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1. Introduction

Assume we have a graph G = (V,E) where one of the vertices in V (G) is an
“intruder” vertex. A graph G might represent a facility with the intruder being
a (vertex) location for a fire, thief or saboteur, or G might be a multiprocessor
network with one malfunctioning processor (also to be called the intruder). The
concern is to use (the minimum possible number of) detectors to be able to
precisely determine the location of the intruder. Various types of detectors can be
used. Some, like sonar devices, can be assumed to be able to detect the intruder
anywhere in the system. Much work has been done on the study of locating
sets/metric bases introduced by Slater [39] and Harary and Melter [11]. Assume
that a detector at vertex x can determine the distance d(x,w) to an intruder at
w. With an (ordered) set X = {x1, x2, . . . , xk} of vertices, for each v ∈ V (G)
we have a k -tuple (d(x1, v), d(x2, v), . . . , d(xk, v)). Then, X is a locating-set or
metric basis if all of these k -tuples are distinct. We can say that a vertex x
resolves two vertices u and v if d(x, u) 6= d(x, v). Then X is locating if for every
two vertices u and v in V (G) at least one x ∈ X resolves u and v. The location
number LOC(G) (also called the metric basis number, denoted MB(G)) is the
minimum cardinality of a locating set X ⊆ V (G). Because d(xi, xi) = 0, clearly
each xi in X resolves itself with any other vertex. For the recently introduced
centroidal bases described in Foucaud, Klasing and Slater [9] the set of detectors
in X = {x1, x2, . . . , xk} provide just an ordering of the relative distances to an
intruder vertex, not the precise distances.

Others, like heat sensors or motion detectors, might have a limited range.
We consider this latter case for which a detector at vertex v can determine the
presence of an intruder at w precisely when vw ∈ E(G) (or possibly when v =
w). To be able to detect any vertex intruder one needs a dominating or open
dominating set. The open neighborhood of vertex v is N(v) = {x ∈ V (G) :
vx ∈ E(G)}, the set of vertices adjacent to v, and the closed neighborhood of v is
N [v] = N(v)∪{v}. ThenD ⊂ V (G) is a dominating set if

⋃
x∈D N [x] = V (G) and

an open dominating set (also called a total dominating set) if
⋃

x∈D N(x) = V (G).
The domination number is γ(G) = min{|D| : D is a dominating set of G}, and the
open domination number is denoted by γt(G) or γop(G) = min{|D| : D is an open
dominating set of G}. For the path P12 = {v1, v2, . . . , v12}, D = {v2, v5, v8, v11}
is a γ(P12)-set. For this case, note that a heat sensing detector at v5 can not
determine if a fire (intruder) is at location v4 because it might also be at v6,
although it might be able to distinguish between locations v4 and v5.

For the case in which a detector at v can determine if the intruder is at v or
if the intruder is in N(v) (but which element in N(v) can not be determined),
as introduced in Slater [40, 41, 42], a locating-dominating set L ⊆ V (G) is a
dominating set for which, given any two vertices u and v in V (G) − L, one has
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N(u) ∩ L 6= N(v) ∩ L. Every graph G has a locating-dominating set, namely
V (G), and the locating-dominating number LD(G) is the minimum cardinality
of such a set. See, for example, [3, 8, 14].

 %(P!) = 1/3 

LD%(P!) = 2/5 

IC%(P!) = 1/2 

OLD%(P!) = 2/3 

Figure 1. Distinguishing sets for the infinite path.

As introduced by Karpovsky, Charkrabarty and Levitin [21], an identifying

code C ⊆ V (G) is a dominating set for which given any two vertices u and v in
V (G) one has N [u]∩C 6= N [v]∩C. See, for example, [2, 4, 21, 24]. A graph G has
an identifying code when for every pair of vertices, u and v we have N [u] 6= N [v],
and the identifying code number IC(G) is the minimum cardinality of such a set.
When a detection device at vertex v can determine if an intruder is in N(v) but
will not/can not report if the intruder is at v itself, then we are interested in open-
locating-dominating sets as introduced for the k -cubes Qk by Honkala, Laihonen
and Ranto [20] and for all graphs by Seo and Slater [30, 31]. An open dominating
set S ⊆ V (G) is an open-locating-dominating set if for all u and v in V (G) one
has N(u)∩S 6= N(v)∩S. A graph G has an open-locating-dominating set when
no two vertices have the same open neighborhood, and OLD(G) is the minimum
cardinality of such a set. See, for example, [5, 13, 20, 30, 31, 32, 33, 34, 35, 36].
Lobstein [23] maintains a bibliography, currently with more than 280 entries, for
work on these topics.

In general, a collection C = {S1, S2, . . . , Sp} of subsets of V (G) is a dis-

tinguishing set for a graph G if
⋃

1≤i≤p Si = V (G) and for every pair of dis-
tinct vertices u and v in V (G) some Si contains exactly one of them. So,
L = {w1, w2, . . . , wj} is a locating-dominating set if C1 = {{w1}, N(w1), {w2},



800 S.J. Seo and P.J. Slater

1 

9 

8 

7 

6 

5 

4 3 

2 

H1

(a)

1 

5 

4 3 

2 

H2

(b)

Figure 2. Graphs H1 and H2.

N(w2), . . . , {wj}, N(wj)} is distinguishing with p = 2j;S = {w1, w2, . . . , wp} is
an identifying code if C2 = {N [w1], N [w2], . . . , N [wp]} is distinguishing; and S =
{w1, w2, . . . , wp} is an open-locating-dominating set if C3 = {N(w1), N(w2), . . . ,
N(wp)} is distinguishing.

These definitions extend naturally to locally finite, countably infinite graphs.
Percentage parameters for measuring density for locally-finite, countably infinite
graphs were defined in Slater [44]. For example, for the γ(G) parameter we have
γ%(G) defined as follows as the minimum possible percentage of vertices in a
dominating set of G. The closed k-neighborhood of vertex v is the set of vertices at
distance at most k from v, Nk[v] = {w ∈ V (G) : d(v, w) ≤ k}. For S ⊆ V (G), the
density of S is dens(S) = maxv∈V (G) lim supk→∞(|S ∩Nk[v]|/|Nk[v]|). Then, for
example, the domination percentage of G is γ%(G) = min{dens(S) : S ⊆ V (G) is
dominating}. Figure 1 illustrates how to achieve the smallest possible percentage
of vertices for these distinguishing sets for the infinite path.

Theorem 1. For the infinite path P∞ the smallest possible percentage of vertices

is

(a) γ%(P∞) = 1/3,

(b) (Slater [41, 42]) LD%(P∞) = 2/5,

(c) (Karpovsky, Charkrabarty and Levitin [21]) IC%(P∞) = 1/2, and

(d) (Seo and Slater [30]) OLD%(P∞) = 2/3.

Note that for LD-sets, C1 can be a multiset if, for example, N(w1) = N(w2).
For a dominating set D the associated collection C4 has I(D) singleton set entries
where I(D) = Σv∈D(1 + deg v) is the influence of D as defined in Grinstead and
Slater [10]. Each {v} appears in C4, in fact, |N [v]∩D| times. The redundance is
important when we consider fault-tolerance.
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Many results about the size of various dominating sets are based on “share”
arguments. For a dominating set D and a vertex v ∈ D, the “share” of v in
D is a measure of the amount of domination done by v. If N [u] ∩ D = {v},
then v is a sole dominator of u and u is said to be a private neighbor (PN)
of v. In graph H1 of Figure 2, vertex 1 is a private neighbor of vertex 4, and
vertex 7 is its own PN . Because N [2] ∩ {3, 4, 7} = {3, 4}, each of vertex 3
and vertex 4 is considered to have a 1/2-share in dominating vertex 2. If D
is a dominating set and v ∈ D, then the share of v in D is defined in [44] as
sh(v;D) = Σw∈N [v]1/|N [w] ∩D|. For example, in graph H1 of Figure 2 we have
N [3] = {2, 3, 4, 5, 6, 9} and sh(3; {3, 4, 7}) = 1/2 + 1/2 + 1/2 + 1/3 + 1/2 + 1/3
= 8/3. Also, sh(4; {3, 4, 7}) = 1 + 1/2 + 1/2 + 1/2 + 1/3 + 1/2 + 1/3 = 11/3,
and sh(7; {3, 4, 7}) = 1/3 + 1/2 + 1 + 1/2 + 1/3 = 8/3. Note that Σv∈Dsh(v;D)
= |V (G)| = n for any dominating set D and that |D| ≥ |V (G)|/MAXv∈V sh(v;D)

Similarly, for an open dominating set D the open-share of a vertex v in D
is defined as shop(v;D) = Σw∈N(v)1/|N(w) ∩ D| in Seo and Slater [30]. For
example, in graph H2 of Figure 2 we have N(3) = {2, 4, 5} and shop(3; {3, 4})
= 1/2 + 1 + 1/2 = 2. Also, N(4) = {1, 2, 3, 5} and shop(4; {3, 4}) = 1 + 1/2
+ 1 + 1/2 = 3. For finite graphs G with an open dominating set D we have
Σv∈Dsh

op(v;D) = |V (G)| and |D| ≥ |V (G)|/MAXv∈V sh
op(v;D). Vertex set

D ⊆ V (G) is open k-dominating if every vertex in V (G) is open dominated at least
k times and the open k-share is defined as shop×k(v;D) = Σw∈N(v)k/|N(w) ∩D|.
If D is open k-dominating, then Σv∈Dsh

op(v;D) = k · |V (G)| and for any open
k-dominating set D we have |D| ≥ k|V (G)|/MAXv∈V sh

op
×k(v;D).

In this paper, we will focus on open-locating-dominating sets along with
open-shares of vertices.

2. Introduction: Fault Tolerant Detection

There are two aspects to using a detector in deciding where an intruder is located.
The detector must be able to determine the presence of the intruder and to
transmit this information to a command point P where the information can be
used. For now we assume that, at any given time, there is at most one faulty
detector (and at most one intruder). Several types of faults are described in
Slater [46].

Perhaps the simplest fault is that the detector loses the ability to transmit to
command point P . This type of fault is discussed in Hernando, Mora, Slater, and
Wood for locating sets [15] and in Honkala, Laihonen, and Ranto for identifying
codes [20]. Assume we have an OLD-set S for G and that each v ∈ S is the
location for a detection device. At designated points in time, each OLD detector,
say at vertex v, transmits a 1 if there is an intruder in N(v) and transmits a 0
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Figure 3. (a) An OLD(G11)-set and (b) a RED:OLD(G11)-set.

if N(v) does not contain an intruder. In this case, a fault for detector v is clear
when no transmission is received. What is required here for S ⊆ V (G) to be
a fault tolerant OLD-set is that, for each v ∈ S, the set S − {v} must be an
OLD-set. We say that an OLD-set S is a redundant OLD-set (a RED:OLD-set)
if, for each v ∈ S, the set S − {v} is an OLD-set, and we let RED:OLD(G) be
the minimum cardinality of a RED:OLD-set for G. A redundant OLD-set S of
G with RED:OLD(G) = |S| is called a RED:OLD(G)-set.

Observation 2. For the graph G11 in Figure 3, RED:OLD(G11) = 9.

Proof. The set W = {1, 2, 3, 5, 6, 7, 9, 10, 11} is a RED:OLD-set for G11. (See
Figure 3(b).) For example, if R = W−{6}, then N(5)∩R = {7}, N(7)∩R = {5},
N(6)∩R = {5, 7}, N(4)∩R = {3, 7}, etc. Hence, RED:OLD(G11) ≤ 9. Suppose
a vertex set S ⊆ V (G11) does not contain all three vertices in one of the triangles,
for example, {1, 2, 3} * S. Let R be obtained from S as follows. If 3 ∈ S, let
R = S − {3}. Because |S ∩ {1, 2, 3}| ≤ 2 we can assume 2 /∈ S, but then vertex
1 is not open dominated by R and hence R is not an OLD-set. Assume 3 /∈ S.
For S to be an OLD-set, N(2) ∩ S = {1} ⊆ S and N(1) ∩ S = {2} ⊆ S. Let
R = S − {2}. Again, vertex 1 is not open dominated by R. It follows that
{1, 2, 3, 5, 6, 7, 9, 10, 11} is the unique RED:OLD(G11)-set.

A second type of fault discussed in Slater [46] for LD-sets involves a device
whose detection capability fails but which still transmits. That is, at command
point P one must allow for the fact that one of the detectors transmitting a 0 is
doing so incorrectly. Suppose, for example, that S = V (G11) and vertex 3 trans-
mits a 1 (correctly indicating that N(3) = {1, 2, 4} contains an intruder) while
every other vertex transmits a 0. The intruder can be at vertex 1 with vertex 2
incorrectly transmitting 0, at vertex 2 with vertex 1 incorrectly transmitting 0, or
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at vertex 4 with vertex 7 incorrectly transmitting 0. That is, G11 can not handle
this type of fault. We call OLD-set S a detector OLD-set (a DET:OLD-set) if
the location of an intruder can be correctly identified when at most one detector
incorrectly transmits a 0. Let DET :OLD(G) be the minimum cardinality of a
DET:OLD-set for G, and call the DET:OLD-set for G a DET:OLD(G)-set if |S|=
DET :OLD(G).

Using notation different from that in Slater [46] and here, faults of this sec-
ond type were considered in Slater [44] for locating-dominating sets. (With
the obvious similar notation for LD-sets we have the following. For cycle C8,
RED:LD(C8) = 6 < DET :LD(C8) = 7.)

Theorem 3. For cycle Cn with n 6= 4, RED:OLD(Cn) = n and DET :OLD(Cn)
is undefined.

Proof. Clearly V (Cn) is a RED:OLD-set for Cn, so RED:OLD(Cn) is defined.
Suppose we have cycle Cn : v1, v2, . . . , vn, and we let S = V (Cn) − {vi}. Then
S − {vi+2} does not open dominate vi+1, so S is not a RED:OLD-set. Hence,
RED:OLD(Cn) = n.

If S = V (Cn) and vi transmits 1 while every other vertex transmits 0, then
the intruder can be at vi−1 (with vi−2 detector faulty) or at vi+1 (with vi+2

detector faulty). So, V (Cn) is not a DET:OLD-set.

We let G�H denote the Cartesian product of G and H. Figure 4 illustrates
that OLD(C5�C8) ≤ 16, RED:OLD(C5�C8) ≤ 20, and DET :OLD(C5�C8) ≤
30. Note that each v ∈ V (C5�C8)) has deg v = 4. If v ∈ S where S is an
OLD-set for a graph G and degv = k, then v can have at most one PN and
each other x ∈ N(v) is dominated at least twice. Hence, shop(v;S) ≤ 1 + (deg
v − 1)/2 = (1 + deg v)/2. In particular, for (C5�C8) each shop(v;S) ≤ 5/2 and
|S| ≥ 40(2/5) = 16. So, OLD(C5�C8) = 16. That RED:OLD(C5�C8) = 20
and DET :OLD(C5�C8) = 30 can be shown using arguments similar to those in
Theorems 12 and 13.

The collection C = {S1, S2, . . . , St} with Si ⊆ V (G) for 1 ≤ i ≤ t is distin-

guishing for a graph G if
⋃

1≤i≤t Si = V (G) and for each pair u, v of distinct
vertices there is some Si containing exactly one of them. For v ∈ V (G) let
C (v) = {i : v ∈ Si} and A△B is the symmetric difference of sets A and B. Then
C is distinguishing if C (v) 6= ∅ for all v ∈ V (G) and |C (u)△C (v)| ≥ 1 for all
pairs u, v.

We say that Si distinguishes u from v if u ∈ Si and v /∈ Si, and Si is said
to distinguish u and v if either Si distinguishes u from v or v from u. Collection
C will be said to 2-distinguish u and v if C contains distinct elements Si and Sj

each of which distinguishes u and v. In particular, perhaps u ∈ Si, u /∈ Sj and
v /∈ Si, v ∈ Sj . Collection C will be said to 2#-distinguish u and v if C contains



804 S.J. Seo and P.J. Slater

(a) (b)

(c)

Figure 4. (a) OLD(C5�C8)-set (b) RED:OLD(C5�C8)-set, and (c) DET:OLD(C5�C8)-
set.

distinct elements Si and Sj such that either Si and Sj both distinguish u from v
or both distinguish v from u.

The next two theorems were presented in Slater [46] without proof. Collection
C is called redundant-distinguishing if C − Si is distinguishing for 1 ≤ i ≤ t.

Theorem 4 (Slater [46]). C = {S1, S2, . . . , St} is redundant-distinguishing if and

only if each |C (u)| ≥ 2 and C 2-distinguishes each pair u, v of distinct vertices

(that is, |C (u)△C (v)| ≥ 2).

Proof. Assume C is redundant-distinguishing. If |C (u)| < 2 and u ∈ Sj , then⋃
1≤i≤t,i 6=j Si does not contain u (that is, u will not even be detected). Hence,

|C (u)| ≥ 2 for each u ∈ V (G). If only Sj distinguishes u and v, then C −Sj is not
distinguishing. (That is, if Sj does not transmit, then each other Si transmits a
1 if both u and v are in Si or 0 if both u and v are not in Si. So C − Sj will not
distinguish there being an intruder at u or at v.) Hence |C (u)△C (v)| ≥ 2.

For the converse, if there is no intruder then every Si that transmits will
transmit a 0. Assume there is an intruder at vertex u. Consider C − Si (that is,
perhaps Si does not transmit). Because |C (u)| ≥ 2 at least one Sj with j 6= i
contains vertex u (so this Sj transmits a 1). Let v ∈ V (G) − {u}. If v /∈ Sj
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then Sj transmitting 1 determines that v is not the intruder vertex. Assume
{u, v} ⊆ Sj . There are two elements of C , say Sh and Sk, that distinguish u and
v. We can assume k 6= i. Then if u ∈ Sk and v /∈ Sk, element Sk transmits a 1,
and we know that v is not the intruder vertex. If u /∈ Sk and v ∈ Sk, element Sk

transmits a 0 and we know that v is not the intruder vertex.

Collection C is detection-distinguishing if C can distinguish under the condi-
tion that one Si can falsely report “no intruder” in Si. Note that any Si indicating
that the intruder vertex u is in Si (that is, transmitting a 1) is assumed to be
correctly reporting. At any given time, at most one Si can falsely indicate non-
membership.

Theorem 5 (Slater [46]). C is detection-distinguishing if and only if each |C (u)|
≥ 2 and for each pair u,v we have either |C (u) \C (v)| ≥ 2 or |C (v) \C (u)| ≥
2 (that is, C 2#-distinguishes u and v).

Proof. Assume C is detection-distinguishing. Suppose that |C (u)| ≤ 1. If any
element in C contains u, let it be Si. If u ∈ Si, then Si might incorrectly report a
0. That is, we can have every Sk transmitting a 0 when u is the intruder location.
Hence |C (u)| ≥ 2 for all u ∈ V (G). Suppose that C does not 2#-distinguish u
and v. If there is a (unique) element of C that distinguishes u from v, call it Si,
and if there is a (unique) element of C that distinguishes v from u, let it be Sj .
We have u ∈ Si, v /∈ Si, u /∈ Sj , v ∈ Sj , and if h 6= i, j then |Sh ∩{u, v}| = 0 or 2.
If every Sh with h 6= i, j has |Sh ∩ {u, v}| = 0, then we can have an undetected
intruder at u if Si transmits incorrectly (or at v if Sj transmits incorrectly). If
{u, v} ⊆ Sh for some Sh ∈ C , suppose each Sk with {u, v} ⊆ Sk transmits a 1
while all others (including Si and Sj) transmit a 0. The intruder can be at u or
v. Hence, C must 2#-distinguish each pair u and v.

For the converse, because each |C (u)| ≥ 2, every Si transmits 0 if and only
if there is no intruder. Assume there is an intruder at vertex u, then |C (u)| ≥ 2
implies some Sj containing u transmits a 1. Suppose that v /∈ Sj , then because Sj

transmits a 1 we know that v is not the intruder vertex. Suppose that {u, v} ⊆ Sj .
If both Sh and Sk distinguish u from v, they both transmit a 1, and we know that
v is not the intruder vertex. If both Sh and Sk distinguish v from u, they both
transmit a 0. At least one is not faulty, and we know that v is not the intruder
vertex.

We emphasize that we are considering distinguishing sets S that are robust
with respect to possible detector faults (elements of S). Honkala and Laihonen
[19], for example, consider robustness under conditions where the graph G is sub-
ject to modifications, specifically allowing edge additions or deletions. For the
case with one unknown edge addition, their optimum identifying code for the infi-
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nite hexagonal mesh is actually 2#-distinguishing. Perhaps the k-distinguishing
and k#-distinguishing concepts will be useful in other settings.

In this paper we consider the case where C = {N(v1), N(v2), . . . , N(vn)} is
the collection of open neighborhoods for a graph G.

3. RED:OLD% and DET:OLD% for Infinite Grids

Much work has been done on distinguishing parameters for infinite grid graphs.
See, for example, [33, 34]. We denote the infinite 3-regular hexagonal graph as
HEX, embedded as in Figure 5 in order to facilitate coordinatizing the vertex
set. We denote the 4-regular infinite square grid as shown in Figure 6, obtained
as the product Z�Z, as SQ, and the infinite 6-regular triangular graph as TRI.
Graph TRI is embedded as in Figure 7 so that for a vertex v = (i, j) the open
neighborhood is N((i, j)) = {(i, j+1), (i+1, j), (i+1, j−1), (i, j−1), (i−1, j), (i−
1, j + 1)}.

If L ⊆ V (HEX) is an LD-set, then sh(v, L) ≤ 1 + 1 + 1/2 + 1/2 = 3 and
LD%(HEX) ≥ 1/3; if C ⊆ V (HEX) is an IC-set, then sh(v, C) ≤ 1 + 1/2 +
1/2 + 1/2 = 5/2 and IC%(HEX) ≥ 2/5; and if S ⊆ V (HEX) is an OLD-set,
then shop(v, S) ≤ 1 + 1 + 1/2 = 2 and OLD%(HEX) ≥ 1/2.

Theorem 6. For the infinite hexagonal graph HEX,

(a) (Honkala and Laihonen [18]) LD%(HEX) = 1/3.

(b) (Cohen et al. [6] and Cukierman and Yu [7]) 5/12 ≤ IC%(HEX) ≤ 3/7,
and

(c) (Seo and Slater [30]) OLD%(HEX) = 1/2.

If L ⊆ V (SQ) is an LD-set, then sh(v, L) ≤ 1 + 1 + 1/2 + 1/2 + 1/2 = 7/2
and LD%(SQ) ≥ 2/7; if C ⊆ V (SQ) is an IC-set, then sh(v, C) ≤ 1+4(1/2) = 3
and IC%(SQ) ≥ 1/3; and if S ⊆ V (SQ) is an OLD-set, then shop(v, S) ≤
1 + 3(1/2) = 5/2 and OLD%(SQ) ≥ 2/5.

Theorem 7. For the infinite square graph SQ,

(a) (Slater [43, 44]) LD%(SQ) = 3/10,

(b) (Ben-Haim and Litsyn [1]) IC%(SQ) = 7/20, and

(c) (Seo and Slater [30]) OLD%(SQ) = 2/5.

If L ⊆ V (TRI) is an LD-set, then sh(v, L) ≤ 1 + 1 + 5(1/2) = 9/2 and
LD%(HEX) ≥ 2/9; if C ⊆ V (TRI) is an IC-set, then sh(v, C) ≤ 1+ 6(1/2) = 4
and IC%(TRI) ≥ 1/4; and if S ⊆ V (TRI) is an OLD-set, then shop(v, S) ≤
1 + 5(1/2) = 7/2 and OLD%(TRI) ≥ 2/7. In Seo and Slater [30] we showed
that 2/7 ≤ OLD%(TRI) ≤ 1/3. Honkala [17] improved this to show that
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OLD%(TRI) ≤ 6/19. The precise value is 4/13, as shown by Kincaid, Old-
ham, and Yu [22].

Theorem 8. For the infinite triangular graph TRI,
(a) (Honkala [16]) LD%(TRI) = 13/57,

(b) (Karpovsky, Charkrabarty and Levitin [21]) IC%(TRI) = 1/4, and

(c) (Kincaid, Oldham, and Yu [22]) OLD%(TRI) = 4/13.

As noted, we will consider RED:OLD-sets and DET:OLD-sets for HEX,
SQ, and TRI. By Theorems 4 and 5 each RED:OLD-set and DET:OLD-set of a
graph G must double open dominate G.

Observation 9. If a graph G is r-regular of order n, then DET :OLD(G) ≥
RED:OLD(G) ≥ γop×2(G) ≥ 2n/r. If a countably infinite graph G is regular of

degree r, then DET :OLD%(G) ≥ RED:OLD%(G) ≥ γop×2%(G) ≥ 2/r.

(a)

u

v

(b)

Figure 5. RED:OLD%(HEX) ≤ 2/3 and DET :OLD%(HEX) ≤ 6/7.

Theorem 10. RED:OLD%(HEX) = γop×2%(HEX) = 2/3.

Proof. By Observation 9, RED:OLD%(HEX) ≥ γop×2%(HEX) ≥ 2/3. As
indicated in Figure 5(a) by the darkened vertices, let S = {(i, j) ∈ V (HEX) :
i ≡ 1 or 2(mod 3))}. Each vertex v has |N(v) ∩ S| = 2. Let v ∈ V (HEX), and
let N(v) ∩ S = {w, x}. Note that no other vertex u is adjacent to both w and
x. That is, for any vertices v and u there is a vertex (w or x) that distinguishes
v from u. Likewise, there is a vertex that distinguishes u from v. Because S
2-distinguishes any u, v pair, by Theorem 4 we have RED:OLD%(HEX) ≤ 2/3.

Theorem 11. DET :OLD%(HEX) = 6/7.
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Proof. We can assume that HEX is labeled as in Figure 5(b) so that S is the
set of darkened vertices and adjacent vertices u = (0, 0) and v = (0, 1) are not in
S. First, consider a vertex u not in S. Without loss of generality, say u = (0, 0)
and N(u) ∩ S = {(−1, 0), (1, 0)}. If w is any vertex not adjacent to (−1, 0)
and not adjacent to (1, 0), then both (−1, 0) and (1, 0) distinguish u = (0, 0)
from w, so u and w are 2#-distinguished. Also, (−3, 0) and (−2, 1) distinguish
(−2, 0) from u, (−2,−1) and (0,−1) distinguish (−1,−1) from u, (2, 1) and (3, 0)
distinguish (2, 0) from u, and (0,−1) and (2,−1) distinguish (1,−1) from u. By
symmetry, if u is any vertex not in S and w is any other vertex, then u and
w are 2#-distinguished. Second, if u ∈ S and all three neighbors of u are in
S, N [u] ⊆ S, then the girth g(HEX) = 6 implies that no other vertex w is
adjacent to two vertices in N(u), and so u is 2#-distinguished from any vertex
w. Finally, consider a vertex in S adjacent to one not in S, say u = (1, 0)
with N(u) ∩ S = {(2, 0), (1,−1)}. Clearly (2,0) and (1,-1) will 2#-distinguish
u from any w not adjacent to (2, 0) and not adjacent to (1,−1). Any vertex w
in N((2, 0)) ∪ N((1,−1)) with w 6= (1, 0) has N [w] ⊆ S, and u = (1, 0) is 2#-
distinguished from w. Because S is tiled as in the upper-right corner of Figure
5(b) with 12/14 = 6/7 of the vertices, DET :OLD%(HEX) ≤ 6/7.

We will show that if S is any DET:OLD(HEX)-set with u /∈ S then the
six vertices at distance two from u, and all of the vertices at distance four
from u, must be in S. Thus, with each u /∈ S we can associate the six ver-
tices at distance two from u with the vertex u and conclude that S has at
least 6/7 of the vertices in V (HEX). Suppose u = (0, 0) /∈ S. By symmetry
we can assume N(u) = {(1, 0), (−1, 0), (0, 1)}. These vertices must be double
open-dominated by S, so for the set N2((0, 0)) of vertices at distance two from
(0,0) we have N2((0, 0)) = {(2, 0), (1,−1), (−2, 0), (−1,−1), (−1, 1), (1, 1)} ⊆ S.
To see that the set N4((0, 0)) of vertices at distance four from (0, 0) satisfies
N4((0, 0)) ⊆ S, consider v = (0, 1) and w = (1, 2). Vertices v and w must
be 2#-distinguished. But N(v) = {(0, 0), (−1, 1), (1, 1)} with (0, 0) /∈ S and
(1, 1) ∈ N(w). Only (−1, 1) distinguishes v from w and so S does not 2#-
distinguish v from w. Hence S must 2#-distinguish w from v. Specifically,
{(0, 2), (2, 2)} ⊆ S. The other cases are similar, and N4((0, 0)) ⊆ S, completing
the proof that DET :OLD%(HEX) ≥ 6/7.

Theorem 12. RED:OLD%(SQ) = γop×2%(SQ) = 1/2.

Proof. By Observation 9, RED:OLD%(SQ) ≥ γop×2%(SQ) ≥ 2/4 = 1/2. As in
Figure 6(a), let S = {(i, j) ∈ V (SQ) : j is even}. Each vertex v has |N(v)∩S| = 2,
say N(v)∩S = {w, x}. No other vertex dominates both w and x. Hence, for any
two vertices u and v, each of u and v has a vertex that distinguishes it from the
other. Thus, u and v are 2-distinguished, and we have RED:OLD%(SQ) ≤ 1/2.
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(a) (b)

Figure 6. RED:OLD%(SQ) ≤ 1/2 and DET :OLD%(SQ) ≤ 3/4.

Theorem 13. DET :OLD%(SQ) = 3/4.

Proof. As in Figure 6(b), let S = {(i, j) ∈ V (SQ) : j ≡ 1, 2 or 3(mod 4)}. If
j ≡ 2(mod 4), then N((i, j)) ⊆ S. Because no other vertex w is adjacent to more
than two vertices in N((i, j)), there are at least two vertices in N((i, j)) that
distinguish (i, j) from w, and so (i, j) and w are 2#-distinguished. If j ≡ 1 or 3
(mod 4)), then |N((i, j)) ∩ S| = 3. Clearly, if a vertex w is adjacent to at most
one vertex in N((i, j)) ∩ S, then there are at least two vertices in N((i, j)) ∩ S
which will distinguish (i, j) from w and (i, j) and w are 2#-distinguished. The
only vertices w=(h, k) with w adjacent to two vertices in N((i, j))∩S have k ≡ 2
(mod 4). As noted, such a vertex w and (i, j) are 2#-distinguished. Finally, if
(i, j) and (h, k) satisfy j ≡ 0(mod 4) and k ≡ 0(mod 4), then (i, j + 1) and
(i, j − 1) will 2#-distinguish (i, j) from (h, k). Hence, DET :OLD%(SQ) ≤ 3/4.

It remains to show that DET :OLD%(SQ) ≥ 3/4. Note that SQ is bipartite
with bipartition V1 = {(i, j) : i + j ≡ 0(mod 2)} and V2 = {(i, j) : i + j ≡ 1
(mod 2)}. Let S be a DET:OLD(SQ)-set with Si = S ∩ Vi for i = 1, 2. We show
that each Si contains at least 3/4 of the vertices in Vi. Here we use a discharging
argument starting with a weight of one only on each v ∈ S. Weights will be
discharged onto the vertices in V (SQ) − S so that each x ∈ V (SQ) − S has a
resulting weight of at least three, showing that S has at least 3/4 of the vertices
in V (SQ). If v ∈ Si, let j = 3 − i. We discharge the weights in Si onto vertices
in Vj − Sj . Let C(v) be the set of vertices that are in Vj − Sj and are as close
to v as possible, that is C(v) = {x ∈ Vj − Sj : dist(x, v) ≤ dist(y, v) for every
y ∈ Vj−Sj}. For each v ∈ Si we discharge a weight of 1/|C(v)| to each x ∈ C(v).

Consider a vertex x ∈ V (G)−S. Without loss of generality, assume x = (0, 0).
For u = (1, 0) and v = (2, 1) the only vertex in N(u) that can distinguish u from
v is (1,−1). Hence, we must 2#-distinguish v from u with (2, 2) and (3, 1), and
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so {(2, 2), (3, 1)} ⊆ S.

Symmetric cases show that we have A = {(2, 2), (3, 1), (1, 3), (−1, 3), (−2, 2),
(−3, 1), (−3,−1), (−2,−2), (−1,−3), (1,−3), (2,−2), (3,−1)}⊆S. Let R={(0, 2),
(1, 1), (2, 0), (1,−1), (0,−2), (−1,−1), (−2, 0), (−1, 1)}. If R ⊆ S, then each of
(1, 1), (1,−1), (−1,−1) and (−1, 1) discharges a weight of one to x, and each of
(0, 2), (2, 0), (0,−2) and (−2, 0) discharges at least 1/2 to x, so x receives a weight
of at least six.

Suppose one of (0, 2), (2, 0), (0,−2) and (−2, 0) is not in S.

Without loss of generality, assume (0,−2) /∈ S. Similar to showing that A ⊆
S, if (0,−2) /∈ S we have {(1, 1), (2, 0), (3,−1), (3,−3), (2,−4), (1,−5), (−1,−5),
(−2,−4), (−3,−3), (−3,−1), (−2, 0), (−1, 1)}⊆S. Now S must 2-dominate (0,−1)
so {(−1,−1), (1,−1)} ⊆ S. Each of (1, 1), (2, 0), (1,−1), (−1,−1), (−2, 0) and
(−1, 1) discharges at least 1/2 to x = (0, 0), so x receives a weight of at least three.
Suppose {(0, 2)(2, 0), (0,−2), (−2, 0)} ⊆ S and one of (1, 1), (1,−1), (−1,−1) and
(−1, 1) is not in S. Without loss of generality, assume (1,−1) /∈ S. As for (0, 0)
and A, we now also have (−1, 1), (4, 0), (4,−2), (3,−3), (2,−4) and (0,−4) in S.
If either (1, 1) or (−1,−1) /∈ S, then either (1, 0) or (0,−1) would not be double
dominated, a contradiction.

So we can assume that {(1, 1), (−1,−1)} ⊆ S. Now x = (0, 0) receives a
weight of exactly 1 from (−1, 1), exactly 1/2 from each of (1, 1), (2, 0), (0,−2)
and (−1,−1), and at least 1/2 from (0, 2) and (−2, 0), so at least four. In all
cases, (0, 0) has a resulting weight of at least three.

(a)

x

z

y

(b)

Figure 7. γop

x(2)%(TRI) ≤ 1/3 and RED:OLD%(TRI) ≤ 3/8.

We have RED:OLD%(HEX) = γop×2%(HEX) = 2/3 and RED:OLD%(SQ)
= γop×2%(SQ) = 1/2. We next show that RED:OLD%(TRI) > γop×2%(TRI). In
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Theorem 14 we consider how much of the open share of a vertex v comes from a
specific vertex x in an open dominating set S. Let shop(v, S(x)) = 1/|N(x)∩ S|.

Theorem 14. For the infinite triangular grid TRI which is regular of degree six,

we have γop
x(2)%(TRI) = 1/3 and RED:OLD%(TRI) = 3/8.

Proof. The darkened vertices of TRI in Figure 7(a) consists of all of the vertices
in every third column of TRI. That is, we have the set S = {(i, j) ∈ V (TRI) :
i ≡ 0(mod 3)}, and S double open dominates TRI, so γop×2%(TRI) ≤ 1/3. For
any double open dominating set D of a 6-regular graph, each vertex v ∈ D
open dominates its six neighbors. To double open dominate n vertices it thus
requires at least 2n/6 vertices of D, and it follows that γop×2%(TRI) ≥ 1/3. Hence,
γop×2%(TRI) = 1/3.

The darkened vertices of TRI in Figure 7(b) form a RED:OLD(TRI)-set S,
so RED:OLD%(TRI) ≤ 3/8. Next, we will show that if S is a RED:OLD(TRI)-
set, then the average share of v ∈ S is at most 8/3 and hence RED:OLD%(TRI)
≥ 3/8. (Note that in a RED:OLD(TRI)-set S individual vertices can have a
share larger than 8/3. For example, if {x = (0, 1), y = (0, 0), z = (0,−1)} ⊆ S as
identified in Figure 7(b), then shop((0, 0), S) = 1/2+1/2+1/4+1/2+1/2+1/4 =
5/2 and shop((0, 1), S) = shop((0,−1), S) = 1/2 + 1/2 + 1/2 + 1/2 + 1/4 + 1/2 =
11/4 > 8/3.)

Assume S is a RED:OLD(TRI)-set and v ∈ S. Each x in N(v) is double
open dominated, so shop(v, S(x)) ≤ 1/2, and so shop(v, S) ≤ 6(1/2) = 3. We
will show that shop(v, S) = 6(1/2) is not possible, nor can we have shop(v, S) =
5(1/2)+(1/3) = 23/6. Thus, if shop(v, S) > 8/3, then shop(v, S) = 5(1/2)+1/4 =
11/4 = 8/3 + 1/12 or shop(v, S) = 5(1/2) + 1/5 = 27/10 = 8/3 + 1/30. We can
“discharge” any excess over 8/3 (namely, 1/12 or 1/30) onto nearby vertices in
S so that no vertex has a resulting value greater than 8/3.

Without loss of generality, assume v = (0, 0) ∈ S and N(v) = {v1 =
(0, 1), v2 = (1, 0), v3 = (1,−1), v4 = (0,−1), v5 = (−1, 0), v6 = (−1, 1)}. If
two adjacent vertices in N(v) are in S, we can assume v1 = (0, 1) ∈ S and v2 =
(1, 0) ∈ S. Then v2 and v6 are 2-distinguished, so sh

op(v, S(v2))+shop(v, S(v6)) ≤
max{1/3 + 1/3, 1/4 + 1/2} = 3/4. Likewise, {v, v2} ⊆ N(v3) ∩ N(v1) and
shop(v, S(v1)) + shop(v, S(v3)) ≤ max{1/3 + 1/3, 1/4 + 1/2} = 3/4. Thus,
shop(v, S) ≤ 3/4 + 3/4 + 1/2 + 1/2 = 5/2 < 8/3. If two opposite vertices in
N(v) are in S, we can assume {v, v1, v4} ⊆ S. Then {v, v1} ⊆ N(v2) ∩ N(v6)
and S 2-distinguishes {v2, v6}, so shop(v, S(v2)) + shop(v, S(v6)) ≤ max{1/3 +
1/3, 1/4+ 1/2} = 3/4, and likewise, shop(v, S(v3)) + shop(v, S(v5)) ≤ max{1/3+
1/3, 1/4 + 1/2} = 3/4. Again shop(v, S) ≤ 5/2 < 8/3.

If neither of these two cases apply and |N(v) ∩ S| > 2, we can assume
N(v) ∩ S = {v1, v3, v5}. Then, sh

op(v, S) ≤ 3(1/2) + 3(1/3) = 5/2 < 8/3.

If shop(v, S) > 8/3, we can assume that N(v)∩S = {v1, v3}. Because {v2, v6}
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and {v2, v4} are 2-distinguished, either both |N(v4)∩S| ≥ 3 and |N(v6)∩S| ≥ 3
(and then shop(v, S) ≤ 8/3), or else |N(v2) ∩ S| ≥ 4.

In summary, if shop(v, S) > 8/3, we can assume N(v)∩S = {v1, v3}, |N(vi)∩
S| = 2 if i ∈ {1, 3, 4, 5, 6} and |N(v2) ∩ S| = 4 or 5. We consider two cases for
the discharging.

v 

v1 

v
2

v
3

v
4

v5 

v
6

(2,0) 

(2,-2) 

N(v2)   S = {v, v1, v3, (2,0)} 

(1,-2) 

(1,1) 

(2,-1) 

(0,0) 

(a)

v 

v1 

v2 

v3 v4 

v5 

v6 

(2,0) 

(2,-2) 

N(v2)   S = {v, v1, v3, (1,1)} 

(1,1) 

(2,-1) 

(1,-2) 

(b)

v 

v1 

v2 

v3 v4 

v5 

v6 

(2,-1) 

N(v2)   S = {v, v1, v3, (2,-1)} 

(0,2) 

(c)

Figure 8. |N(v2) ∩ S| = 4 and shop(v, S) = 11/4.

Case 1. Assume |N(v2) ∩ S| = 4 and shop(v, S) = 11/4. First, assume
N(v2) ∩ S = {v, v1, v3, (2, 0)}. In particular, (2,−1) /∈ S and (1, 1) /∈ S as in
Figure 8(a). Because shop(v, S(v4)) = 1/2, N(v4) ∩ S = {v, v3} and (1,−2) /∈ S
and then N(v3) ∩ S = {v, (2,−2)}. Because {v, v3, (2,−2)} ⊆ S, from before we
have shop(v3, S) ≤ 5/2. We discharge a value of 1/12 from v onto v3, so v has a
remaining value of 11/4 -1/12 = 8/3.

Second, assume N(v2)∩S = {v, v1, v3, (1, 1)} as in Figure 8(b). In particular,
(2, 0) /∈ S and (2,−1) /∈ S. Again, N(v4) ∩ S = {v, v3} and so (1,−2) /∈ S
and (2,−2) ∈ S. As above, we can discharge a value of 1/12 from v onto v3.
Symmetrically, if N(v2) ∩ S = {v, v1, v3, (2,−1)} as in Figure 8(c), then N(v6) ∩
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S = {v, v1} and (0, 2) ∈ S, shop(v1, S) ≤ 5/2, we discharge 1/12 from v onto v1.

Case 2. Assume |N(v2) ∩ S| = 5 and shop(v, S) = 27/10. First, assume
N(v2) ∩ S = {v, v1, v3, (2, 0), (2,−1)} as in Figure 9(a). Then v2 /∈ S, (1, 1) /∈ S,
v6 /∈ S, and shop(v, S(v6)) = 1/2 implies that (−1, 2) /∈ S and so N(v1) ∩ S =
{v, (0, 2)}.

Because shop(v1, S(v2)) = 1/5 and shop(v1, S((1, 1)))+shop(v1, S((−1, 2))) ≤
3/4, we have shop(v1, S) ≤ 1/5 + 3/4 + 3(1/2) = 49/20 < 5/2. We discharge a
value of 1/30 from v to v1.

Second, assume N(v2) ∩ S = {v, v1, v3, (1, 1), (2, 0)} as in Figure 9(b). Then
(2,−1) /∈ S, v2 /∈ S, v4 /∈ S, and shop(v, S(v4)) = 1/2 implies that (1,−2) /∈ S
and so N(v3) ∩ S = {v, (2,−2)}. Because shop(v3, S(v2)) = 1/5 and shop(v3,
S((2,−1)))+ shop(v3, S((1,−2))) ≤ 3/4, we have shop(v3, S) ≤ 49/20 < 5/2. We
discharge a value of 1/30 from v to v3.

Third, assume N(v2) ∩ S = {v, v1, v3, (1, 1), (2,−1)} as in Figures 9(c) and
9(d). Then (2, 0) /∈ S, v2 /∈ S, and shop(v, S(v1)) = 1/2 implies that (0, 2) /∈ S.
Assume (1, 2) ∈ S (Figure 9(c)). Now shop(v1, S) ≤ 1/3 + 1/5 + 4(1/2) = 38/15.
We discharge a value of 1/30 from v to v1. Assuming (1, 2) /∈ S (Figure 9(d)),
we have N((1, 1)) ∩ S = {v1, (2, 1)}. Note that shop((1, 1), S(v2)) = 1/5 and
shop((1, 1), S((2, 0)))+ shop((1, 1), S((1, 2))) ≤ 3/4, so shop((1, 1), S) ≤ 49/20.
We discharge a value of 1/30 from v to (1,1). Note that this is the only time we
discharge from v to a vertex not in {v1, v3}.

DISCHARGING SUMMARY. We conclude by showing that any vertex w
for which some vertex v discharges a value onto w will have a resulting value
of at most 8/3. First, suppose w is a vertex receiving a discharge value from a
nonadjacent vertex v. We can assume w = (1, 1) and v = (0, 0) as above and
we discharge 1/30 from v to (1,1). Then shop(v1, S) ≤ 5(1/2) + 1/5 = 27/10 =
8/3+1/30, and (1,1) receives a value of at most 1/30 from v1 = (0, 1) for a total of
at most 1/30 +1/30 = 1/15 from v and v1. Then N((1, 1))∩S = {v1, (2, 1)}. The
maximum remaining value (1,1) can receive is max{1/12, 1/30 + 1/30} = 1/12.
Hence the maximum resulting value on (1,1) is 49/20 + 1/15 + 1/12 = 156/60 <
8/3. Second, assume w receives any discharge only from an adjacent vertex. If
shop(w, S) ≤ 5/2, then the resulting value at w is at most 5/2+1/12+1/12 = 8/3.
The final case is from the third part of Case 2 (with (1,2) ∈ S and shop(v, S) ≤
38/15) and with w = v1. In this case we are discharging 1/30 from v to v1 (and
are assuming the nonadjacent vertex v3 is not discharging to v1). If v1 receives
any discharge from (1,1), we have shop((1, 1), S) ≤ 5(1/2) + 1/5 = 8/3 + 1/30.
Hence the resulting total at v1 is at most 38/15+1/30+1/30 = 39/15 < 8/3.

To date our best construction shows that DET :OLD%(TRI) ≤ 5/9.
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Figure 9. |N(v2) ∩ S| = 5 and shop(v, S) = 27/10.

4. Summary

For various domination-related parameters involving locating devices that func-
tion as places from which detectors can determine information about the location
of an “intruder”, several types of possible detector faults are identified in Slater
[46]. Two of these are considered here, namely RED and DET . Another in-
volves the notion of a “liar”. The idea of a liar’s fault coincides, for example, with
DET for parameters OLD and IC. That is, DET :OLD(G) ≡ LR:OLD(G) and
DET :IC(G) ≡ LR:IC(G). However, for the basic domination parameter γ they
are different.

For liar’s domination, as introduced in Slater [45] and Roden and Slater
[27, 28], a detector at vertex v can uniquely identify any intruder vertex in N [v],
but with a liar’s fault, given that there is an intruder at x ∈ N [v], the detector
at v can report any y ∈ N [v] as the intruder location. See [12, 25, 26, 28, 29].
Interestingly, as it relates to Theorem 4 and Theorem 5, we have the following
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characterization of liar’s dominating sets.

Theorem A (Slater [45]). Vertex set L ⊆ V (G) is a liar’s dominating set if and

only if

(1) L double dominates every v ∈ V (G) and

(2) for every pair u,v of distinct vertices we have |(N [u] ∪N [v]) ∩ L| ≥ 3.

Theorem B (Slater [45]). For every connected graph G of order n ≥ 3 we have

γ×2(G) ≤ LR:γ(G), and if G has minimum degree δ(G) ≥ 2, then γ×2(G) ≤
LR:γ(G) ≤ γ×3(G).

From Theorem A we see that a liar’s dominating set must double dominate
and, for each pair u and v, there must be three detectors that distinguish u and
v. In particular, from Theorem 5 we see that DET :γ(G) ≤ LR:γ(G).

A fourth type of fault is the basic error correcting code problem allowing
arbitrary transmission errors. A detector might be able to detect the intruder
location, but there can be an error in any one detector’s transmission to command
point P , including the possibility of a false alarm. ER will be used to indicate
this type of possible fault. Again using similar notation, we have theorems like
the following, as in Slater [46].

Theorem C. γ(G)≤ RED:γ(G) = DET :γ(G) ≤ LR:γ(G) ≤ ER:γ(G).

Theorem D. LOC(G) ≤ RED:LOC(G) = DET :LOC(G) ≤ LR:LOC(G)
=ER:LOC(G).

Theorem E. OLD(G) ≤ RED:OLD(G) ≤ DET :OLD(G) = LR:OLD(G)
≤ ER:OLD(G).

Various related problems are under study. In particular, Sewell and Slater
[38] have RED:IC(G) and DET :IC(G) and also RED:LD(G) and DET :LD(G)
under study. (See Sewell [37].)

The specific LR:LD parameter appears to be interesting. In this case a
detector at vertex v observing that there is an intruder x in N [v] might report
any of the three possibilities that no intruder is in N [v], that x = v, or that
x ∈ N(v).

There are other graphs that can be considered. In [34], we have consid-
ered domination related parameters and distinguishing sets for different classes
of the infinite and finite tumbling block graphs. Investigating the redundant dis-
tinguishing and detection distinguishing open-locating-dominating sets on these
graphs will also be interesting.
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