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Abstract

Let G be a graph on n vertices and let H be a given graph. We say that
G is pancyclic, if it contains cycles of all lengths from 3 up to n, and that it is
H-f1-heavy, if for every induced subgraphK of G isomorphic toH and every
two vertices u, v ∈ V (K), dK(u, v) = 2 implies min{dG(u), dG(v)} ≥ n+1

2
.

In this paper we prove that every 2-connected {K1,3, P5}-f1-heavy graph
is pancyclic. This result completes the answer to the problem of finding
f1-heavy pairs of subgraphs implying pancyclicity of 2-connected graphs.
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1. Introduction

In the paper we consider only finite, simple and undirected graphs. For termi-
nology and notation not defined here see Bondy and Murty [5].

Let G be a graph on n vertices. G is said to be Hamiltonian, if it contains
a cycle Cn, and it is called pancyclic, if it contains cycles of all lengths k for
3 ≤ k ≤ n. If G does not contain an induced copy of a given graph H, we say
that G is H-free. G is called H-fi-heavy, if for every induced subgraph S of G
isomorphic toH and for every two vertices x, y ∈ V (S) satisfying dS(x, y) = 2, the
following inequality holds: max{dG(x), dG(y)} ≥ n+i

2 . For the sake of simplicity,
we write f -heavy instead of f0-heavy. For a family of graphs H we say that G is
H-free (H-fi-heavy), if G is H-free (H-fi-heavy) for every graph H ∈ H.

http://dx.doi.org/10.7151/dmgt.1840
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Figure 1. Graphs Zi, B, W and N .

The complete bipartite graph K1,3 is called a claw. Vertex of degree three in
the claw is called its center vertex, and other vertices are its end vertices.

In [1] Bedrossian characterised all pairs of forbidden subgraphs implying
Hamiltonicity and pancyclicity of 2-connected graphs (graphs Zi, B,W and N
are represented on Figure 1).

Theorem 1 (Bedrossian). Let R and S be connected graphs with R, S 6= P3 and

let G be a 2-connected graph. Then G being {R,S}-free implies G is Hamiltonian

if and only if (up to symmetry) R = K1,3 and S = P4, P5, P6, C3, Z1, Z2, B,N or

W .

Theorem 2 (Bedrossian). Let R and S be connected graphs with R, S 6= P3

and let G be a 2-connected graph which is not a cycle. Then G being {R,S}-
free implies G is pancyclic if and only if (up to symmetry) R = K1,3 and S =
P4, P5, Z1 or Z2.

Geng-Hua Fan in 1984 proved the following theorem, here stated in the form
that uses a notion of fi-heavy graphs.

Theorem 3 (Fan, [6]). Every 2-connected P3-f -heavy graph is Hamiltonian.

Note that every H-free graph for a given graph H is H-fi-heavy for every
integer i. Having that in mind, one could try to improve Theorem 1, considering
f -heavy pairs of graphs instead of forbidden pairs. The following result was
obtained by Ning and Zhang.

Theorem 4 (Ning and Zhang, [9]). Let R and S be connected graphs with R,

S 6= P3 and let G be a 2-connected graph. Then G being {R,S}-f -heavy implies

G is Hamiltonian if and only if (up to symmetry) R = K1,3 and S = P4, P5, P6,
Z1, Z2, B,N or W .
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In 1987 Wojda and Benhocine showed that Fan’s condition for Hamiltonicity
implies in fact pancyclicity, besides few special cases (where F4r stands for a
clique on 2r vertices that is connected via perfect matching with r disjoint copies
of a path P2).

Theorem 5 (Benhocine and Wojda, [3]). Let G be a 2-connected graph on n ≥ 3
vertices. If G is P3-f -heavy, then G is pancyclic unless G = F4r or G = Kn/2,n/2

or else n ≥ 6 is even and G = Kn/2,n/2 − e.

Since none of the special graphs mentioned in Theorem 5 is P3-f1-heavy, it
is easy to see that every P3-f1-heavy graph is pancyclic. P3 is the only graph
having this property. One could now consider a problem of finding all pairs of
connected graphs R and S other than P3 such that every {R,S}-f1-heavy graph
is pancyclic. By Theorem 2 one of them must be a claw, and the second one
must be one of the graphs P4, P5, Z1 or Z2. Partial answers to this problem were
obtained by Bedrossian, Chen, Schelp and Ning.

Theorem 6 (Bedrossian, Chen and Schelp, [2]). Let G be a 2-connected graph

which is not a cycle. If G is {K1,3, Z1}-f1-heavy, then G is pancyclic.

Theorem 7 (Ning, [8]). Let G be a 2-connected graph which is not a cycle. If G
is {K1,3, Z2}-f1-heavy or {K1,3, P4}-f1-heavy, then G is pancyclic.

The last pair from Theorem 2 that could imply pancyclicity is {K1,3, P5}. In
this paper we prove the following theorem.

Theorem 8. Let G be a 2-connected graph which is not a cycle. Then G being

{K1,3, P5}-f1-heavy implies G is pancyclic.

Theorems 6, 7 and 8 can be rewritten together in a following form, that
extends Theorem 2 and fully answers problem of finding f1-heavy pairs of graphs
implying pancyclicity of 2-connected graphs.

Theorem 9. Let R and S be connected graphs with R, S 6= P3 and let G be a

2-connected graph which is not a cycle. Then G being {R,S}-f1-heavy implies G
is pancyclic if and only if (up to symmetry) R = K1,3 and S = P4, P5, Z1 or Z2.

In Section 2 we introduce notation used further in the paper and present
some of the previous results that will be of use in the proof of Theorem 8. The
proof itself is postponed to Section 3.

2. Preliminaries

We first give some additional terminology and notation, and present previous
results that will be of use in the proof of Theorem 8.
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The subgraph of G induced by the set of vertices A ⊂ V (G) is denoted G[A].
By G − A we denote the subgraph G[V (G) \ A]. If A = {v}, we write G − v
instead of G − {v}. Let A = {v1; v2, v3, v4, v5}. If G[A] is isomorphic to P5, we
say that A induces a P5, where {v1v2, v2v3, v3v4, v4v5} are the edges of this path.
If A = {v1, v2, v3, v4} and G[A] is isomorphic to K1,3, we say that {v1, v2, v3, v4}
induces K1,3 (or induces a claw), where v1 is a center vertex and v2, v3 and v4
are end vertices of a claw.

For a cycle C we distinguish one of two possible orientations of C. We write
xC+y for the path from x ∈ V (C) to y ∈ V (C) following the orientation of C,
and xC−y denotes the path from x to y opposite to the direction of C. For two
positive integers k and m, where k ≤ m, we say that G contains [k,m]-cycles if
there are cycles Ck, Ck+1, . . . , Cm in G. Let {v1, . . . , vp} be the set of vertices of
a cycle C. For two positive integers k and m, satisfying k ≤ m ≤ p, by C[vk, vm]
we denote the set {vk, vk+1, . . . , vm}.

Let G be a graph on n vertices. Vertex v ∈ V (G) is called heavy, if dG(v) ≥
n
2

and super-heavy, if dG(v) ≥
n+1
2 . We say that two vertices u and v form a heavy-

pair (super-heavy pair), if both u and v are heavy (super-heavy).

Lemma 10 (Benhocine and Wojda, [3]). Let G be a graph on n ≥ 4 vertices and

let C be a cycle of length n− 1 in G. If dG(v) ≥
n
2 for v ∈ V (G) \ V (C), then G

is pancyclic.

Lemma 11 (Bondy, [4]). Let G be a graph on n vertices with a Hamilton cycle C.

If there exist two vertices x, y ∈ V (G) such that dC(x, y) = 1 and dG(x)+dG(y) ≥
n+ 1, then G is pancyclic.

Lemma 12 (Hakimi and Schmeichel, [10]). Let G be a graph on n vertices with a

Hamilton cycle C. If there exist two vertices x, y ∈ V (G) such that dC(x, y) = 1
and dG(x) + dG(y) ≥ n, then G is pancyclic unless G is bipartite or else G is

missing only (n− 1)-cycles.

Lemma 13 (Ferrara, Jacobson and Harris, [7]). Let G be a graph on n ver-

tices with a Hamilton cycle C. If there exist two vertices x, y ∈ V (G) such that

dC(x, y) = 2 and dG(x) + dG(y) ≥ n+ 1, then G is pancyclic.

3. Proof of Theorem 8

Proof of Theorem 8. The Theorem 8 will be proved by contradiction. Suppose
graph G on n vertices satisfies assumptions of the theorem but is not pancyclic.
Since the result is easy to verify for n ≤ 6, assume n ≥ 7. Note that G is
Hamiltonian by Theorem 4. If G is {K1,3, P5}-free, it is pancyclic by Theorem
2, a contradiction. Hence, there exists in G an induced claw or path P5 and a
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super-heavy vertex u. Consider G′ = G− u. G′ is {K1,3, P5}-f -heavy. If G
′ is 2-

connected, it is Hamiltonian by Theorem 4 and henceG is pancyclic by Lemma 10,
a contradiction. Now assumeG′ is not 2-connected. Then there exists a vertex v ∈
V (G) such that G−{u, v} is not connected. G−{u, v} consists of two components.
Let H1 = {x1, . . . , xh1

} denote the set of verties of the first component and
H2 = {y1, . . . , yh2

} be the vertices of the second component. Assume, without
loss of generality, that h1 ≤ h2. Let C = uy1y2 · · · yh2

vxh1
· · ·x1u be a Hamilton

cycle in G with the given orientation. Ning in [8] proves the following general
observations:

Claim 14 [8]. There are no super-heavy vertices in H1.

Proof. This is true, since every vertex x ∈ H1 can be adjacent only to u, v and
other vertices from H1. Since h1 ≤

n−2
2 , we have dG(x) ≤ h1 + 1 ≤ n

2 .

Claim 15 [8]. NH2
(u) ⊂ N [y1].

Proof. Suppose this is not true. Then there exists a vertex y ∈ NH2
(u) \N(y1).

But now {u;x1, y1, y} induces a claw. Since G is K1,3-f1-heavy and x1 is not
super-heavy, y1 must be super-heavy. Hence, G is pancyclic by Lemma 11, a
contradiction.

Claim 16 [8]. There are no super-heavy pairs of vertices with distance one or

two along the orientation of a Hamilton cycle in G.

Proof. Otherwise G is pancyclic by Lemma 11 or Lemma 13, a contradiction.

Case 1. h1 = 1.

Subcase 1.1. uv ∈ E(G). If all vertices in G are neighbours of u, then G is
pancyclic, a contradiction. Hence, there exists yi ∈ NH2

(u) such that uyi+1 /∈
E(G). Let yi be the first vertex in C[y1, yh2−1] with this property and let yj
be the first vertex in C[yi, yh2

] such that uyj+1 ∈ E(G), where we assume that
yh2+1 = v. Clearly, j ≥ i+ 1.

Claim 17 [8]. i ≥ 2.

Proof. Suppose that the claim is not true, i.e. uy1 ∈ E(G) and uy2 /∈ E(G).
Since u is super-heavy and u, y2 ∈ N(y1) \ N(u), by Claim 15 we get dG(y1) ≥
n+1
2 − 3 + 2 ≥ n−1

2 . This means that {u, y1} is a heavy-pair with a distance
equal to one along the Hamilton cycle C. Since uC+vu is an (n− 1)-cycle in G,
G is neither bipartite nor missing (n − 1)-cycle. Therefore, by Lemma 12, G is
pancyclic, a contradiction.

Claim 18 [8]. j ≥ i+ 2.



178 W. Wide l

Proof. Suppose j = i + 1. By the choice of i and j we have uyi, uyi+2 ∈ E(G)
and uyi+1 /∈ E(G).

Suppose yiyi+2 /∈ E(G). Then {u;x1, yi, yi+2} induces a claw. Since G is
K1,3-f1-heavy and x1 is not super-heavy by Claim 14, {yi, yi+2} is a super-heavy
pair with dC(yi, yi+2) = 2. This contradicts Claim 16.

Now assume yiyi+2 ∈ E(G). Suppose y1yi+1 /∈ E(G). Set G′ = G − yi+1.
C ′ = uC+yiyi+2C

+u is a Hamilton cycle in G′ with dC′(u, y1) = 1. Furthermore,
we have dG′(u) + dG′(y1) = dG(u) + dG(y1) ≥ n+1

2 + n+1
2 − 2 = |G′|. Lemma

12 implies that G′ is either pancyclic, bipartite or missing (n − 2)-cycle. Since
G′ is Hamiltonian and C ′′ = uC+yiyi+2C

+vu is an (n − 2)-cycle in G′, G′ is
pancyclic. Together with the cycle C, G is pancyclic, a contradiction. Hence,
y1yi+1 ∈ E(G). Then, by Claim 15, it must be dG(y1) ≥

n+1
2 − 1. It follows that

{u, y1} is a heavy-pair in G with the distance between them along the cycle C
equal to one, and so G is either pancyclic or bipartite or else missing only (n−1)-
cycle by Lemma 12. Since G is Hamiltonian and C ′ = uC+vu is an (n− 1)-cycle
in G, G is pancyclic, a contradiction.

Claim 19. vy1 /∈ E(G).

Proof. Suppose vy1 ∈ E(G) and consider G′ = G− x1. Then dG′(u) ≥ n+1
2 − 1

and dG′(y1) ≥
n+1
2 −2+1, and so {u, y1} is a heavy-pair in G′. Since C ′ = uC+vu

is a Hamilton cycle in G′ with dC′(u, y1) = 1 and vy1C
+v is an (n−2)-cycle in G′,

G′ is pancyclic by Lemma 12. This implies that G is pancyclic, a contradiction.

Claim 20. y1yk /∈ E(G) for k ∈ {i+ 1, . . . , j}.

Proof. Suppose there exists k ∈ {i + 1, . . . , j} such that y1yk ∈ E(G). Since
uyk /∈ E(G), by Claims 15 and 19 we have dG(y1) ≥ n+1

2 − 3 + 2. Therefore,
{u, y1} is a heavy-pair such that dC(u, y1) = 1. Since G is neither bipartite nor
missing (n− 1)-cycle, it is pancyclic by Lemma 12, a contradiction.

Claim 21. yiyi+2 /∈ E(G).

Proof. Suppose yiyi+2 ∈ E(G). Set G′ = G−{x1, yi+1}. Then dG′(u) ≥ n+1
2 −1

and dG′(y1) = dG(y1) ≥
n+1
2 − 3 + 1. Hence, {u, y1} is a heavy-pair in G′. Since

C ′ = vuC+yiyi+2C
+v is a Hamilton cycle in G′ and dC′(u, y1) = 1, Lemma

12 implies that G′ is either pancyclic, bipartite or missing only (|G′| − 1)-cycle.
But u is adjacent to y2, by the choice of i and Claim 17, and so uy2C

′+vu is a
(|G′| − 1)-cycle in G′. Hence, G′ is pancyclic, implying that G contains [3, n− 2]-
cycles. Since G is Hamiltonian and contains an (n − 1)-cycle, it is pancyclic, a
contradiction.

Claim 22. yi is super-heavy and i > 2.
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Proof. By Claims 18 and 21, {x1, u, yi, yi+1, yi+2} induces a P5. Since x1 is not
super-heavy and G is P5-f1-heavy, yi must be super-heavy. u is a super-heavy
vertex and so it must be i > 2, by Claim 16.

By Claim 22 we have yi−1 6= y1.

Claim 23. yi−1yi+1 /∈ E(G), yi−1yi+2 /∈ E(G).

Proof. If yi−1yi+1 ∈ E(G), G is pancyclic by Claim 22 and Lemma 10, a con-
tradiction. Now assume yi−1yi+2 ∈ E(G). Then {x1, u, yi−1, yi+2, yi+1} induces
a P5. By Claims 22 and 16, yi−1 is not super-heavy. Since x1 is also not super-
heavy, this contradicts G being P5-f1-heavy.

Now consider yi+3 (perhaps yi+3 = yj+1; note that, by Claims 15, 19 and the
choice of j, it must be yj+1 6= v).

Claim 24. yi+1yi+3 /∈ E(G), yiyi+3 /∈ E(G), yi−1yi+3 ∈ E(G).

Proof. Suppose yi+1yi+3 ∈ E(G). Set G′ = G− {x1, yi+2}. C
′ = uC+ yi+1 yi+3

C+ v u is a Hamilton cycle in G′ with dC′(u, y1) = 1. Since removing vertices x1
and yi+2 from G does not change the degree of y1 and lowers degree of u by one,
we have dG′(u) ≥ n+1

2 −1 and dG′(y1) ≥
n+1
2 −3+1, and so {u, y1} is a heavy-pair

in G′. Furthermore, by Claim 17, uy2C
′+u is a (|G′| − 1)-cycle in G′. Hence, G′

is pancyclic by Lemma 12. This implies that G is pancyclic, a contradiction.

Now suppose yiyi+3 ∈ E(G) and consider G′ = G − {x1, yi+1, yi+2}. G′ is,
again, a Hamiltonian graph, with a Hamilton cycle C ′ = uC+yiyi+3C

+vu and
dC′(u, y1) = 1. We have dG′(u) = dG(u) − 1 ≥ n+1

2 − 1 and dG′(y1) = dG(y1).
Hence, by Claim 15, {u, y1} is a super-heavy pair in G′ and G′ is pancyclic by
Lemma 11. Since there are [n− 2, n]-cycles in G, G is pancyclic, a contradiction.

Finally, if yi−1yi+3 /∈ E(G), then {yi−1, yi, yi+1, yi+2, yi+3} induces a P5.
Since yi is super-heavy, neither yi−1 nor yi+1 can be super-heavy, by Claim 16.
This contradicts G being P5-f1-heavy.

Now consider G′ = G− {x1, yi, yi+1, yi+2}. By Claim 24, G′ is Hamiltonian,
with a Hamilton cycle C ′ = uC+yi−1yi+3C

+vu. We have dG′(u) = dG(u)−2 and
dG′(y1) = dG(y1)− 1. Hence, dG′(u)+ dG′(y1) ≥

n+1
2 − 2+ n+1

2 − 3 = |G′|. Since,

by Claim 17, uy2C
′+u is a (|G′| − 1)-cycle in G′, G′ is pancyclic by Lemma 12,

and so G contains [3, n − 4]-cycles. This implies that G is pancyclic, because it
is Hamiltonian, and it contains a cycle uC+vu of length n− 1, a cycle uy2C

+vu
of length n− 2 and a cycle uC+yi−1yi+3C

+u of length n− 3. This contradiction
completes the proof of this subcase.

Subcase 1.2 [8]. uv /∈ E(G). Suppose uy2 /∈ E(G). Since u is super-heavy
and u, y2 ∈ N(y1) \N(u), by Claim 15 we have dG(y1) ≥

n+1
2 . Hence {u, y1} is
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a super-heavy pair such that dC(u, y1) = 1 and G is pancyclic by Lemma 11, a
contradiction.

If uy2 ∈ E(G), then we have dG(y1) ≥
n−1
2 , implying that {u, y1} is a heavy-

pair such that dC(u, y1) = 1. Since G is Hamiltonian and uy2C
+u is an (n− 1)-

cycle in G, G is neither bipartite nor missing (n− 1)-cycle, and so G is pancyclic
by Lemma 12, a contradiction.

Case 2. h1 ≥ 2.

Subcase 2.1. NH1
(u) = {x1}. If uy2 /∈ E(G), then {x2, x1, u, y1, y2} induces a

P5. Since x1 and y1 are not super-heavy (by Claim 16), this contradicts G being
P5-f1-heavy. Hence, it must be uy2 ∈ E(G).

Suppose that uv /∈ E(G). Then, by Claim 15, dG(y1) ≥ n+1
2 − 1 and so

dG(y1) + dG(u) ≥ n. Since uy2C
+u is an (n − 1)-cycle in G, G is pancyclic by

Lemma 12, a contradiction.

Now suppose uv ∈ E(G) (implying dG(y1) ≥
n+1
2 −2). Assume h1 = 2. Then

the graph G′ = G− {x1, x2} is Hamiltonian, with a Hamilton cycle C ′ = uC+vu
and dC′(u, y1) = 1. Since dG′(u) + dG′(y1) = dG(u) + dG(y1)− 1 ≥ n− 2 = |G′|,
Lemma 12 implies that G′ is either pancyclic or missing only (|G′|−1)-cycle. But
uy2C

+vu is a cycle of length |G′| − 1 in G′ and hence G′ is pancyclic, implying
pancyclicity of G. Now, if h1 ≥ 3, it must be x1x3 ∈ E(G) in order to avoid
{x3, x2, x1, u, y1} inducing P5 (x1 and x3 are not super-heavy by Claim 14). Then
C ′ = uC+x3x1u is a Hamilton cycle in G′ = G − x2 with dC′(u, y1) = 1 and
dG′(u) + dG′(y1) ≥ |G′|. Since one can easily obtain a cycle of length |G′| − 1 in
G′ by omitting y1 in the cycle C ′, G′ is pancyclic by Lemma 12 and hence G is
pancyclic, a contradiction.

Subcase 2.2. NH1
(u) 6= {x1}. Let xj0 denote the last neighbour of u on

C−[x1, xh1
].

Claim 25. NH1
[u] induces a clique.

Proof. Suppose the claim is not true. Then there exist two neighbours of u in
H1 that are not adjacent. Together with u and y1 they induce a claw. By Claims
14 and 16, u is the only super-heavy vertex in this claw. This contradicts G being
K1,3-f1-heavy.

Claim 26. Let A = {xa+1, . . . , xa+p} be a maximal set of consecutive non-

neighbours of u in H1. Then xa is adjacent to every vertex from A.

Proof. Since the statement is trivial for p = 1, assume p ≥ 2. Since A is maximal,
xa must be adjacent to u. Assume that the claim is not true, i.e., there exists
xa+i for some 2 ≤ i ≤ p such that xaxa+i−1 ∈ E(G) and xaxa+i /∈ E(G). Then
{y1, u, xa, xa+i−1, xa+i} induces a P5 with u being its only super-heavy vertex.
This contradicts G being P5-f1-heavy.
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Corollary 27. If xj0 6= xh1
, then xj0 is adjacent to vertices xj0+1, . . . , xh1

.

Claim 28. NH2
(u) 6= H2.

Proof. Suppose NH2
(u) = H2. Then G contains [3, h2 + 1] and [n − h2 + 1, n]-

cycles. Since h2 ≥
n−2
2 , G is pancyclic, a contradiction.

By Claim 28, we can choose a vertex yk ∈ NH2
(u) such that uyk+1 /∈ E(G),

where yk+1 ∈ H2. Let yk be the first vertex on C[y1, yh2−1] with this property.
Note that if y1 6= yk, then y1yk ∈ E(G), by Claim 15.

Claim 29. There are [n− h1 − k + 3, n]-cycles in G.

Proof. By Corollary 27, there exists a cycle C ′ = uykC
+xh1

xj0u of length n −
h1−k+3 (if xj0 6= xh1

) or n−h1−k+2 (if xj0 = xh1
). Since u is adjacent to all

of the vertices y1, . . . , yk−1, C
′ can be extended to the cycle uyk−1ykC

+xh1
xj0u.

This way we can append all the vertices from C[y1, yk−1] to C ′, one-by-one.
Hence, G contains [n− h1 − k + 3, n− h1 + 2]-cycles. Now, by Corollary 27, we
can append to the just obtained cycle C ′′ = uC+xh1

xj0u (of length n − h1 + 2)
vertices from C[xh1−1, xj0+1], which gives us [n− h1 +2, n− j0 +1]-cycles. Since
neighbours of u in H1 induce a clique, we can add them one-by-one to the longest
of just obtained cycles. Finally, by Claim 26, appending the non-neighbours of
u from H1 to the longest cycle can be performed in a similar way as it has been
done with the vertices {xj0+1, . . . , xh1−1}. This gives us cycles of all lengths from
n− h1 − k + 3 up to n.

Claim 30. NH1
(u) = H1.

Proof. Suppose this is not true, i.e. there exists a vertex xa ∈ NH1
(u) such that

xa+1 ∈ H1 and uxa+1 /∈ E(G). Then {xa+1, xa, u, yk, yk+1} induces a P5. Since
xa is not super-heavy, yk must be super-heavy. Since u is super-heavy, it must
be k ≥ 3, by Claim 16.

Suppose uv ∈ E(G). Set G′ = G − H1. Then C ′ = yky1C
+yk−1uvC

−yk is
a Hamilton cycle in G′ with dC′(y1, yk) = 1. Since uv ∈ E(G), Claim 15 implies
that dG′(y1) = dG(y1) ≥

n+1
2 −dH1

(u)−1. Since dH1
(u) ≤ h1−1 and yk is super-

heavy, we get dG′(y1) + dG′(yk) ≥ |G′|+ 1. Hence, G′ is pancyclic by Lemma 11
and there are [3, n− h1]-cycles in G. Since k ≥ 3, G is pancyclic by Claim 29, a
contradiction.

Now suppose uv /∈ E(G). If xj0 = xh1
, set G′ = G − {x1, . . . , xh1−1}. Then

|G′| = n−h1+1 and C ′ = yky1C
+yk−1uxh1

C−yk is a Hamilton cycle in G′. Since
dC′(y1, yk) = 1 and dG′(y1)+ dG′(yk) = dG(y1)+ dG(yk) ≥

n+1
2 − dH1

(u)+ n+1
2 ≥

|G′| + 1, G′ is pancyclic by Lemma 11 and there are [3, n − h1 + 1]-cycles in G.
This implies, again, by Claim 29, that G is pancyclic, a contradiction.
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Hence, xj0 6= xh1
. Now we can consider G′ = G − (H1 \ {xj0 , xh1

}). By
Corollary 27, xj0xh1

∈ E(G) and so C ′ = yky1C
+yk−1uxj0xh1

C−yk is a Hamilton
cycle in G′. Again, dC′(y1, yk) = 1 and dG′(y1)+dG′(yk) ≥ n+2−h1 = |G′|. This
implies, by Lemma 12, thatG′ is either pancyclic or missing only (n−h1+1)-cycle.
In either case G is pancyclic by Claim 29, a contradiction.

Corollary 31. By Claims 25 and 30, we have G[H1 ∪ {u}] ≃ Kh1+1, which

implies that there are both [3, h1 + 1]- and [n − h1 + 1, n]-cycles in G. Since

n = h1 + h2 + 2, we can rewrite the latter interval in the form [h2 + 3, n], that
will be handy in the following.

Claim 32. Let yi ∈ H2 be a super-heavy vertex for some i ∈ {3, . . . , h2}. Then

dG(u, yi) = 2.

Proof. Since both u and yi are super-heavy, it obviously must be dG(u, yi) ≤ 2.
Suppose that the claim is not true, i.e. that there exists a super-heavy vertex yi ∈
H2 adjacent to u. Claim 16 gives us following observations: it must be i ≥ 3 and
neither yi−1 nor yi+1 is super-heavy (we assume that yh2+1 = v). Furthermore, u
must be adjacent to either yi−1 or yi+1, since otherwise {yi;u, yi−1, yi+1} would
induce a claw, by Lemma 10 contradicting G being K1,3-f1-heavy. Note that, by
Claim 15, y1yi ∈ E(G).

Suppose uyi+1 ∈ E(G). If i 6= h2, then y1yi+1 ∈ E(G), by Claim 15, and
now C ′ = uyiC

−y1yi+1C
+u is a Hamilton cycle in G with dC′(u, yi) = 1. Since

{u, yi} is a super-heavy pair, G is pancyclic by Lemma 11, a contradiction. We
will obtain a contradiction in the same way if i = h2 and y1yi+1 ∈ E(G). Assume
now that i = h2 and y1yi+1 /∈ E(G). Consider G′ = G − (H1 ∪ {v}). Then
|G′| = n−h1−1, dG′(u) = dG(u)−h1−1 and dG′(yh2

) = dG(yh2
)−1. Since both

u and yh2
are super-heavy, we have dG′(u) + dG′(yh2

) ≥ |G′|. Since uC+yh2
u is a

Hamilton cycle in G′ and y1C
+yh2

y1 is an (n− 1)-cycle in G′, G′ is pancyclic by
Lemma 12. This implies that G is pancyclic, a contradiction.

It must be then uyi+1, y1yi+1 /∈ E(G) and uyi−1, y1yi−1 ∈ E(G). Assume
uv /∈ E(G). Then, by Claims 15 and 30, we have dG(y1)≥

n+1
2 −h1. Now, consider

G′=G−{x1, x2, . . . , xh1−1} with a Hamilton cycle C ′=uyi−1C
−y1yiC

+xh1
u. The

distance between y1 and yi along C ′ is equal to one and the sum of their degrees
in G′ is dG′(y1) + dG′(yi) = dG(y1) + dG(yi) ≥ |G′|. Hence, by Lemma 12, G′ is
either pancyclic or missing only (n − h1)-cycle. Together with Corollary 31 this
implies that G itself is either pancyclic or missing only (n − h1)-cycle. Now, if
uy2 ∈ E(G) then uy2C

+xh1
u is a cycle of length n− h1 in G and G is pancyclic.

Hence, uy2 /∈ E(G), implying that i− 1 > 2. If i− 1 = 3, then y1y3 ∈ E(G) and
a cycle uy1y3C

+xh1
u has lenght n − h1, a contradiction. Hence, i − 1 > 3, but

then it must be y1y3 ∈ E(G) (in order to avoid {x1, u, y1, y2, y3} inducing P5)
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and, again, a cycle uy1y3C
+xh1

u has length n− h1. This implies G is pancyclic,
a contradiction.

Now suppose uv ∈ E(G). By Claim 15, dG(y1) ≥ n+1
2 − h1 − 1. Now, set

G′ = G−H1. G
′ is Hamiltonian with a Hamilton cycle C ′ = uyi−1C

−y1yiC
+vu.

Since dC′(y1, yi) = 1 and dG′(y1) + dG′(yi) = dG(y1) + dG(yi) ≥ n − h1 = |G′|,
Lemma 12 implies that G′ is either pancyclic or missing only a cycle of length
n−h1−1. The same is true about G itself, since it contains [n−h1+1, n]-cycles.
Note that uC+vu is an (n − h1)-cycle in G. From this cycle we can obtain an
(n−h1−1)-cycle by omitting y1 or y2, depending on the existence of the edges uy2
and y1y3, just like in the previous case. Hence, G is pancyclic, a contradiction.

Corollary 33. G[NH2
[u]] ≃ KdH2

(u)+1.

Proof. Otherwise there would exist two non-adjacent neighbours of u in H2, say
ya and yb. Then {u;x1, ya, yb} induces a claw. By Claims 14 and 32, u is the only
super-heavy vertex of this claw. This contradicts G being K1,3-f1-heavy.

Let ym denote the last neighbour of u in C[y1, yh2
].

Claim 34. Let A = {ya+1, . . . , ya+p} be a maximal set of consecutive non-

neighbours of u in H2. Then ya is adjacent to every vertex from A.

Proof. Since the statement is trivial for p = 1, assume p ≥ 2. Since A is
maximal, ya must be adjacent to u. By Claim 32, ya is not super-heavy. Assume
that the claim is not true, i.e., there exists ya+i for some 2 ≤ i ≤ p such that
yaya+i−1 ∈ E(G) and yaya+i /∈ E(G). Then {x1, u, ya, ya+i−1, ya+i} induces a P5

with x1 and ya being not super-heavy. This contradicts G being P5-f1-heavy.

Corollary 35. If ym 6= yh2
, then ym is adjacent to vertices ym+1, . . . , yh2

.

Now, by Claim 30 and Corollary 35, C ′ = uymyh2
vxh1

u is a cycle of length
four or five, depending on whether m = h2 or not. By appending consecutively
vertices yh2−1, . . . , ym+1 to C ′, we obtain [5, h2 −m+ 4]-cycles, by Corollary 35.
To the longest of just created cycles we can append neighbours of u from H2,
one-by-one, since they induce a clique. The same can be done, by Claim 34,
with the vertices from H2 that are not adjacent to u. This procedure gives us
[5, h2 + 3]-cycles. But Corollary 31 says, that there are [h2 + 3, n]-cycles in G,
so altogether we have [5, n]-cycles in G. Note that ux1x2u is a triangle. Now,
since there is either an induced claw or an induced path P5 in G, there exists a
super-heavy vertex other than u, say w. By Claim 14, w either belongs to the
set H2 or w = v. Suppose w ∈ H2. Then by Claim 32 uw /∈ E(G). Since both
u and w are super-heavy, they must have at least two common neighbours, and
together with them they form a cycle of length four. Hence, G is pancyclic, a
contradiction. This implies that the only super-heavy vertices in G are u and v.
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Again, if uv /∈ E(G), u and v have at least two common neighbours and we have
a cycle C4 in G. So it must be uv ∈ E(G). Now if vx1 /∈ E(G) and vy1 /∈ E(G),
{u;x1, y1, v} induces a K1,3. Since x1 and y1 are not super-heavy, this contradicts
G being K1,3-f1-heavy. Hence v must be adjacent to either x1 or y1. In either
case we get a cycle C4: x1xh1

vux1 in the previous, and xh1
vy1uxh1

in the latter.
This implies that G is pancyclic, a contradiction. The proof is complete.
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