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Abstract

We generalize the methods of Esperet and Zhu [6] providing an upper
bound for the game colouring number of squares of graphs to obtain upper
bounds for the game colouring number of m-th powers of graphs, m ≥ 3,
which rely on the maximum degree and the game colouring number of the
underlying graph. Furthermore, we improve these bounds in case the un-
derlying graph is a forest.
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1. Introduction

The game colouring number of a graph, introduced by Zhu [14], is a common
tool to bound a game-theoretic graph colouring parameter, the game chromatic
number, which was introduced by Bodlaender [3], the idea of the underlying
game, according to Gardner [8], dates back to Brams. Though, the concept of
game colouring number does not make use of the notion of colours, but is defined
simply by the following marking game.

We are given a finite graph G = (V,E). At the beginning every vertex v ∈ V
is unmarked. Two players, Alice and Bob, alternately mark vertices, one vertex
in a turn, with Alice beginning. The game ends if every vertex is marked. The
players thereby create a linear ordering L of the vertices. The back degree bdL(v)
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of a vertex v (with respect to L) is the number of neighbours of v that precede
v in L, i.e., the number of previously marked neighbours of v in the game. The
score sc(G,L) (with respect to L) is the maximum back degree over all vertices.
Alice tries to minimize the score, Bob tries to maximize the score. The smallest
score Alice can achieve with some strategy against every strategy of Bob is called
game score scg(G) of the graph G, i.e., the game score is the score obtained if
both players use optimal strategies.

The game colouring number colg(G) of G is defined as

colg(G) = 1 + scg(G).

For a nonempty class C of graphs we further define

colg(C) = sup
G∈C

colg(G).

The motivation to consider the value scg(G)+1 instead of scg(G) comes from
the observation that colg(G) is an upper bound for the game chromatic number,
cf. [14]. This is analog to the non-game case: the chromatic number χ(G) is
bounded above by the colouring number col(G) of a graph G.

The colouring number of G, named by Erdős and Hajnal [5], is defined as

col(G) = 1 +min
L∈L

sc(G,L) = 1 +min
L∈L

max
v∈V

bdL(v),

where minimization ranges over the set L of all linear orderings of vertices, hence
describing a situation without malicious adversary Bob.

Observation 1. For any graph G,

colg(G) ≥ col(G) ≥ χ(G).

All graphs considered in this paper are finite, simple, and loopless.
The m-th power of a graph G = (V,E), denoted by Gm, is a graph (V,Em)

with vw ∈ Em if and only if 1 ≤ distG(v, w) ≤ m. In particular, G0 = (V, ∅) and
G1 = G. The 2nd power of a graph is also called square of a graph.

Esperet and Zhu [6] obtained the following upper bound for the game colour-
ing number of the square of a graph G, which uses the game colouring number
of G and the maximum degree of G.

Theorem 2 (Esperet and Zhu (2009)). Let G be a graph with maximum degree ∆.

Then

colg(G
2) ≤ (colg(G)− 1)(2∆− colg(G) + 1) + 1.

Using structural properties of specific classes of graphs, they improved the
above result in some special cases as follows.
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Theorem 3 (Esperet and Zhu (2009)). Let G be a graph with maximum degree ∆.

(i) If G is a forest with ∆ ≥ 9, then colg(G
2) ≤ ∆+ 3.

(ii) If G is outerplanar, then colg(G
2) ≤ 2∆ + 14.

(iii) If G is planar, then colg(G
2) ≤ 23∆ + 75.

Theorem 3 (iii) was improved by Yang [13] in an asymptotic way.

Theorem 4 (Yang (2012)). There is a constant C such that, for any planar

graph G with maximum degree ∆,

colg(G
2) ≤ 5∆ + C.

In Section 3 we extend the methods of Esperet and Zhu and obtain a gen-
eralization of Theorem 2 to arbitrary powers of a graph. The upper bound is
improved in the case of forests in Section 4. The exceptional trivial case of paths
is solved completely for large paths. Apart from this result, the tightness of the
bounds is a widely open problem, as discussed in Section 5.

2. Notation

In order to examine the marking game on the power Gm of a graph G we will
often argue with the graph G itself, which has the same vertex set as Gm. The
vertex sets are identified in a canonical manner. For the purpose of that reasoning
we also introduce the following notions.

By the distance distG(v, w) of two vertices v and w we denote the number of
edges on a shortest path between v and w in the original graph G. A k-neighbour
of a vertex v is a vertex w with distance distG(v, w) = k. A k≤-neighbour of a
vertex v is a vertex w with distance distG(v, w) = ℓ and 1 ≤ ℓ ≤ k.

We denote the path (respectively, cycle) with n vertices by Pn (respectively,
Cn).

3. Upper Bounds for Powers of Graphs

Using an inductive refinement of the methods of Esperet and Zhu [6] we prove
the following.

Theorem 5. Let G be a graph with maximum degree ∆ ≥ 3 and m ∈ N \ {0}.

(a) If colg(G) ∈ {∆,∆+ 1}, then

colg(G
m) ≤ colg(G) + ∆(colg(G)− 1)

(∆− 1)m−1 − 1

∆− 2
.

(b) If colg(G) = ∆− 1, then

colg(G
m) ≤ 1− 2m+∆

(∆− 1)m − 1

∆− 2
.
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(c) If colg(G) ≤ ∆− 2, then

colg(G
m) ≤ 1 + ∆

(∆− 1)m − 1

∆− 2
− (∆− colg(G) + 1)

(∆− colg(G))m − 1

∆− colg(G)− 1
︸ ︷︷ ︸

=:B(∆,colg(G),m)

.

Theorem 5 generalizes the result of Esperet and Zhu [6] (Theorem 2).

Remark 6. Note that when m = 2 the bound in part (c) in Theorem 5 reduces
to the bound of Theorem 2, since

B(∆, colg(G), 2) = 1 +∆2 − (∆− colg(G) + 1)2

= (colg(G)− 1)(2∆− colg(G) + 1) + 1.

Proof of Theorem 5. For m = 1 the assertions are trivial.
Let m ≥ 2. We let k = colg(G) − 1 and D = ∆ − 1. Alice uses the winning

strategy to obtain a score of k, when playing the marking game on G. We prove
that, if she uses the same strategy for the graph Gm, the score will be at most
the upper bound given in the theorem minus one. Moreover, we prove that at
any time of the game, any unmarked vertex has at most such many marked
neighbours in Gm as this score.

Let v be an unmarked vertex at a certain time of the game. Let Mn respec-
tively, Un be the number of marked respectively, unmarked n-neighbours of v
in G. We have to give an upper bound for

1 +
∑m

n=1
Mn.

We have
M1 ≤ k, U1 ≤ D + 1−M1.

Since in the graph G, for 2 ≤ n ≤ m, any marked vertex at distance n − 1
from v has at most D = ∆− 1 marked neighbours at distance n from v and any
unmarked vertex at distance n − 1 from v has at most k = colg(G) − 1 marked
neighbours at distance n from v, we have the recursion

Mn ≤ Mn−1D + Un−1k,

and, since the number of vertices which have positive distance n from v in G is
bounded by (D + 1)Dn−1, we have the recursion

Un ≤ (D + 1)Dn−1 −Mn.

Using the two previous recursions, we obtain the following:

Mn ≤ Mn−1(D − k) + (D + 1)Dn−2k.(1)
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Therefore, for n ≥ 2, if colg(G) ≤ ∆, we have

Mn ≤ (D − k)n−1M1 +
∑n−2

i=0
(D + 1)Dik(D − k)n−2−i

≤ (D − k)n−1k +
∑n−2

i=0
(D + 1)Dik(D − k)n−2−i

=: Xn.

If k < D, i.e., if colg(G) ≤ ∆− 1, using the identity

xn−1 − yn−1 = (x− y)
∑n−2

i=0
xiyn−2−i(2)

we have

Xn
(2)
= (D − k)n−1k + (D + 1)k

Dn−1 − (D − k)n−1

D − (D − k)

= (D − k)n−1k + (D + 1)(Dn−1 − (D − k)n−1)(3)

= (k −D − 1)(D − k)n−1 + (D + 1)Dn−1.

We remark that, even in case n = 1, we have

M1 ≤ k = (k −D − 1)(D − k)n−1 + (D + 1)Dn−1.

Assuming k < D, by (3) we have

colg(G
m) ≤ 1 +

∑m

n=1
Mn ≤ 1 +

∑m

n=1
Xn

= 1 +
∑m−1

n=0
((k −D − 1)(D − k)n + (D + 1)Dn)

=: Bm.

Then, if k < D − 1, i.e., if colg(G) ≤ ∆− 2, we have

colg(G
m) ≤ Bm = 1 + (D + 1)

Dm − 1

D − 1
− (D + 1− k)

(D − k)m − 1

D − k − 1
,

which proves (c).
On the other hand, if k = D − 1, i.e., if colg(G) = ∆− 1, we have

colg(G
m) ≤ Bm = 1 +

∑m−1

n=0



(k −D − 1
︸ ︷︷ ︸

=−2

)(D − k
︸ ︷︷ ︸

=1

)n + (D + 1)Dn





= 1− 2m+ (D + 1)
Dm − 1

D − 1
,

which proves (b).
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If k = D, i.e., if colg(G) = ∆, for n ≥ 2, we have

Mn ≤ Xn = (D + 1)Dn−2k.

In case k = D + 1, i.e., if colg(G) = ∆ + 1, for n ≥ 2, from (1) we also have

Mn ≤ (D + 1)Dn−2k −Mn−1 ≤ (D + 1)Dn−2k.

Therefore, if k ∈ {D,D + 1}, i.e., if colg(G) ≥ ∆, we have

colg(G
m) ≤ 1 + k +

∑m

n=2
Mn ≤ 1 + k + (D + 1)k

∑m−2

n=0
Dn

= 1 + k + (D + 1)k
Dm−1 − 1

D − 1
,

which proves (a).

4. Forests

In case the graph of the game is a power of a forest, Theorem 5 can be improved
in the following way.

Theorem 7. Let F be a forest with maximum degree ∆ ≥ 3. Let m ∈ N. Then

we have

colg(F
m) ≤ 2(∆−1)m−2

∆−2 + 2.

Proof. For m = 0, colg(F
m) ≤ 1. For m = 1, colg(F

m) ≤ 4, by a result of Faigle
et al. [7]. Therefore the assertion holds for m ∈ {0, 1}.

Let m ≥ 2. We will describe a strategy for Alice, so that Alice wins the
marking game on the graph Fm with score

sc := 2(∆−1)m−2
∆−2 + 1.

This strategy is a generalization of the standard activation strategy for forests
(cf. [7, 9, 14]).

For the description of the strategy we use the forest F and consider the
vertices of the power Fm as vertices of the underlying forest F . Each vertex
that is the first vertex marked in a component T of F is called the root of
the component tree T and denoted by r(T ). In her first move, Alice marks an
arbitrary vertex. After that, Alice always marks a certain vertex (to be specified
later in Rule A and B) in the same component Bob has marked a vertex in his
previous move except if there is not any vertex left in the component. In the
latter case Alice proceeds according to Rule B.

All vertices on paths in a component T between marked vertices and r(T ) are
called active vertices. Whenever Bob marks a vertex v, Alice’s answer depends
on the position of v relative to the subtree TA induced by the paths between
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active vertices before Bob’s move. If v /∈ V (TA), then let w be the first vertex in
V (TA) on the path from v to r(T ).

As long as there are still unmarked vertices, Alice marks according the fol-
lowing rules.

Rule A If v /∈ V (TA) and w is unmarked, then Alice marks w.

Rule B Otherwise, Alice chooses a tree T0 that contains an unmarked vertex
and, if r(T0) exists, she marks an unmarked vertex with smallest distance
from r(T0), if r(T0) does not exist, she marks a vertex in T0 (which will
become r(T0)).

We will show that at any time in the game after Alice’s move any unmarked
vertex has at most sc− 1 marked m≤-neighbours.

After Alice’s first move this is certainly true. Assume it is true after Alice’s
N -th move. After Bob’s next move any unmarked vertex has at most sc marked
m≤-neighbours. We consider the situation after Alice’s (N +1)st move. Let u be
an unmarked vertex in a certain component T of F . We consider T as rooted tree
with root r(T ) and denote by p(x) respectively, C(x) the predecessor respectively,
the set of children of a vertex x.

The rules of the above activation strategy imply the following lemma, the
idea of which was implicitly used already in [7].

Lemma 8. After Alice’s move, for any unmarked vertex u, there is at most one

child c ∈ C(u) of u such that in the rooted subtree of c (including c) there are

marked vertices.

Proof. See [7, 9, 14].

See Figure 1 for a typical situation of the game.
Using Lemma 8, there are at most

∑m−1

k=0
(∆− 1)k =

(∆− 1)m − 1

∆− 2
(4)

marked vertices which are m≤-neighbours of u in the child trees below u. On the
other hand, if we consider p(u) and consider the tree T as rooted in u, then in
the new “child” tree rooted in p(u) (which is the tree of foremothers and aunts
and so on) there might be, analogously, at most

(∆− 1)m − 1

∆− 2

marked m≤-neighbours of u. In total we have at most

2
(∆− 1)m − 1

∆− 2
= sc− 1

marked m≤-neighbours of u, which proves the theorem.



38 S.D. Andres and A. Theuser

subtree belonging to p(u)

subtree belonging to c

r(T )

p(u)

u

c2
c

w

Figure 1. Strategy in the proof of Theorem 7: Immediately after Bob colours the vertex
w in the uncoloured child tree belonging to c2, Alice will colour the uncoloured vertex u.

We remark that the precondition ∆ ≥ 3 was used in the proof of Theorem 7
when applying the geometric series in (4). In the following, we consider some
graphs with ∆ = 2.

Proposition 9. Let m,n ∈ N with n ≥ 4m. Then

colg(P
m
n ) = 2m+ 1.

Proof. The case m = 0 is trivial. Let m > 0. The upper bound is obvious, since
the number of m≤-neighbours of a vertex in a path is at most 2m. To prove the
lower bound we describe a strategy of Bob to force a score of 2m in the marking
game on the m-th power of the path Pn. To simplify the strategy we consider
the game played on the underlying path Pn.
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If n ≥ 4m+1, in his first 2m moves, Bob ensures that the first m and the last
m vertices of the path are marked, leaving at least one unmarked interior vertex.
The last interior vertex to be marked will have 2m marked m≤-neighbours.

Consider the case n = 4m. In his first 2m − 2 moves, Bob ensures that the
first m−1 and the last m−1 vertices of the path are marked. Let ul respectively,
ur be the m-th vertex counted from the left respectively, the right end of the
path. After Alice’s next move there are still three unmarked vertices. In case
at least one of ul, ur is marked, Bob marks the other one (if any, otherwise an
arbitrary vertex) and leaves two interior unmarked vertices. The last vertex of
them to be marked will have 2m marked m≤-neighbours in the Pn. In case both
of ul and ur are unmarked, there is an unmarked interior vertex v. Either v has
already 2m marked m≤-neighbours or distPn

(ul, v) ≤ m or distPn
(ur, v) ≤ m,

but not both. Assume w.l.o.g. distPn
(ul, v) ≤ m. Then Bob marks ul, and v has

2m marked m≤-neighbours. Therefore colg(P
m
n ) ≥ 2m+ 1.

Proposition 9 is best possible in the following way.

Proposition 10. Let m,n ∈ N with n ≤ 4m− 1. Then

colg(P
m
n ) ≤ 2m.

Proof. We describe a strategy of Alice on Pn that ensures that, at any time in the
game, every unmarked vertex of Pn has at most 2m− 1 marked m≤-neighbours.
In her first move, Alice marks a central vertex v such that Pn \ v decomposes
into a left path L and a right path R, both containing at most 2m − 1 vertices.
Whenever Bob marks a vertex in L (respectively, R), Alice marks the unmarked
vertex in L (respectively, R) with the smallest distance to v.

Consider an unmarked vertex w in L at a certain time in the game. We will
argue that to the left of w there are at mostm−1 marked vertices. Indeed, if there
were at least m marked vertices to the left of w, then Alice would have marked
at least m − 1 vertices in L to the right of w. But then the number of vertices
in L would be at least 1 +m+m− 1 = 2m, which contradicts |V (L)| ≤ 2m− 1.
The similar reasoning holds for R. Therefore at any time there are at most m−1
marked vertices to the exterior of an unmarked vertex and at most m marked
m≤-neighbours to the interior.

Open Problem 11. For all values (m,n) ∈ N
2, n ≤ 4m − 1, determine the

exact value of colg(P
m
n ).

Some partial results for Open Problem 11 can be found in [11].

We remark that the same idea as in the proof of Proposition 9 can be used
to prove the following.
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Proposition 12. Let m,n ∈ N with n ≥ 4m. Then

colg(C
m
n ) = 2m+ 1.

Proof. Since Pm
n is a spanning subgraph of Cm

n , when Bob uses his strategy
from the proof of Proposition 9 to achieve a score of 2m in the marking game on
Pm
n for the marking game on Cm

n , he will achieve a score of at least 2m because
the additional edges might only increase the score but not decrease. Therefore
colg(C

m
n ) ≥ colg(P

m
n ) ≥ 2m + 1. On the other hand, obviously colg(C

m
n ) ≤

2m+ 1.

Open Problem 13. For all values (m,n) ∈ N
2, n ≤ 4m − 1, determine the

exact value of colg(C
m
n ).

5. Remarks on Tightness

From Theorem 5 we obtain immediately the following.

Corollary 14. Let m ∈ N \ {0}. For a graph G from the class G(∆, c) of graphs
with maximum degree ∆ and colg(G) = c we have

colg(G
m) = O(∆m−1c).

A lower bound was given by Agnarsson and Halldórsson [1]. Their construc-
tion of a complete (∆− 1)-ary tree of height

⌊
m
2

⌋
used to prove the tightness of

their Theorem 3.1 shows the following.

Theorem 15 (Agnarsson and Halldórsson (2003)). There is a graph G with

maximum degree ∆ and

χ(Gm) = Ω
(

∆⌊m

2
⌋
)

.

Since, by Observation 1, colg(G
m) ≥ col(Gm) ≥ χ(Gm), Theorem 15 implies

for the class G(∆) of graphs with maximum degree ∆

colg({G
m | G ∈ G(∆)}) = Ω

(

∆⌊m

2
⌋
)

.

We cannot say anything better about the tightness of the bounds in Theo-
rem 5 respectively, Theorem 7 for the class of m-th powers of graphs with fixed
maximum degree respectively, for the class of m-th powers of forests with fixed
maximum degree and m ≥ 3. As already mentioned, Esperet and Zhu [6] im-
proved the bound of Theorem 7 in the case m = 2 for forests with large maximum
degree to the value ∆ + 3 (cf. Theorem 3 (i)).

It seems to be very hard to obtain reasonable tightness results for the game
colouring number in the general cases of powers of graphs and even of forests
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considered in this paper. Similar large gaps between upper bounds and examples
which provide lower bounds for the game colouring number of a class of graphs are
known for the class of planar graphs which were studied in the last two decades
using different sophisticated methods, cf. [2, 4, 9, 10, 12, 14, 15, 16].

Open Problem 16. For the class G(∆) of graphs with maximum degree ∆, what

is the asymptotic behaviour of

colg({G
m | G ∈ G(∆)})

when ∆ −→ ∞?

Open Problem 17. For the class F(∆) of forests with maximum degree ∆, what

is the asymptotic behaviour of

colg({G
m | G ∈ F(∆)})

when ∆ −→ ∞?
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