)$-set S can be extended to a semi-TD-set of T by adding to it the set X_{H}, implying that $\gamma_{t 2}(T) \leq|S|+\left|X_{H}\right|=\gamma_{t 2}\left(T^{\prime}\right)+\left|X_{H}\right|$.

Conversely, let D be an $\gamma_{t 2}(T)$-set and let $D_{u}=D \cap D(u)$. The set D_{u} contains at least two vertices from each $L^{0}(u)$-path and one of the vertices u_{1} or u_{2}, implying that $\left|D_{u}\right| \geq 2 k_{0}+1=\left|X_{H}\right|+1$. The set $\left(D \backslash D_{u}\right) \cup\left\{u_{1}\right\}$ is a semi-TD-set of T^{\prime}, and so $\gamma_{t 2}\left(T^{\prime}\right) \leq|D|-\left|D_{u}\right|+1 \leq \gamma_{t 2}(T)-\left|X_{H}\right|$. Consequently, $\gamma_{t 2}(T)=\gamma_{t 2}\left(T^{\prime}\right)+\left|X_{H}\right|=\gamma_{t 2}\left(T^{\prime}\right)+2 k_{0}$.

Suppose $v \notin \mathcal{A}_{t 2}\left(T^{\prime}\right)$ and let S^{\prime} be a $\gamma_{t 2}\left(T^{\prime}\right)$-set that does not contain the vertex v. Then, the set $S^{\prime} \cup X_{H}$ is a $\gamma_{t 2}(T)$-set not containing v, implying that $v \notin \mathcal{A}_{t 2}(T)$. Therefore, by contraposition, if $v \in \mathcal{A}_{t 2}(T)$, then $v \in \mathcal{A}_{t 2}\left(T^{\prime}\right)$.

Conversely, suppose $v \in \mathcal{A}_{t 2}\left(T^{\prime}\right)$. Suppose to the contrary that $v \notin \mathcal{A}_{t 2}(T)$. Let D be a $\gamma_{t 2}(T)$-set that does not contain v. Analogous to our earlier arguments, we can choose such a set D so that $D \cap D(u)=X_{H} \cup\left\{u_{1}\right\}$. Thus, $D \backslash X_{H}$ is a semi-TD-set of T^{\prime} of cardinality $|D|-\left|X_{H}\right|=\gamma_{t 2}(T)-\left|X_{H}\right|=\gamma_{t 2}\left(T^{\prime}\right)$. The set $D \backslash X_{H}$ is therefore a $\gamma_{t 2}\left(T^{\prime}\right)$-set that does not contain v, a contradiction. Hence, if $v \in \mathcal{A}_{t 2}\left(T^{\prime}\right)$, then $v \in \mathcal{A}_{t 2}(T)$. Thus, property $P_{\mathcal{A}}$ holds. Analogous arguments show that property $P_{\mathcal{N}}$ holds.

Claim L.2. If $k_{2} \geq 2$, then $\gamma_{t 2}\left(T^{\prime}\right)=\gamma_{t 2}(T)-2 k_{0}-k_{2}+2$ and properties $P_{\mathcal{A}}$ and $P_{\mathcal{N}}$ hold.

Proof. Suppose $k_{2} \geq 2$. Thus, T^{\prime} is obtained from T by operation \mathcal{O}_{6}. Let $P: u_{1} u_{2} u_{3} u_{4}$ be the path P_{4} added to $T-D(u)$ when constructing T^{\prime}, where u is adjacent to u_{1}. Let $H=T[D(u)]$ and let $X_{H}=(S(T) \cup \operatorname{Gr}(u)) \cap V(H)$. We note that $\left|X_{H}\right|=2 k_{0}+k_{2}$. By Observation 5 , there exists a $\gamma_{t 2}\left(T^{\prime}\right)$-set S that contains the vertex u_{3}. If $u_{2} \in S$, then we may replace u_{2} in S with u_{1}. Hence we may choose S so that $S \cap\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}=\left\{u_{1}, u_{3}\right\}$. The set $S \backslash\left\{u_{1}, u_{3}\right\}$ can therefore be extended to a semi-TD-set of T by adding to it the set X_{H}, implying that $\gamma_{t 2}(T) \leq\left|S \backslash\left\{u_{1}, u_{3}\right\}\right|+\left|X_{H}\right|=\gamma_{t 2}\left(T^{\prime}\right)+\left|X_{H}\right|-2$.

Conversely, let D be a $\gamma_{t 2}(T)$-set and let $D_{u}=D \cap D(u)$. The set D_{u} contains at least two vertices from each $L^{0}(u)$-path and one vertex from each $L^{2}(u)$-path, implying that $\left|D_{u}\right| \geq 2 k_{0}+k_{2}=\left|X_{H}\right|$. The set $\left(D \backslash D_{u}\right) \cup\left\{u_{1}, u_{3}\right\}$ is a semi-TDset of T^{\prime}, and so $\gamma_{t 2}\left(T^{\prime}\right) \leq|D|-\left|D_{u}\right|+2 \leq \gamma_{t 2}(T)-\left|X_{H}\right|+2$. Consequently, $\gamma_{t 2}(T)=\gamma_{t 2}\left(T^{\prime}\right)+\left|X_{H}\right|-2=\gamma_{t 2}\left(T^{\prime}\right)+2 k_{0}+k_{2}-2$.

Suppose $v \notin \mathcal{A}_{t 2}\left(T^{\prime}\right)$ and let S^{\prime} be a $\gamma_{t 2}\left(T^{\prime}\right)$-set that does not contain the vertex v. Analogous to our earlier arguments, we can choose such a set S^{\prime} so that $S^{\prime} \cap\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}=\left\{u_{1}, u_{3}\right\}$. The set $\left(S^{\prime} \backslash\left\{u_{1}, u_{3}\right\}\right) \cup X_{H}$ is a semi-TD-set of cardinality $\left|S^{\prime}\right|+\left|X_{H}\right|-2=\gamma_{t 2}\left(T^{\prime}\right)+\left|X_{H}\right|-2=\gamma_{t 2}(T)$ and is thus a $\gamma_{t 2}(T)$ set not containing v, implying that $v \notin \mathcal{A}_{t 2}(T)$. Therefore, by contraposition, if $v \in \mathcal{A}_{t 2}(T)$, then $v \in \mathcal{A}_{t 2}\left(T^{\prime}\right)$.

Conversely, suppose $v \in \mathcal{A}_{t 2}\left(T^{\prime}\right)$. Suppose to the contrary that $v \notin \mathcal{A}_{t 2}(T)$. Let D be a $\gamma_{t 2}(T)$-set that does not contain v. Analogous to our earlier arguments, we can choose a set D so that $D \cap D(u)=X_{H}$. Therefore, $\left(D \backslash X_{H}\right) \cup\left\{u_{1}, u_{3}\right\}$ is a semi-TD-set of cardinality $|D|-\left|X_{H}\right|+2=\gamma_{t 2}(T)-\left|X_{H}\right|+2=\gamma_{t 2}\left(T^{\prime}\right)$ and is
thus a $\gamma_{t 2}\left(T^{\prime}\right)$-set that does not contain v, a contradiction. Hence, if $v \in \mathcal{A}_{t 2}\left(T^{\prime}\right)$, then $v \in \mathcal{A}_{t 2}(T)$. Thus, property $P_{\mathcal{A}}$ holds. Analogous arguments show that property $P_{\mathcal{N}}$ holds.

Claim L follows from Claim L. 1 and Claim L.2. This completes the proof of Claim L.

By Claim L, we may assume that $k_{2}=0$, for otherwise the desired result follows. By our earlier assumptions, $k_{1}=k_{3}=k_{4}=0$. Thus, $L(u)=L^{0}(u)$. Since u is a branch vertex, $k_{0} \geq 2$.

Claim M. Suppose $k_{0} \geq 2$. Then, T^{\prime} is obtained from T by operation \mathcal{O}_{7} and $\gamma_{t 2}\left(T^{\prime}\right)=\gamma_{t 2}(T)-2 k_{0}+2$ and properties $P_{\mathcal{A}}$ and $P_{\mathcal{N}}$ hold.

Proof. Let $\left\{u_{5}, v_{5}\right\} \subseteq L^{0}(u)$ and let $u u_{1} u_{2} u_{3} u_{4} u_{5}$ and $u v_{1} v_{2} v_{3} v_{4} v_{5}$ be the respective $\left(u, u_{5}\right)$-path and $\left(u, v_{5}\right)$-path in T. Thus, T^{\prime} is obtained from T by operation \mathcal{O}_{7}. Renaming vertices if necessary, we may assume that $T^{\prime}=T-$ $\left(D(u) \backslash\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}\right)$. Let $H=T\left[D(u) \backslash\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}\right]$ and let $X_{H}=$ $(S(T) \cup \operatorname{Gr}(u)) \cap V(H)$. We note that $\left|X_{H}\right|=2 k_{0}-2$. Every $\gamma_{t 2}\left(T^{\prime}\right)$-set can be extended to a semi-TD-set of T by adding to it the set X_{H}, implying that $\gamma_{t 2}(T) \leq \gamma_{t 2}\left(T^{\prime}\right)+\left|X_{H}\right|$.

Conversely, let D be a $\gamma_{t 2}(T)$-set and let $D_{u}=D \cap D(u)$. The set D_{u} contains at least two vertices from each $L^{0}(u)$-path, implying that $\left|D_{u}\right| \geq 2 k_{0}=\left|X_{H}\right|+2$. The set $\left(D \backslash D_{u}\right) \cup\left\{u_{2}, u_{4}\right\}$ is a semi-TD-set of T^{\prime}, and so $\gamma_{t 2}\left(T^{\prime}\right) \leq|D|-\left|D_{u}\right|+2 \leq$ $\gamma_{t 2}(T)-\left|X_{H}\right|$. Consequently, $\gamma_{t 2}(T)=\gamma_{t 2}\left(T^{\prime}\right)+\left|X_{H}\right|=\gamma_{t 2}\left(T^{\prime}\right)+2 k_{0}-2$.

Suppose $v \notin \mathcal{A}_{t 2}\left(T^{\prime}\right)$ and let S^{\prime} be a $\gamma_{t 2}\left(T^{\prime}\right)$-set that does not contain the vertex v. Then, the set $S^{\prime} \cup X_{H}$ is a $\gamma_{t 2}(T)$-set not containing v, implying that $v \notin \mathcal{A}_{t 2}(T)$. Therefore, by contraposition, if $v \in \mathcal{A}_{t 2}(T)$, then $v \in \mathcal{A}_{t 2}\left(T^{\prime}\right)$.

Conversely, suppose $v \in \mathcal{A}_{t 2}\left(T^{\prime}\right)$. Suppose to the contrary that $v \notin \mathcal{A}_{t 2}(T)$. Let D be a $\gamma_{t 2}(T)$-set that does not contain v and chosen so that $|D \cap D(u)|$ is a minimum. Let $D_{u}=D \cap D(u)$. If $\left|D_{u}\right| \geq\left|X_{H}\right|+3$, then the set ($\left.D \backslash D_{u}\right) \cup\left(X_{H} \cup\right.$ $\left.\left\{u, u_{2}, u_{4}\right\}\right)$ is a semi-TD-set of T of cardinality $|D|-\left|D_{u}\right|+\left|X_{H}\right|+3 \leq|D|=$ $\gamma_{t 2}(T)$ and is therefore a $\gamma_{t 2}(T)$-set containing fewer vertices of $D(u)$ than does D, a contradiction. Hence, $\left|D_{u}\right| \leq\left|X_{H}\right|+2$. Analogous to our earlier arguments, $\left|D_{u}\right| \geq\left|X_{H}\right|+2$. Consequently, $\left|D_{u}\right|=\left|X_{H}\right|+2$ and $\left(D \backslash D_{u}\right) \cup\left\{u_{2}, u_{4}\right\}$ is a semi-TD-set of T^{\prime} of cardinality $|D|-\left|D_{u}\right|+2=\gamma_{t 2}(T)-\left|X_{H}\right|=\gamma_{t 2}\left(T^{\prime}\right)$. Thus, $\left(D \backslash D_{u}\right) \cup\left\{u_{2}, u_{4}\right\}$ is a $\gamma_{t 2}\left(T^{\prime}\right)$-set that does not contain v, a contradiction. Hence, if $v \in \mathcal{A}_{t 2}\left(T^{\prime}\right)$, then $v \in \mathcal{A}_{t 2}(T)$. Thus, property $P_{\mathcal{A}}$ holds. Analogous arguments show that property $P_{\mathcal{N}}$ holds.

Theorem 8 follows from Claims I, J, K, L and M.

References

[1] M. Blidia, M. Chellali and S. Khelifi, Vertices belonging to all or no minimum double dominating sets in trees, AKCE Int. J. Graphs. Comb. 2 (2005) 1-9.
[2] E.J. Cockayne, M.A. Henning and C.M. Mynhardt, Vertices contained in all or in no minimum total dominating set of a tree, Discrete Math. 260 (2003) 37-44. doi:10.1016/S0012-365X(02)00447-8
[3] W. Goddard, M.A. Henning and C.A. McPillan, Semitotal domination in graphs, Util. Math. 94 (2014) 67-81.
[4] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc. New York, 1998).
[5] M.A. Henning, Recent results on total domination in graphs: A survey, Discrete Math. 309 (2009) 32-63. doi:10.1016/j.disc.2007.12.044
[6] M.A. Henning and A.J. Marcon, On matching and semitotal domination in graphs, Discrete Math. 324 (2014) 13-18. doi:10.1016/j.disc.2014.01.021
[7] M.A. Henning and A.J. Marcon, Semitotal domination in graphs: Partition and algorithmic results, Util. Math., to appear.
[8] M.A. Henning and M.D. Plummer, Vertices contained in all or in no minimum paired-dominating set of a tree, J. Comb. Optim. 10 (2005) 283-294. doi:10.1007/s10878-005-4107-3
[9] M.A. Henning and A. Yeo, Total domination in graphs (Springer Monographs in Mathematics, 2013).
[10] C.M. Mynhardt, Vertices contained in every minimum dominating set of a tree, J. Graph Theory 31 (1999) 163-177.
doi:10.1002/(SICI)1097-0118(199907)31:3〈163::AID-JGT2〉3.0.CO;2-T

Appendix

We now present an example to illustrate Theorem 2. Applying our pruning process discussed in Section 2 to the rooted tree T with root v illustrated in Figure 1(a), we proceed as follows.

- The branch vertices b_{3} and b_{4} are both at maximum distance 3 from v in T. We select b_{3}, where $\left|L^{3}\left(b_{3}\right)\right|=1$. Thus, b_{3} is a type-(T.1) branch vertex and we delete $D\left(b_{3}\right)$ and attach a path of length 3 to b_{3}.
- The branch vertex at maximum distance from v in the resulting tree (illustrated in Figure $1(\mathrm{~b})$) is the vertex b_{4}. Since $\left|L^{1}\left(b_{4}\right)\right|>2$ and every leaf-descendant of b_{4} belongs to $L^{1}\left(b_{4}\right)$, the vertex b_{4} is therefore a type-(T.3) branch vertex and we delete $D\left(b_{4}\right)$ and attach a path of length 1 to b_{4}.

Figure 1.The pruning of a tree rooted at v.

- The branch vertex at maximum distance from v in the resulting tree (illustrated in Figure $1(\mathrm{c})$) is the vertex b_{2}. Since $\left|L^{4}\left(b_{2}\right)\right|=1$ and $L^{1}\left(b_{2}\right)=L^{3}\left(b_{2}\right)=\emptyset$, the vertex b_{2} is a type-(T.4) branch vertex and we delete $D\left(b_{2}\right)$ and attach a path of length 4 to b_{2}.
- The branch vertex at maximum distance from v in the resulting tree (illustrated in Figure $1(\mathrm{~d})$) is the vertex b_{1}. Since $\left|L^{3}\left(b_{1}\right)\right|=1$, the vertex b_{1} is a type-(T.1) branch vertex and we delete $D\left(b_{1}\right)$ and attach a path of length 3 to b_{1}. The resulting pruned tree \bar{T}_{v} is illustrated in Figure 1(e).
- Since $\left|\bar{L}^{1}(v)\right|=1$ and $\left|\bar{L}^{4}(v)\right|=1$, by Theorem 2, we deduce that $v \notin \mathcal{A}_{t 2}(T) \cup$ $\mathcal{N}_{t 2}(T)$.

Received 18 December 2014
Revised 13 April 2015
Accepted 13 April 2015

[^0]: ${ }^{1}$ Research supported in part by the South African National Research Foundation and the University of Johannesburg.
 ${ }^{2}$ Funded by the South African National Research Foundation.

[^1]: ${ }^{3}$ An example to illustrate Theorem 2 is presented in the appendix.

