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Abstract

The direct product of graphs G = (V (G), E(G)) and H = (V (H), E(H))
is the graph, denoted as G×H, with vertex set V (G×H) = V (G)×V (H),
where vertices (x1, y1) and (x2, y2) are adjacent in G × H if x1x2 ∈ E(G)
and y1y2 ∈ E(H). Let n be odd and m even. We prove that every maximum
independent set in Pn×G, respectively Cm×G, is of the form (A×C)∪(B×
D), where C and D are nonadjacent in G, and A∪B is the bipartition of Pn

respectively Cm. We also give a characterization of maximum independent
subsets of Pn × G for every even n and discuss the structure of maximum
independent sets in T ×G where T is a tree.
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1. Introduction

In this paper we study the structure of maximum independent sets in the direct
product of an arbitrary graph with a bipartite graph. In particular the structure
of G× T , where T is a tree, is addressed.

Several partial results about the size and structure of maximum independent
sets in direct products of graphs are known. In [21] the author proved that for
any vertex-transitive graphs G and H we have

(1) α(G×H) = max{α(G)|V (H)|, α(H)|V (G)|}

thereby answering a question posed in [19]. If I is an independent set in G, then
I × V (H) is an independent set in G×H (similarly V (G)× J is an independent
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set in G × H provided that J is independent in H). These independent sets
in the product are obtained from independent sets of factors, and we call such
independent sets canonical. The lower bound in (1) is easy to prove since it is
achieved by a canonical independent set. According to [21], the product G×H is
called MIS-normal (maximum-independent-set normal) if all maximum indepen-
dent sets in G×H are canonical, and in the same article the author characterizes
MIS-normal products of vertex transitive graphs.

The structure of maximum independent sets is also studied in [22]. Here
the author proves that for a vertex-transitive graph G, such that G2 is MIS-
normal, any power Gn (n-th power of G with respect to the direct product) is
also MIS-normal.

In [5] it is proved that any power of a complete graph is MIS-normal. The
same result is proved in [2] where the authors also prove a theorem on independent
sets whose size is close to maximum. To be precise, they prove that for every
r ≥ 3, there is a constant M = M(r) such that for every ǫ > 0 we have: if J
is an independent set in G = Kn

r such that |J |/|V (G)| = 1/r − ǫ, then there
is a canonical independent set I in G such that |J△I|/|V (G)| < Mǫ. Roughly
speaking this means that an independent set whose size is close to α(Kn

r ) is close
to a canonical independent set.

In [14] the authors study the relation between projectivity and the structure
of maximum independent sets in powers of vertex transitive graphs, and they give
examples of powers of such graphs that are projective yet they have non-canonical
maximum independent sets.

Many other results on independence number are given in [9, 10] where the
authors determine the independence number when both factors are either a path
or a cycle, and in [6, 20] where products of some special families of vertex tran-
sitive graphs are considered and their independence and chromatic numbers are
determined. The independence number in direct products of arbitrary graphs is
studied in [18] (see also [8]) where the author proves that for any graphs G and
H we have

α(G×H) ≤ α(G)|V (H)|+ α(H)|V (G)| − α(G)α(H) ,

and where also a generalization of the independence number and its relation
to the Hedetniemi’s conjecture is considered. We also mention an incorrect re-
sult given in [16, 17], where the authors erroneously claim that α(G × Pn) =
max

{

nα(G),
⌈

n
2

⌉

|V (G)|
}

.
We also mention the abundance of results on the independence number of

Cartesian products of graphs [1, 4, 7, 11, 15], as well as the results on the strong
product of graphs that are given in [3, 12, 13].

In this paper we characterize maximum independent sets in Pn × G for all
n, and in Cn × G for even n. This is a generalization of results given in [9, 10]



Maximum Independent Sets in Direct Products 677

where the authors establish the independence number when both factors are
either a path or a cycle. We prove that every product of a path or an even
cycle with an arbitrary graph has a maximum independent set which is a union
of two rectangles, more precisely, a set of the form I = (A × C) ∪ (B × D). It
is also shown that Pn × G admits other maximum independent sets when n is
even. Examples of such sets are given and precise characterization of maximum
independent sets in Pn ×G for even n is obtained (see Theorem 5). We also give
a sufficient condition for a tree T , so that T ×G has a maximum independent set
of the form I = (A× C) ∪ (B ×D) (see Theorem 4).

2. The Structure of Maximum Independent Sets

Let G and H be graphs and G ×H their direct product. For any x ∈ V (G) or
y ∈ V (H) we define the x-layer Hx and the y-layer Gy as follows

Hx = {(x, h) |h ∈ V (H)} and Gy = {(g, y) | g ∈ V (G)}.

We denote by
pG : V (G)× V (H) → V (G)

the projection of V (G × H) to V (G). The projection is given by pG(x, y) = x.
For a set I ⊆ V (G×H) and vertices x ∈ V (G), y ∈ V (H) we use

Ix = pH(I ∩Hx) and Iy = pG(I ∩Gy).

For X,Y ⊆ V (G) we denote by [X,Y ] the set of edges with one endvertex in
X and the other in Y . We write X ≪ Y if there is a matching in [X,Y ] that
saturates X, and X ≡ Y if there is a perfect matching in [X,Y ] (equivalently,
a matching that saturates X and Y ). For any x ∈ V (G) we define the set
N(x) = {u ∈ V (G) |xu ∈ E(G)} and for X ⊆ V (G) we use N(X) =

⋃

x∈X N(x).
For a set U ⊆ V (G), we say that U is expansive if for every X ⊆ U we have
|N(X) ∩ U | ≥ |X|. Finally we say that X is nonadjacent to Y if N(X) ∩ Y = ∅.
Note that nonadjacent subsets can have nonempty intersection.

The following observation follows directly from the definition of direct produ-
cts of graphs.

Observation 1. Let G and H be graphs and I an independent set in G×H. If

xy ∈ E(H), then Ix is nonadjacent to Iy.

Theorem 2. Let n be an even number and let A,B be the bipartition of V (Cn).
Every maximum independent set in Cn ×G is equal to

I = (A× C) ∪ (B ×D)

for some nonadjacent C,D ⊆ V (G).
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Proof. Let V (Cn) = {1, 2, . . . , n} and set Gi = {i}×V (G). Let C,D ⊆ V (G) be
nonadjacent sets such that |C|+|D| is maximum. Since C and D are nonadjacent
we find that (A× C) ∪ (B ×D) is an independent set in Cn ×G.

For an independent set J in Cn ×G denote

Ji = pG(J ∩Gi) .

Clearly, any two consecutive Ji and Ji+1 are nonadjacent in G and therefore
|Ji|+ |Ji+1| ≤ |C|+ |D|. Since

|J | = (|J1|+ |J2|) + (|J3|+ |J4|) + · · ·+ (|Jn−1|+ |Jn|)

it follows that
|J | ≤ |(A× C) ∪ (B ×D)| .

This proves that (A × C) ∪ (B ×D) is a maximum independent set in Cn × G.
Additionally, if J is a maximum independent set in Cn×G, we have |Ji|+|Ji+1| =
|C|+ |D| for i = 1, 2, . . . , n. To prove the theorem assume that J is a maximum
independent set. We claim that J1 = J3. Since |J1| + |J2| = |C| + |D| we find
that J3 ⊆ J1. Indeed, if J3 \ J1 6= ∅, then J1 ∪ J3 and J2 are nonadjacent
and |J1 ∪ J3| + |J2| > |C| + |D|, a contradiction. Additionally, it follows from
|J2| + |J3| = |C| + |D| that J1 ⊆ J3, and hence J1 = J3. It follows inductively
that Ji = Jk for j ≡ k (mod 2).

Theorem 3. Let Pn be an odd path and A,B the bipartition of V (Pn). Every

maximum independent set in Pn ×G is equal to

I = (A× C) ∪ (B ×D)

for some nonadjacent C,D ⊆ V (G).

Proof. Let V (Pn) = {1, 2, . . . , n}, denote Gi = {i} × V (G), and assume that
|A| > |B|. Let J be a maximum independent set in Pn ×G and Ji = pG(J ∩Gi).
Let i0 ∈ {1, 2, . . . , n− 1} be such that

|Ji0 |+ |Ji0+1| ≥ |Ji|+ |Ji+1|

for all i ∈ {1, 2, . . . , n − 1} and assume |Ji0 | ≥ |Ji0+1|. We claim that Ji = Jℓ
for i − ℓ ≡ 0(mod 2). Let k ∈ {2, 4, . . . , n − 1} be such that |Jk| ≥ |Ji| for all
i ∈ {2, 4, . . . , n− 1}. Since |Ji0 |+ |Ji0+1| is maximum we find that

|Jk|+
∑n

i=1
|Ji| =

∑k/2

i=1
(|J2i−1|+ |J2i|) +

∑(n−1)/2

i=k/2
(|J2i|+ |J2i+1|)

≤
n+ 1

2
|Ji0 |+

n− 1

2
|Ji0+1|+ |Ji0+1| .

(2)
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On the other hand (A× Ji0) ∪ (B × Ji0+1) is an independent set of size

n+ 1

2
|Ji0 |+

n− 1

2
|Ji0+1|

and since J is a maximum independent set we find that

(3)
∑n

i=1
|Ji| ≥

n+ 1

2
|Ji0 |+

n− 1

2
|Ji0+1| .

Since |Jk| is maximum for even k, we see that |Jk| ≥ |Ji0+1| (for otherwise we
would have |Ji| < |Ji0+1| ≤ |Ji0 | for all even indices i, a contradiction), and
therefore it follows from (2) and (3) that

|Jk|+
∑n

i=1
|Ji| =

n+ 1

2
|Ji0 |+

n− 1

2
|Ji0+1|+ |Ji0+1| .

It follows that each term in both sums,

(4)
∑k/2

i=1
(|J2i−1|+ |J2i|) and

∑(n−1)/2

i=k/2
(|J2i|+ |J2i+1|),

is equal to |Ji0 |+ |Ji0+1|. We claim that Jk−1 = Jk+1. If not, then Jk−1 * Jk+1

or Jk+1 * Jk−1. If Jk−1 * Jk+1 we can construct an independent set

I =
⋃k

i=1
({i} × Ji) ∪

[

((A× (Jk−1 ∪ Jk+1)) ∪ (B × Jk)) ∩
⋃n

i=k+1
Gi

]

.

Since |Jk−1 ∪ Jk+1|+ |Jk| > |Jk+1|+ |Jk| = |Ji0 |+ |Ji0+1| we see that |I| > |J |, a
contradiction. Hence Jk−1 ⊆ Jk+1, and analogously Jk+1 ⊆ Jk−1. Thus we have
Jk−1 = Jk+1. Now assume there is an odd ℓ > k such that Jℓ 6= Jℓ+2, and assume
ℓ is the smallest such index. If Jℓ * Jℓ+2 we can construct an independent set
analogous to the one constructed in the case Jk−1 * Jk+1 as follows:

I =
⋃ℓ

i=1
({i} × Ji) ∪

[

((A× (Jℓ ∪ Jℓ+2)) ∪ (B × Jℓ+1)) ∩
⋃n

i=ℓ+1
Gi

]

.

So assume that Jℓ ⊆ Jℓ+2 and Jℓ+2 * Jℓ. In this case we construct an independent
set

I =
⋃n

i=ℓ+1
({i} × Ji) ∪

[

((A× Jℓ+2) ∪ (B × Jℓ+1)) ∩
⋃ℓ

i=1
Gi

]

.

|Jℓ+1| + |Jℓ+2| is a term of the second sum in (4), hence it is equal to |Ji0 | +
|Ji0+1| and since |Jk−1| = |Jk+1| = · · · = |Jℓ| < |Jℓ+2|, we see that |I| > |J |,
a contradiction. An analogous proof works if there is an odd ℓ < k such that
Jℓ−2 6= Jℓ and we assume that ℓ is the largest such index. If Jℓ * Jℓ−2, we can
construct an independent set

I =
⋃n

i=ℓ
({i} × Ji) ∪

[

((A× (Jℓ−2 ∪ Jℓ)) ∪ (B × Jℓ−1)) ∩
⋃ℓ−1

i=1
Gi

]

.
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Since |Jℓ ∪ Jℓ−2|+ |Jℓ−1| > |Jℓ−2|+ |Jℓ−1| = |Ji0 |+ |Ji0+1|, we see that |I| > |J |,
a contradiction. If Jℓ ⊆ Jℓ−2 and Jℓ−2 * Jℓ, we construct an independent set

I =
⋃ℓ−1

i=1
({i} × Ji) ∪

[

((A× Jℓ−2) ∪ (B × Jℓ−1)) ∩
⋃n

i=ℓ
Gi

]

.

|Jℓ−2|+ |Jℓ−1| is a term of the first sum in (4), hence it is equal to |Ji0 |+ |Ji0+1|
and since |Jk−1| = · · · = |Jℓ| < |Jℓ−2|, we see that |I| > |J |, also a contradiction.
Therefore Jℓ+2 = Jℓ for all odd indices ℓ. If Jℓ 6= Jℓ+2 for an even ℓ, then

I = (A× J1) ∪

(

B ×
⋃(n−1)/2

i=1
J2i

)

is an independent set strictly larger than J , a contradiction. So we proved that
Jℓ = J1 for all odd ℓ, and Jℓ = J2 for all even ℓ, which proves the theorem.

Theorem 4. Let T be a tree with bipartition A ∪ B, where |A| ≥ |B|. Suppose

that for every vertex x ∈ B there is an edge cover Mx of T such that x is covered

at most twice and all the other vertices once. Then for every graph G there are

nonadjacent sets C,D ⊆ V (G), such that

I = (A× C) ∪ (B ×D)

is a maximum independent set in T ×G.

Proof. Suppose that 2α′(T ) = |V (T )| (where α′(T ) is the matching number
of T ), and let M be a perfect matching in T . Additionally, let C and D be
nonadjacent subsets of G, such that |C| + |D| is maximum. We claim that I =
(A×C) ∪ (B ×D) is a maximum independent set in T ×G. To prove this let J
be any independent set in T ×G and note that

|J | =
∑

x∈V (T )
|Jx| =

∑

uv∈M
(|Ju|+ |Jv|) ≤

∑

uv∈M
|C|+ |D| = |I| .

Assume now that 2α′(T ) = |V (T )| − 1 and let A ∪ B be the bipartition of
T with |A| > |B|. By assumption, for every vertex x ∈ B there is an edge cover
Mx of T such that every vertex of T is covered exactly once by Mx, except the
vertex x, which is covered twice. Let J be a maximum independent set in T ×G
and let x0 ∈ B be such that |Jx0

| ≥ |Jx| for every x ∈ B. Let uv be an edge of T
such that |Ju| + |Jv| is maximum. Assume that |Ju| ≥ |Jv| and set C = Ju and
D = Jv. We claim that |Jx0

| ≥ |D|. If not then |Jx| ≤ |Jx0
| < |D| ≤ |C| for every

x ∈ B. This is a contradiction since either u ∈ B or v ∈ B. Then we have

|J |+ |Jx0
| =

∑

ab∈Mx0

(|Ja|+ |Jb|)

≤
∑

ab∈Mx0

(|C|+ |D|) =
1

2
(|A|+ |B|+ 1) (|C|+ |D|) ,
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and since |A| = |B|+ 1 we find that

|J |+ |Jx0
| ≤ |(A× C) ∪ (B ×D)|+ |D| .

Finally, since |Jx0
| ≥ D it follows that

|J | ≤ |(A× C) ∪ (B ×D)| .

Since (A× C) ∪ (B ×D) is an independent set we have also

|J | ≥ |(A× C) ∪ (B ×D)| ,

and hence the equality holds, which proves the theorem.

P Q R

Figure 1. The graph G.

We have shown so far that every product of an odd path (or an even cycle)
with an arbitrary graph admits only maximum independent sets of the form (A×
C)∪ (B ×D). Moreover, every product of an even path with an arbitrary graph
admits maximum independent sets of this form (see Corollary 6 and Theorem
5), but not all maximum independent sets are neccesarily such. We next give
an example of a product of a tree T with a graph G, such that no maximum
independent set in T ×G is of the form (A× C) ∪ (B ×D). Consider the graph
G shown in Figure 1, and the product T × G and the set I shown in Figure 2.
Clearly, the set I is an independent set in T ×G and its size is 43. On the other
hand for any independent set J = (A×C) ∪ (B ×D) we have |J | < 43 (in order
to maximize J we have C = Q ∪ R and D = Q, or alternatively C = V (G) and
D = ∅).

To characterize maximum independent sets in products Pn × G where n is
even we denote V (Pn) = {1, 2, . . . , n} and we let Gk = {k} × V (G). For a set
I ⊆ V (Pn ×G) and k ≤ n we define

Ik = pG(I ∩Gk) .

Maximum independent sets in Pn × G can be characterized by subset relations
(as given in (i) and (ii) of Theorem 5) and by matchings between certain parts
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Figure 2. The product T ×G. The independent set I is marked with gray color.

of consecutive sets Ik (as given in (iii) and (iv) of Theorem 5). The main idea of
the proof is that I is a maximum independent set in Pn ×G if and only if Ik and
Ik+1 are nonadjacent and |Ik| + |Ik+1| is maximum for all odd k. This follows
from the fact that I is an independent set in Pn × G if and only if Ik and Ik+1

are nonadjacent for all k and

|I| =
∑n/2

l=1
(|I2l−1|+ |I2l|).

It turns out that |Ik|+ |Ik+1| is maximum for all odd k if and only if (i) through
(vi) of Theorem 5 is true. Here conditions (i) through (iv) guarantee that |Ik|+
|Ik+1| = |Ik+2| + |Ik+3| for all odd k, and the additional conditions (v) and (vi)
guarantee that |I1|+ |I2| is maximum.

Theorem 5. Let n be an even number and I an independent set in Pn×G. Then

I is a maximum independent set in Pn ×G if and only if the following is true:

(i) Ik+2 ⊆ Ik for every odd k.

(ii) Ik ⊆ Ik+2 for every even k.

(iii) Ik+3 \ (Ik ∪ Ik+1) ≡ (Ik \ Ik+2) ∩ Ik+1 for every odd k.

(iv) Ik \ (Ik+2 ∪ Ik+3) ≡ (Ik+3 \ Ik+1) ∩ Ik+2 for every odd k.

(v) (V (G) \ (I1 ∪ I4)) ∪ (I4 \ (I1 ∪ I2)) ≪ (I2 ∩ I3) ∪ ((I1 \ I3) ∩ I2).

(vi) The sets I2 \ I1 and I3 \ I4, and (I1 \ I3) ∩ (I4 \ I2) are expansive.

Proof. For every odd k we denote

Ak = (Ik \ Ik+2) ∩ (Ik+3 \ Ik+1),
Bk = Ik \ (Ik+2 ∪ Ik+3),
Ck = Ik+2 \ Ik+3,
Dk = (Ik+3 \ Ik+1) ∩ Ik+2,
Ek = Ik+1 ∩ Ik+2,
Fk = (Ik \ Ik+2) ∩ Ik+1,
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Gk = Ik+1 \ Ik,
Hk = Ik+3 \ (Ik ∪ Ik+1),
Rk = V (G) \ (Ik ∪ Ik+3).

A B C D E F G H R

I1

I2

I3

I4I4

Pn

G

Figure 3. The sets I1, . . . , I4.

Assume that I is a maximum independent set in G× Pn. We have to prove
(i)–(vi).

Proof of (i) and (ii). Since I is a maximum independent set, |Ik| + |Ik+1|
is maximum for every odd k. If Ik+2 * Ik for an odd k, then subsets Ik ∪ Ik+2

and Ik+1 are nonadjacent and |Ik ∪ Ik+2|+ |Ik+1| > |Ik|+ |Ik+1|, a contradiction.
Similarly, if there is an even k, such that Ik * Ik+2, then Ik+1 and Ik ∪ Ik+2 are
nonadjacent and |Ik+1|+ |Ik ∪ Ik+2| > |Ik+1|+ |Ik+2|, a contradiction.

Proof of (iii) and (iv). We claim that Hk ≡ Fk for every odd k. Since Ik and
Ik+1 are nonadjacent for all k, we see that N(Fk) ⊆ Hk ∪Rk.

Let X ⊆ Fk and note that Fk ∩ Ik+2 = ∅ and hence X ∩ Ik+2 = ∅. If
|N(X) ∩Hk| < |X|, then |N(X) ∩ Ik+3| < |X|, because N(X) ∩ Ik+3 ⊆ Hk.
Therefore |Ik+2 ∪X|+ |Ik+3 \N(X)| > |Ik+2|+ |Ik+3|, which is a contradiction.

LetX ⊆ Hk. If |N(X) ∩ Fk| < |X|, then |Ik∪Gk∪X|+|Ik+1 \ (Gk ∪N(X))| >
|Ik|+ |Ik+1|, which is also a contradiction, since these two sets are nonadjacent.
This proves that there is a perfect matching between Hk and Fk. The proof of
(iv) is similar.

Proof of (v). Denote R = V (G) \ (I1 ∪ I4).
We have to prove that for all X ⊆ R ∪H1, |N(X) ∩ (E1 ∪ F1)| ≥ |X|. But

if for some X ⊆ R ∪ H1, |N(X) ∩ (E1 ∪ F1)| < |X|, then I1 ∪ X ∪ G1 and
I2 \ (G1 ∪N(X)) are nonadjacent sets and |I1 ∪X ∪G1|+ |I2 \ (G1 ∪N(X))| >
|I1|+ |I2|, a contradiction.

Proof of (vi). Now we will prove that G1 is expansive. If not, |N(X) ∩G1| <
|X| for some X ⊂ G1. But then I1 ∪ X and I2 \ N(X) are nonadjacent and
|I1 ∪X|+ |I2 \N(X)| > |I1|+ |I2|, a contradiction.

Similarly, if C1 is not expansive, then |N(X) ∩ C1| < |X| for some X ⊂
C1, and hence we have |I3 \N(X)| + |I4 ∪X| > |I3| + |I4| for nonadjacent sets
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I3 \N(X) and I4 ∪X.
And at last A1 is expansive. Note that A1 is adjacent to H1 and |H1| = |F1|.

If A1 is not expansive, then |N(X) ∩A1| < |X| for some X ⊂ A1 and we also
have a contradiction, because |I3 ∪X ∪ F1|+ |I4 \ (N(X) ∪H1)| > |I3|+ |I4| for
nonadjacent sets I3 ∪X ∪ F1 and I4 \ (N(X) ∪H1).

Assume now that (i) through (vi) is true. First we claim that

Ak ∪Bk ∪ Fk = Ik \ Ik+2.

To see this note that Ik \ (Ik+2 ∪ Ik+3) = (Ik \ Ik+2) ∩ (Ik \ Ik+3) and therefore
the left side of the above equality is

(Ik\Ik+2)∩[(Ik+3\Ik+1)∪(Ik\Ik+3)∪Ik+1] = (Ik\Ik+2)∩(Ik∪Ik+1∪Ik+3) = Ik\Ik+2

which proves the claim. Similarly we see that

Ak ∪Hk ∪Dk = Ik+3 \ Ik+1.

It follows from (iii) and (iv) that

|Ik+3 \ (Ik ∪ Ik+1)| = |(Ik \ Ik+2) ∩ Ik+1|

and
|Ik \ (Ik+2 ∪ Ik+3)| = |(Ik+3 \ Ik+1) ∩ Ik+2|

and hence
|Ik \ Ik+2| = |Ik+3 \ Ik+1| .

By (i) and (ii) we have

|Ik| − |Ik+2| = |Ik \ Ik+2| = |Ik+3 \ Ik+1| = |Ik+3| − |Ik+1|

and therefore |Ik|+ |Ik+1| = |Ik+2|+ |Ik+3| for every odd k. To prove that I is a
maximum independent set in G×Pn we have to prove that |I1|+ |I2| is maximum.
That is, for any pair of nonadjacent subsets J1 and J2 in G we have

|I1|+ |I2| ≥ |J1|+ |J2|.

In Figure 3 the sets I1, I2, I3 and I4 are shown. Note that the picture is as general
as possible because I3 ⊆ I1 and I2 ⊆ I4.

Let R = V (G) \ (I1 ∪ I4). It follows from (iii) and (iv) that Hk ≡ Fk and
Bk ≡ Dk for every odd k. From (vi) we have G1, C1, A1 are expansive, and (v)
implies that R ∪ H1 ≪ E1 ∪ F1. Assume that J1 and J2 are nonadjacent. We
claim that

|J2 \ I2| ≤ |I1 \ J1| and |J1 \ I1| ≤ |I2 \ J2| .
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Since A1 is expansive we have |(J2 \ I2) ∩ A1| = |J2 ∩A1| ≤ |N(J2 ∩A1) ∩A1|.
Since J1 and J2 are nonadjacent, we find that (N(J2 ∩A1)∩A1)∩ J1 = ∅ and so
N(J2 ∩ A1) ∩ A1 ⊆ (I1 \ J1) ∩ A1. So we have |(J2 \ I2) ∩A1| ≤ |(I1 \ J1) ∩A1|.
Similarly we find that |(J2 \ I2)∩C1| ≤ |(I1 \ J1)∩C1|. Since R∪H1 ≪ E1 ∪F1

we have |(J2 \ I2) ∩ (R ∪ H1)| ≤ |(I1 \ J1) ∩ (E1 ∪ F1)|. From B1 ≡ D1 follows
|(J2 \ I2)∩B1| ≤ |(I1 \J1)∩D1| and |(J2 \ I2)∩D1| ≤ |(I1 \J1)∩B1|. Combining
all inequalities we get |J2 \ I2| ≤ |I1 \ J1|. The proof of |J1 \ I1| ≤ |I2 \ J2| is
analogous. To prove that |I1|+ |I2| ≥ |J1|+ |J2| we write |Jk \Ik| = |Jk|−|Jk∩Ik|
and |Ik \Jk| = |Ik|− |Jk ∩ Ik| for k = 1, 2. A straightforward calculation gives the
desired inequality. Since for any independent set J , Jk and Jk+1 are nonadjacent
we have |Jk| + |Jk+1| ≤ |I1| + |I2| = |Ik| + |Ik+1| for every odd k. This proves
|J | ≤ |I|.

A B C D E

Figure 4. A graph G such that P8 × G has a maximum independent set which is not a
union of two rectangles.

We give an example of a graphG, such that P8×G has maximum independent
set which is not a union of two rectangles. The graph G is shown in Figure 4 and
the maximum independent set in P8×G is shown in Figure 5. It is straightforward
to check that (i)–(vi) of Theorem 5 holds.

Corollary 6. For every even n and every graph G there is a maximum indepen-

dent set I in Pn ×G such that

I = (A× C) ∪ (B ×D)

for some nonadjacent C,D ⊆ V (G).
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A B C D E

P8

G

Figure 5. A maximum independent set in P8 ×G.

Proof. The argument is similar to the argument in the above proof. If I is a
maximum independent set in Pn × G, then Ik and Ik+1 are nonadjacent and
|Ik|+ |Ik+1| is maximum for every odd k. The converse is also true. Therefore if
we choose Iℓ = C for every odd ℓ and Iℓ = D for every even ℓ, and C and D are
maximum nonadjacent, we find that I has the desired structure as claimed.
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