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Abstract

An r-maximum k-edge-coloring of G is a k-edge-coloring of G having
a property that for every vertex v of degree dG(v) = d, d ≥ r, the max-
imum color, that is present at vertex v, occurs at v exactly r times. The
r-maximum index χ′

r(G) is defined to be the minimum number k of colors
needed for an r-maximum k-edge-coloring of graph G. In this paper we show
that χ′

r(G) ≤ 3 for any nontrivial connected graph G and r = 1 or 2. The
bound 3 is tight. All graphs G with χ′

1
(G) = i, i = 1, 2, 3 are characterized.

The precise value of the r-maximum index, r ≥ 1, is determined for trees
and complete graphs.
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1. Introduction

Throughout this paper we follow the terminology and notation used in [1] and
[7]. A graph G is always regarded as being connected, finite with loops and
multiple edges allowed. A loopless graph without multiple edges is referred to as
a simple graph. The parameters n(G) = |V (G)| and m(G) = |E(G)| are called
order and size of G, respectively. Whenever n(G) = 1 we say G is trivial. For
X ⊆ V (G) ∪ E(G), the subgraph of G obtained by removing the vertices and
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edges of X is denoted by G−X. If X = {x} is a singleton we write G−x rather
than G−{x}. For R ⊆ E(G) we denote by V (R) the set of vertices incident with
edges of R.

We refer to each vertex v of even (respectively odd) degree dG(v) as an
even (respectively odd) vertex of G. In particular, a vertex of degree equal to 0
(respectively 1) is an isolated (respectively pendant) vertex. A graph is called even

(respectively odd) whenever all its vertices are even (respectively odd). Given a
(not necessarily proper) edge-coloring ϕ of graph G and a vertex v ∈ V (G),
we say that a color c appears t times at v under ϕ if exactly t edges incident
with v receive the color c. By definition, each loop at a vertex v colored with c

contributes 2 to the count of appearances of c at v.
The edge-coloring ϕ is weak-odd at v whenever at least one color appears odd

number of times at v under ϕ. If this holds for every nonisolated vertex v of G,
then we speak of a weak-odd edge-coloring of G. Similarly, we say that an edge-
coloring ϕ is weak-even at v, whenever at least one of the colors appears even
number of times at v under ϕ. If this holds for every vertex v of degree at least two
in G, then we speak of a weak-even edge-coloring of G. A weak-odd (respectively
weak-even) edge-coloring of G which uses at most k colors is referred to as a weak-

odd k-edge-coloring (respectively weak-even k-edge-coloring). Whenever G admits
a weak-odd (respectively weak-even) edge-coloring, the weak-odd chromatic index

χ′

wo(G) (respectively weak-even chromatic index χ′

we(G)) is defined to be the least
integer k for which G has a weak-odd (respectively weak-even) k-edge-coloring.

The notion of odd edge-coloring of a graph G was introduced by Pyber in
[8] as an edge-coloring of G such that every subgraph induced by a color class is
odd. He considered simple graphs and proved the following result.

Theorem 1 [8]. Every simple graph admits an odd edge-coloring with at most 4
colors. Moreover, the bound 4 is tight.

Lužar, Petruševski, and Škrekovski in [6] considered the same notation for
multigraphs and proved an analogous result.

Theorem 2 [6]. Every multigraph admits an odd edge-coloring with at most 6
colors. Moreover, the bound 6 is tight.

The weak-odd (respectively weak-even) edge-coloring has been recently in-
troduced by Lužar, Petruševski, and Škrekovski in the paper [7]. They proved

Theorem 3 [7]. Let G be a connected graph of order at least 2. Then χ′

wo(G) ≤ 3
and χ′

we(G) ≤ 2. Both bounds are tight.

Let G be a graph. A unique-maximum k-edge-coloring of G is an edge-
coloring ϕ with colors 1, 2, . . . , k such that, for each vertex v of G, the maximum
color that occurs at v under ϕ occurs there exactly on one edge. The minimum k
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for which G has a unique-maximum k-edge-coloring is denoted by χ′

um(G). It is
easy to see that χ′

wo(G) ≤ χ′

um(G). Motivations to investigate a unique-maximum
k-edge-coloring came from the recent paper [5] where unique-maximum k-edge-
colorings with respect to faces of plane graphs are studied and from papers [4] and
[3] where the unique-maximum k-vertex-colorings with respect to paths in graphs
and hyperedges in hypergraphs, respectively, are considered. In these papers one
can find motivations and connections to other problems and applications.

In this paper we introduce a notion of a maximum edge-coloring which in
a unique way strengthens both the weak-odd edge-coloring and the weak-even
edge-coloring and generalizes a unique-maximum edge-coloring.

An r-maximum k-edge-coloring of G is a k-edge-coloring of G with colors
1, 2, . . . , k having a property that for every vertex v of degree dG(v) = d, d ≥ r,
the maximum color that is present at vertex v occurs at v exactly r times. The
minimum k for which G has an r-maximum k-edge-coloring is denoted by χ′

r(G).
Notice that χ′

um(G) = χ′

1(G) and χ′

we(G) ≤ χ′

2(G).

The rest of the paper is organized as follows: In Section 2 we prove that any
nontrivial graph has a unique-maximum k-edge-coloring with k ≤ 3. In Section
3 we show that χ′

2(G) ≤ 3 for any nontrivial connected graph. Sections 4 and 5
are devoted to study of r-maximum edge-colorings for r ≥ 1. In Section 4 trees
and in Section 5 complete graphs are considered. In Section 6 we show that for
any integer r ≥ 3 there is a graph G for which χ′

r(G) is not defined. In Section
7 we state two open questions.

2. Unique-Maximum Edge-Coloring

Theorem 4. Let G be a connected graph of order at least two. Then

1. χ′

um(G) = 1 if and only if G = K2.

2. χ′

um(G) = 2 if and only if G has a maximum matching M such that for

every vertex v ∈ V (G)− V (M) we have dG(u) = 1.

3. χ′

um(G) = 3 in all other cases.

Proof. Case 1 is trivial.

Case 2. If χ′

um(G) = 2, then G 6= K2 and there is a unique-maximum 2-
edge-coloring of G. Let M be the set of edges of G colored with color 2. Clearly,
M is a matching in G. All other edges of G are colored with color 1 and therefore
every vertex v ∈ V (G)− V (M) is incident with exactly one edge. Consequently,
M is a maximum matching. The proof of the opposite implication is easy.

Case 3. Let G be a connected graph different from those mentioned in Cases
1 and 2. We are going to show that G has a unique-maximum 3-edge-coloring
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with colors 1, 2, and 3. Let M be a maximum matching in G. We assign the
edges of M color 3. It is easy to see that for every vertex v ∈ V (G)− V (M) the
set of neighbors N(v) of v is a subset of V (M). For every such vertex v we choose
one edge incident with v and assign it color 2. All the remaining uncolored edges
are assigned color 1. Clearly this coloring is a unique-maximum one.

3. 2-Maximum Edge-Coloring

Theorem 5. Let G be a nontrivial connected graph. Then χ′

2(G) ≤ 3. Moreover,

the bound 3 is tight.

Proof. We are going to show how to color the edges of G with three colors 1, 2
and 3. Let H be a maximum 2-regular subgraph of G. We assign 3 to all edges
of H. The remaining edges of the subgraph G[V (H)] are colored with 1.

Let X = V (G) − V (H) and F = G[X]. Observe that F is a forest. Let
T1, T2, . . . , Tm be the components of F (all are trees). Below, we present a pro-
cedure for coloring the trees one by one.

Let T = Ti, i = 1, 2, . . . ,m. Choose a vertex v0 ∈ V (T ) as a root of T . Let
e1, e2 . . . , es be the edges of T incident with v0, and let h1, h2 . . . , ht be the edges
of G having v0 as one endvertex and the other endvertex in H.

If s ≥ 2 (or s = 1 and t ≥ 1, or s = 0 and t ≥ 2) then the edges e1 and
e2 (e1 and h1, or h1 and h2, respectively) are colored with 2 and the remaining
uncolored edges incident with v0 are colored with 1.

If s = 1 and t = 0 or s = 0 and t = 1, then the edge e1 or h1, respectively, is
colored with 2.

In all the above cases all edges incident with v0 are colored and we say that
the vertex v0 is cultivated. Put u = v0.

Next we choose a vertex v of T which is not yet cultivated but is adjacent with
a cultivated vertex u along the colored edge uv = e0. Let, as above, e1, e2, . . . , es
(and h1, h2, . . . , ht) be uncolored edges having v as one endvertex and the other
endvertex in T (and in H, respectively).

If s = t = 0 we consider the vertex v to be cultivated.

If s+ t ≥ 1 we distinguish two cases according to the color of e0.

Case 1. The edge e0 = uv is assigned 2. Then s ≥ 1 or s = 0 and t ≥ 1. In
the former case the edge e1, and, in the latter case, the edge h1 is assigned 2 and
all other yet uncolored edges incident with v are colored with 1. After this the
vertex v is cultivated.

Case 2. The edge e0 = uv is assigned 1. If s ≥ 2 (or s = 1 and t ≥ 1,
or s = 0, t ≥ 2) the edges e1 and e2 (or e1 and h1, or h1 and h2, respectively)
are colored with 2 and the remaining uncolored edges incident with v are colored
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Figure 1. Graph H3 which needs 3 colors for a 2-maximum edge-coloring.

with 1. Now the vertex v is cultivated. If s = 1 and t = 0 or s = 0 and t = 1,
then the edge e1 or h1, respectively, is colored with 1. Notice that in these cases
there is dG(v) = 2. Also in these cases the vertex v is cultivated.

Next we are looking for a not yet cultivated vertex v of T adjacent to a
cultivated vertex u of T along colored edge e0 = uv. If we find such a pair of
vertices u and v we repeat the above described (general) procedure. If there is
no such a pair u and v of vertices in T we say that the component (tree) T is
cultivated.

We repeat the procedure described above until all the trees Ti are cultivated,
obtaining a 2-maximum 3-edge-coloring of G.

To finish the proof of our theorem it remains to show that there are graphs
requiring at least three colors in any 2-maximum edge-coloring. Let K1,n, n ≥ 3,
be a star with a central vertex v and leaves v1, v2, . . . , vn. Attach to each leaf a
3-cycle. The result is a graph Hn. See Figure 1 for H3. Suppose that there is a
2-maximum 2-edge-coloring of Hn. The edges of every 3-cycle must be assigned
color 2. But then all edges incident with v must have color 1, a contradiction.

Notice that if the graph G considered in the above proof is a tree, then there
is no 2-regular subgraph of G and color 3 is not used. This immediately provides:

Corollary 6. Let T be a nontrivial tree. Then χ′

2(T ) = 1 if ∆(T ) ≤ 2 and

χ′

2(T ) = 2 if ∆(T ) ≥ 3.

It is easy to see that χ′

2(G) = 1 if and only if ∆(G) ≤ 2. It is an open
problem to characterize all graphs G with χ′

2(G) = k for any k ∈ {2, 3}. At this
moment we are able to prove the following:

Theorem 7. Let G be a graph with δ(G) ≥ 3. Then

χ′

2(G) =

{

2 if G has a 2-factor,
3 otherwise.

Proof. The graph G has δ(G) ≥ 3, therefore at least 2 colors have to be used.
If G has a 2-factor, it suffices to assign color 2 to the edges of the 2-factor and
color 1 to the remaining edges.
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Suppose that G does not have a 2-factor and χ′

2(G) = 2. LetH be a subgraph
of graph G induced on edges assigned color 2. Since every vertex of H is incident
with exactly two edges assigned color 2, H is a 2-regular subgraph and since
every vertex of G has degree at least 3, there is no vertex which is not incident
with edges assigned color 2, so H is also spanning subgraph. Therefore, H is a
2-factor of G, which is a contradiction. According to Theorem 5, χ′

2(G) ≤ 3 for
every graph G, hence χ′

2(G) = 3 in this case.

4. Trees

For trees we are able to prove more general results as mentioned in Corollary 6.
Namely the following holds:

Theorem 8. Let T be a nontrivial tree with maximum degree ∆(T ) and r be a

positive integer. Then χ′

r(T ) = 1 if ∆(T ) ≤ r and χ′

r(G) = 2 if ∆(T ) > r.

Proof. Proof is by induction on the number of inner vertices of T . The only tree
with exactly one inner vertex is the star Sn = K1,n, n ≥ 2, with a central vertex
u and leaves v1, v2, . . . , vn. Let ei = uvi, i = 1, 2, . . . , n, be the pendant edges of
Sn. Now define an r-maximum 2-edge-coloring ϕ of Sn as follows:

If n ≤ r we put ϕ(ei) = 1 for all i = 1, 2, . . . , n.

If n > r we let ϕ(ei) = 2 for all i = 1, 2, . . . , r, and ϕ(ei) = 1 for i =
r + 1, . . . , n.

Consider now a tree T having at least two inner vertices. Let v be an inner
vertex of T adjacent to only one other inner vertex w1 of T . The other vertices
adjacent to v are leaves w2, w3, . . . , wdT (v). Let ei = vwi, i = 1, . . . , dT (v), be
edges incident with v.

Let T ′ = T − {w2, w3 . . . , wdT (v)}. By induction hypothesis there exists an
r-maximum 2-edge-coloring ϕ of T ′. Next we show how to extend this coloring
to a required coloring ϕ of T . We consider two cases according to the color of
the edge e1.

Case 1. Let ϕ(e1) = 1. If dT (v) ≤ r, then we put ϕ(ei) = 1 for all i =
2, 3, . . . , dT (v). If dT (v) > r, then we put ϕ(ei) = 2 for i = 2, 3, . . . , r + 1, and
ϕ(ei) = 1 for all i = r + 2, . . . , dT (v).

Case 2. Let ϕ(e1) = 2. If dT (v) < r, then we put ϕ(ei) = 1 for all i =
1, 2, . . . , dT (v). If dT (v) ≥ r, then we let ϕ(ei) = 2 for all i = 2, 3, . . . , r, and
ϕ(ei) = 1 for i = r + 1, r + 2, . . . , dT (v).

It is easy to see that so obtained 2-edge-coloring has the required property.
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5. Complete Graphs

Trivially χ′

r(Kn) = 1 if and only if r ≥ n− 1.

Theorem 9. Let r, n be positive integers, 1 ≤ r ≤ n− 2. Then

1. χ′

r(Kn) = 2 for even n or n odd and r even.

2. χ′

r(Kn) = 3 for n odd and r odd.

Proof. We distinguish two cases according to the parity of n.

Case 1. Let n = 2k. It is well known that the graph K2k can be factorable
into k − 1 Hamiltonian cycles H1, H2, . . . , Hk−1 and a 1-factor P (see [2] p.426).

Subcase 1.1. If r = 2l, then 1 ≤ l ≤ k − 1. Denote by F2l a 2l-regular factor
of G formed by the union of the Hamiltonian cycles H1, H2, . . . , Hl. If we assign
2 to the edges of F2l and 1 to the remaining edges of Kn we obtain a 2l-maximum
2-edge-coloring of K2k.

Subcase 1.2. If r = 2l + 1, then 1 ≤ l ≤ k − 2. Denote by F2l+1 a (2l + 1)-
regular factor of G created by the union of the 1-factor P and Hamiltonian cycles
H1, H2, . . . , Hl. The rest of the proof is as above.

Case 2. Let n = 2k+ 1. The graph K2k+1 can be factorable into k Hamilto-
nian cycles H1, H2, . . . , Hk (see [2] p. 424).

Subcase 2.1. If r = 2l, then 1 ≤ l ≤ k − 1. In this case we proceed in the
same way as in Subcase 1.1.

Subcase 2.2. If r = 2l + 1, then 1 ≤ l ≤ k − 1. First we use the above
constructed (2l+ 1)-maximum 2-edge-coloring of the subgraph K2k = K2k+1 − v

for some vertex v replacing color 2 by 3. Next we assign 2 to exactly 2l+1 edges
incident with v and 1 to the remaining 2k − 2l − 1 edges at v. Hence, we have
χ′

2l+1(K2n+1) ≤ 3.

To finish the proof of our theorem it remains to show that any (2l + 1)-
maximum m-edge-coloring of K2k+1 requires m ≥ 3 colors. Suppose that there is
a (2l + 1)-maximum 2-edge-coloring of K2k+1. Consider a subgraph H of K2k+1

induced by edges assigned 2. Obviously, H is a (2l + 1)-factor of K2k+1; i.e. an
odd-factor on odd number of vertices, a contradiction.

6. r ≥ 3 and General Graphs

Trivially χ′

r(G) = 1 if and only if ∆(G) ≤ r. The following easy observation can
be useful.
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Theorem 10. Let G be a nontrivial graph and r be a positive integer. If G has

an r-regular subgraph H such that for every vertex v ∈ V (G)− V (H), dG(v) ≤ r

then χ′

r(G) ≤ 2.

On the other hand we have:

Theorem 11. Let r ≥ 3 be an integer. Then there is a graph G for which no

r-maximum edge-coloring is defined.

Proof. For i ∈ {1, 2} let Hi = K
(i)
r+1 − e(i) be a complete graph on r+ 1 vertices

with an edge e(i) = u(i)v(i) deleted. Identify the vertex u(1) (respectively v(1))
of H1 with the vertex u(2) (respectively v(2)) of H2. The resulting graph G has
2r vertices all of which, except of u∗ and v∗, are of degree r, where u∗(v∗) is
the result of the indentification of u(1) and u(2) (respectively v(1) and v(2)). The
degree of u∗ and v∗ is 2r − 2.

Let x be a vertex of G, u∗ 6= x 6= v∗, incident with an edge colored with color
k. Then all edges incident with x must be colored with k. This coloring enforces
all other edges of G to be colored with k. This yields a contradiction because
dG(u

∗) = 2r − 2 > r.

7. An Open Problem

We expect an affirmative answer to the following question:

Problem 12. Is χ′

r(G) ≤ 3 for any integer r ≥ 3 and any nontrivial graph G

admitting an r-maximum edge-coloring?

We state also one more open problem:

Problem 13. For a given integer r ≥ 3 characterize all graphs admitting an
r-maximum edge-coloring.
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