MAXIMUM INDEPENDENT SETS IN DIRECT PRODUCTS OF CYCLES OR TREES WITH ARBITRARY GRAPHS

Tjaša Paj and Simon Špacapan
University of Maribor, FME
Smetanova 17
2000 Maribor, Slovenia
e-mail: tjasa.paj@um.si
simon.spacapan@um.si

Abstract

The direct product of graphs $G=(V(G), E(G))$ and $H=(V(H), E(H))$ is the graph, denoted as $G \times H$, with vertex set $V(G \times H)=V(G) \times V(H)$, where vertices $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are adjacent in $G \times H$ if $x_{1} x_{2} \in E(G)$ and $y_{1} y_{2} \in E(H)$. Let n be odd and m even. We prove that every maximum independent set in $P_{n} \times G$, respectively $C_{m} \times G$, is of the form $(A \times C) \cup(B \times$ D), where C and D are nonadjacent in G, and $A \cup B$ is the bipartition of P_{n} respectively C_{m}. We also give a characterization of maximum independent subsets of $P_{n} \times G$ for every even n and discuss the structure of maximum independent sets in $T \times G$ where T is a tree.

Keywords: direct product, independent set.
2010 Mathematics Subject Classification: 05C69, 05C38.

1. Introduction

In this paper we study the structure of maximum independent sets in the direct product of an arbitrary graph with a bipartite graph. In particular the structure of $G \times T$, where T is a tree, is addressed.

Several partial results about the size and structure of maximum independent sets in direct products of graphs are known. In [21] the author proved that for any vertex-transitive graphs G and H we have

$$
\begin{equation*}
\alpha(G \times H)=\max \{\alpha(G)|V(H)|, \alpha(H)|V(G)|\} \tag{1}
\end{equation*}
$$

thereby answering a question posed in [19]. If I is an independent set in G, then $I \times V(H)$ is an independent set in $G \times H$ (similarly $V(G) \times J$ is an independent
set in $G \times H$ provided that J is independent in H). These independent sets in the product are obtained from independent sets of factors, and we call such independent sets canonical. The lower bound in (1) is easy to prove since it is achieved by a canonical independent set. According to [21], the product $G \times H$ is called MIS-normal (maximum-independent-set normal) if all maximum independent sets in $G \times H$ are canonical, and in the same article the author characterizes MIS-normal products of vertex transitive graphs.

The structure of maximum independent sets is also studied in [22]. Here the author proves that for a vertex-transitive graph G, such that G^{2} is MISnormal, any power G^{n} (n-th power of G with respect to the direct product) is also MIS-normal.

In [5] it is proved that any power of a complete graph is MIS-normal. The same result is proved in [2] where the authors also prove a theorem on independent sets whose size is close to maximum. To be precise, they prove that for every $r \geq 3$, there is a constant $M=M(r)$ such that for every $\epsilon>0$ we have: if J is an independent set in $G=K_{r}^{n}$ such that $|J| /|V(G)|=1 / r-\epsilon$, then there is a canonical independent set I in G such that $|J \triangle I| /|V(G)|<M \epsilon$. Roughly speaking this means that an independent set whose size is close to $\alpha\left(K_{r}^{n}\right)$ is close to a canonical independent set.

In [14] the authors study the relation between projectivity and the structure of maximum independent sets in powers of vertex transitive graphs, and they give examples of powers of such graphs that are projective yet they have non-canonical maximum independent sets.

Many other results on independence number are given in $[9,10]$ where the authors determine the independence number when both factors are either a path or a cycle, and in $[6,20]$ where products of some special families of vertex transitive graphs are considered and their independence and chromatic numbers are determined. The independence number in direct products of arbitrary graphs is studied in [18] (see also [8]) where the author proves that for any graphs G and H we have

$$
\alpha(G \times H) \leq \alpha(G)|V(H)|+\alpha(H)|V(G)|-\alpha(G) \alpha(H)
$$

and where also a generalization of the independence number and its relation to the Hedetniemi's conjecture is considered. We also mention an incorrect result given in $[16,17]$, where the authors erroneously claim that $\alpha\left(G \times P_{n}\right)=$ $\max \left\{n \alpha(G),\left\lceil\frac{n}{2}\right\rceil|V(G)|\right\}$.

We also mention the abundance of results on the independence number of Cartesian products of graphs $[1,4,7,11,15]$, as well as the results on the strong product of graphs that are given in $[3,12,13]$.

In this paper we characterize maximum independent sets in $P_{n} \times G$ for all n, and in $C_{n} \times G$ for even n. This is a generalization of results given in [9, 10]
where the authors establish the independence number when both factors are either a path or a cycle. We prove that every product of a path or an even cycle with an arbitrary graph has a maximum independent set which is a union of two rectangles, more precisely, a set of the form $I=(A \times C) \cup(B \times D)$. It is also shown that $P_{n} \times G$ admits other maximum independent sets when n is even. Examples of such sets are given and precise characterization of maximum independent sets in $P_{n} \times G$ for even n is obtained (see Theorem 5). We also give a sufficient condition for a tree T, so that $T \times G$ has a maximum independent set of the form $I=(A \times C) \cup(B \times D)$ (see Theorem 4).

2. The Structure of Maximum Independent Sets

Let G and H be graphs and $G \times H$ their direct product. For any $x \in V(G)$ or $y \in V(H)$ we define the x-layer H_{x} and the y-layer G_{y} as follows

$$
H_{x}=\{(x, h) \mid h \in V(H)\} \quad \text { and } \quad G_{y}=\{(g, y) \mid g \in V(G)\}
$$

We denote by

$$
p_{G}: V(G) \times V(H) \rightarrow V(G)
$$

the projection of $V(G \times H)$ to $V(G)$. The projection is given by $p_{G}(x, y)=x$. For a set $I \subseteq V(G \times H)$ and vertices $x \in V(G), y \in V(H)$ we use

$$
I_{x}=p_{H}\left(I \cap H_{x}\right) \quad \text { and } \quad I_{y}=p_{G}\left(I \cap G_{y}\right)
$$

For $X, Y \subseteq V(G)$ we denote by $[X, Y]$ the set of edges with one endvertex in X and the other in Y. We write $X \lll Y$ if there is a matching in $[X, Y]$ that saturates X, and $X \equiv Y$ if there is a perfect matching in $[X, Y]$ (equivalently, a matching that saturates X and Y). For any $x \in V(G)$ we define the set $N(x)=\{u \in V(G) \mid x u \in E(G)\}$ and for $X \subseteq V(G)$ we use $N(X)=\bigcup_{x \in X} N(x)$. For a set $U \subseteq V(G)$, we say that U is expansive if for every $X \subseteq U$ we have $|N(X) \cap U| \geq|X|$. Finally we say that X is nonadjacent to Y if $N(X) \cap Y=\emptyset$. Note that nonadjacent subsets can have nonempty intersection.

The following observation follows directly from the definition of direct products of graphs.

Observation 1. Let G and H be graphs and I an independent set in $G \times H$. If $x y \in E(H)$, then I_{x} is nonadjacent to I_{y}.
Theorem 2. Let n be an even number and let A, B be the bipartition of $V\left(C_{n}\right)$. Every maximum independent set in $C_{n} \times G$ is equal to

$$
I=(A \times C) \cup(B \times D)
$$

for some nonadjacent $C, D \subseteq V(G)$.

Proof. Let $V\left(C_{n}\right)=\{1,2, \ldots, n\}$ and set $G_{i}=\{i\} \times V(G)$. Let $C, D \subseteq V(G)$ be nonadjacent sets such that $|C|+|D|$ is maximum. Since C and D are nonadjacent we find that $(A \times C) \cup(B \times D)$ is an independent set in $C_{n} \times G$.

For an independent set J in $C_{n} \times G$ denote

$$
J_{i}=p_{G}\left(J \cap G_{i}\right) .
$$

Clearly, any two consecutive J_{i} and J_{i+1} are nonadjacent in G and therefore $\left|J_{i}\right|+\left|J_{i+1}\right| \leq|C|+|D|$. Since

$$
|J|=\left(\left|J_{1}\right|+\left|J_{2}\right|\right)+\left(\left|J_{3}\right|+\left|J_{4}\right|\right)+\cdots+\left(\left|J_{n-1}\right|+\left|J_{n}\right|\right)
$$

it follows that

$$
|J| \leq|(A \times C) \cup(B \times D)| .
$$

This proves that $(A \times C) \cup(B \times D)$ is a maximum independent set in $C_{n} \times G$. Additionally, if J is a maximum independent set in $C_{n} \times G$, we have $\left|J_{i}\right|+\left|J_{i+1}\right|=$ $|C|+|D|$ for $i=1,2, \ldots, n$. To prove the theorem assume that J is a maximum independent set. We claim that $J_{1}=J_{3}$. Since $\left|J_{1}\right|+\left|J_{2}\right|=|C|+|D|$ we find that $J_{3} \subseteq J_{1}$. Indeed, if $J_{3} \backslash J_{1} \neq \emptyset$, then $J_{1} \cup J_{3}$ and J_{2} are nonadjacent and $\left|J_{1} \cup J_{3}\right|+\left|J_{2}\right|>|C|+|D|$, a contradiction. Additionally, it follows from $\left|J_{2}\right|+\left|J_{3}\right|=|C|+|D|$ that $J_{1} \subseteq J_{3}$, and hence $J_{1}=J_{3}$. It follows inductively that $J_{i}=J_{k}$ for $j \equiv k(\bmod 2)$.

Theorem 3. Let P_{n} be an odd path and A, B the bipartition of $V\left(P_{n}\right)$. Every maximum independent set in $P_{n} \times G$ is equal to

$$
I=(A \times C) \cup(B \times D)
$$

for some nonadjacent $C, D \subseteq V(G)$.
Proof. Let $V\left(P_{n}\right)=\{1,2, \ldots, n\}$, denote $G_{i}=\{i\} \times V(G)$, and assume that $|A|>|B|$. Let J be a maximum independent set in $P_{n} \times G$ and $J_{i}=p_{G}\left(J \cap G_{i}\right)$. Let $i_{0} \in\{1,2, \ldots, n-1\}$ be such that

$$
\left|J_{i_{0}}\right|+\left|J_{i_{0}+1}\right| \geq\left|J_{i}\right|+\left|J_{i+1}\right|
$$

for all $i \in\{1,2, \ldots, n-1\}$ and assume $\left|J_{i_{0}}\right| \geq\left|J_{i_{0}+1}\right|$. We claim that $J_{i}=J_{\ell}$ for $i-\ell \equiv 0(\bmod 2)$. Let $k \in\{2,4, \ldots, n-1\}$ be such that $\left|J_{k}\right| \geq\left|J_{i}\right|$ for all $i \in\{2,4, \ldots, n-1\}$. Since $\left|J_{i_{0}}\right|+\left|J_{i_{0}+1}\right|$ is maximum we find that

$$
\begin{align*}
\left|J_{k}\right|+\sum_{i=1}^{n}\left|J_{i}\right| & =\sum_{i=1}^{k / 2}\left(\left|J_{2 i-1}\right|+\left|J_{2 i}\right|\right)+\sum_{i=k / 2}^{(n-1) / 2}\left(\left|J_{2 i}\right|+\left|J_{2 i+1}\right|\right) \tag{2}\\
& \leq \frac{n+1}{2}\left|J_{i_{0}}\right|+\frac{n-1}{2}\left|J_{i_{0}+1}\right|+\left|J_{i_{0}+1}\right|
\end{align*}
$$

On the other hand $\left(A \times J_{i_{0}}\right) \cup\left(B \times J_{i_{0}+1}\right)$ is an independent set of size

$$
\frac{n+1}{2}\left|J_{i_{0}}\right|+\frac{n-1}{2}\left|J_{i_{0}+1}\right|
$$

and since J is a maximum independent set we find that

$$
\begin{equation*}
\sum_{i=1}^{n}\left|J_{i}\right| \geq \frac{n+1}{2}\left|J_{i_{0}}\right|+\frac{n-1}{2}\left|J_{i_{0}+1}\right| . \tag{3}
\end{equation*}
$$

Since $\left|J_{k}\right|$ is maximum for even k, we see that $\left|J_{k}\right| \geq\left|J_{i_{0}+1}\right|$ (for otherwise we would have $\left|J_{i}\right|<\left|J_{i_{0}+1}\right| \leq\left|J_{i_{0}}\right|$ for all even indices i, a contradiction), and therefore it follows from (2) and (3) that

$$
\left|J_{k}\right|+\sum_{i=1}^{n}\left|J_{i}\right|=\frac{n+1}{2}\left|J_{i_{0}}\right|+\frac{n-1}{2}\left|J_{i_{0}+1}\right|+\left|J_{i_{0}+1}\right| .
$$

It follows that each term in both sums,

$$
\begin{equation*}
\sum_{i=1}^{k / 2}\left(\left|J_{2 i-1}\right|+\left|J_{2 i}\right|\right) \text { and } \sum_{i=k / 2}^{(n-1) / 2}\left(\left|J_{2 i}\right|+\left|J_{2 i+1}\right|\right) \tag{4}
\end{equation*}
$$

is equal to $\left|J_{i_{0}}\right|+\left|J_{i_{0}+1}\right|$. We claim that $J_{k-1}=J_{k+1}$. If not, then $J_{k-1} \nsubseteq J_{k+1}$ or $J_{k+1} \nsubseteq J_{k-1}$. If $J_{k-1} \nsubseteq J_{k+1}$ we can construct an independent set

$$
I=\bigcup_{i=1}^{k}\left(\{i\} \times J_{i}\right) \cup\left[\left(\left(A \times\left(J_{k-1} \cup J_{k+1}\right)\right) \cup\left(B \times J_{k}\right)\right) \cap \bigcup_{i=k+1}^{n} G_{i}\right]
$$

Since $\left|J_{k-1} \cup J_{k+1}\right|+\left|J_{k}\right|>\left|J_{k+1}\right|+\left|J_{k}\right|=\left|J_{i_{0}}\right|+\left|J_{i_{0}+1}\right|$ we see that $|I|>|J|$, a contradiction. Hence $J_{k-1} \subseteq J_{k+1}$, and analogously $J_{k+1} \subseteq J_{k-1}$. Thus we have $J_{k-1}=J_{k+1}$. Now assume there is an odd $\ell>k$ such that $J_{\ell} \neq J_{\ell+2}$, and assume ℓ is the smallest such index. If $J_{\ell} \nsubseteq J_{\ell+2}$ we can construct an independent set analogous to the one constructed in the case $J_{k-1} \nsubseteq J_{k+1}$ as follows:

$$
I=\bigcup_{i=1}^{\ell}\left(\{i\} \times J_{i}\right) \cup\left[\left(\left(A \times\left(J_{\ell} \cup J_{\ell+2}\right)\right) \cup\left(B \times J_{\ell+1}\right)\right) \cap \bigcup_{i=\ell+1}^{n} G_{i}\right] .
$$

So assume that $J_{\ell} \subseteq J_{\ell+2}$ and $J_{\ell+2} \nsubseteq J_{\ell}$. In this case we construct an independent set

$$
I=\bigcup_{i=\ell+1}^{n}\left(\{i\} \times J_{i}\right) \cup\left[\left(\left(A \times J_{\ell+2}\right) \cup\left(B \times J_{\ell+1}\right)\right) \cap \bigcup_{i=1}^{\ell} G_{i}\right] .
$$

$\left|J_{\ell+1}\right|+\left|J_{\ell+2}\right|$ is a term of the second sum in (4), hence it is equal to $\left|J_{i_{0}}\right|+$ $\left|J_{i_{0}+1}\right|$ and since $\left|J_{k-1}\right|=\left|J_{k+1}\right|=\cdots=\left|J_{\ell}\right|<\left|J_{\ell+2}\right|$, we see that $|I|>|J|$, a contradiction. An analogous proof works if there is an odd $\ell<k$ such that $J_{\ell-2} \neq J_{\ell}$ and we assume that ℓ is the largest such index. If $J_{\ell} \nsubseteq J_{\ell-2}$, we can construct an independent set

$$
I=\bigcup_{i=\ell}^{n}\left(\{i\} \times J_{i}\right) \cup\left[\left(\left(A \times\left(J_{\ell-2} \cup J_{\ell}\right)\right) \cup\left(B \times J_{\ell-1}\right)\right) \cap \bigcup_{i=1}^{\ell-1} G_{i}\right]
$$

Since $\left|J_{\ell} \cup J_{\ell-2}\right|+\left|J_{\ell-1}\right|>\left|J_{\ell-2}\right|+\left|J_{\ell-1}\right|=\left|J_{i_{0}}\right|+\left|J_{i_{0}+1}\right|$, we see that $|I|>|J|$, a contradiction. If $J_{\ell} \subseteq J_{\ell-2}$ and $J_{\ell-2} \nsubseteq J_{\ell}$, we construct an independent set

$$
I=\bigcup_{i=1}^{\ell-1}\left(\{i\} \times J_{i}\right) \cup\left[\left(\left(A \times J_{\ell-2}\right) \cup\left(B \times J_{\ell-1}\right)\right) \cap \bigcup_{i=\ell}^{n} G_{i}\right] .
$$

$\left|J_{\ell-2}\right|+\left|J_{\ell-1}\right|$ is a term of the first sum in (4), hence it is equal to $\left|J_{i_{0}}\right|+\left|J_{i_{0}+1}\right|$ and since $\left|J_{k-1}\right|=\cdots=\left|J_{\ell}\right|<\left|J_{\ell-2}\right|$, we see that $|I|>|J|$, also a contradiction. Therefore $J_{\ell+2}=J_{\ell}$ for all odd indices ℓ. If $J_{\ell} \neq J_{\ell+2}$ for an even ℓ, then

$$
I=\left(A \times J_{1}\right) \cup\left(B \times \bigcup_{i=1}^{(n-1) / 2} J_{2 i}\right)
$$

is an independent set strictly larger than J, a contradiction. So we proved that $J_{\ell}=J_{1}$ for all odd ℓ, and $J_{\ell}=J_{2}$ for all even ℓ, which proves the theorem.

Theorem 4. Let T be a tree with bipartition $A \cup B$, where $|A| \geq|B|$. Suppose that for every vertex $x \in B$ there is an edge cover M_{x} of T such that x is covered at most twice and all the other vertices once. Then for every graph G there are nonadjacent sets $C, D \subseteq V(G)$, such that

$$
I=(A \times C) \cup(B \times D)
$$

is a maximum independent set in $T \times G$.
Proof. Suppose that $2 \alpha^{\prime}(T)=|V(T)|$ (where $\alpha^{\prime}(T)$ is the matching number of T), and let M be a perfect matching in T. Additionally, let C and D be nonadjacent subsets of G, such that $|C|+|D|$ is maximum. We claim that $I=$ $(A \times C) \cup(B \times D)$ is a maximum independent set in $T \times G$. To prove this let J be any independent set in $T \times G$ and note that

$$
|J|=\sum_{x \in V(T)}\left|J_{x}\right|=\sum_{u v \in M}\left(\left|J_{u}\right|+\left|J_{v}\right|\right) \leq \sum_{u v \in M}|C|+|D|=|I| .
$$

Assume now that $2 \alpha^{\prime}(T)=|V(T)|-1$ and let $A \cup B$ be the bipartition of T with $|A|>|B|$. By assumption, for every vertex $x \in B$ there is an edge cover M_{x} of T such that every vertex of T is covered exactly once by M_{x}, except the vertex x, which is covered twice. Let J be a maximum independent set in $T \times G$ and let $x_{0} \in B$ be such that $\left|J_{x_{0}}\right| \geq\left|J_{x}\right|$ for every $x \in B$. Let $u v$ be an edge of T such that $\left|J_{u}\right|+\left|J_{v}\right|$ is maximum. Assume that $\left|J_{u}\right| \geq\left|J_{v}\right|$ and set $C=J_{u}$ and $D=J_{v}$. We claim that $\left|J_{x_{0}}\right| \geq|D|$. If not then $\left|J_{x}\right| \leq\left|J_{x_{0}}\right|<|D| \leq|C|$ for every $x \in B$. This is a contradiction since either $u \in B$ or $v \in B$. Then we have

$$
\begin{aligned}
|J|+\left|J_{x_{0}}\right| & =\sum_{a b \in M_{x_{0}}}\left(\left|J_{a}\right|+\left|J_{b}\right|\right) \\
& \leq \sum_{a b \in M_{x_{0}}}(|C|+|D|)=\frac{1}{2}(|A|+|B|+1)(|C|+|D|),
\end{aligned}
$$

and since $|A|=|B|+1$ we find that

$$
|J|+\left|J_{x_{0}}\right| \leq|(A \times C) \cup(B \times D)|+|D| .
$$

Finally, since $\left|J_{x_{0}}\right| \geq D$ it follows that

$$
|J| \leq|(A \times C) \cup(B \times D)| .
$$

Since $(A \times C) \cup(B \times D)$ is an independent set we have also

$$
|J| \geq|(A \times C) \cup(B \times D)|,
$$

and hence the equality holds, which proves the theorem.

Figure 1. The graph G.

We have shown so far that every product of an odd path (or an even cycle) with an arbitrary graph admits only maximum independent sets of the form ($A \times$ $C) \cup(B \times D)$. Moreover, every product of an even path with an arbitrary graph admits maximum independent sets of this form (see Corollary 6 and Theorem 5), but not all maximum independent sets are neccesarily such. We next give an example of a product of a tree T with a graph G, such that no maximum independent set in $T \times G$ is of the form $(A \times C) \cup(B \times D)$. Consider the graph G shown in Figure 1, and the product $T \times G$ and the set I shown in Figure 2. Clearly, the set I is an independent set in $T \times G$ and its size is 43 . On the other hand for any independent set $J=(A \times C) \cup(B \times D)$ we have $|J|<43$ (in order to maximize J we have $C=Q \cup R$ and $D=Q$, or alternatively $C=V(G)$ and $D=\emptyset$).

To characterize maximum independent sets in products $P_{n} \times G$ where n is even we denote $V\left(P_{n}\right)=\{1,2, \ldots, n\}$ and we let $G_{k}=\{k\} \times V(G)$. For a set $I \subseteq V\left(P_{n} \times G\right)$ and $k \leq n$ we define

$$
I_{k}=p_{G}\left(I \cap G_{k}\right) .
$$

Maximum independent sets in $P_{n} \times G$ can be characterized by subset relations (as given in (i) and (ii) of Theorem 5) and by matchings between certain parts

Figure 2. The product $T \times G$. The independent set I is marked with gray color.
of consecutive sets I_{k} (as given in (iii) and (iv) of Theorem 5). The main idea of the proof is that I is a maximum independent set in $P_{n} \times G$ if and only if I_{k} and I_{k+1} are nonadjacent and $\left|I_{k}\right|+\left|I_{k+1}\right|$ is maximum for all odd k. This follows from the fact that I is an independent set in $P_{n} \times G$ if and only if I_{k} and I_{k+1} are nonadjacent for all k and

$$
|I|=\sum_{l=1}^{n / 2}\left(\left|I_{2 l-1}\right|+\left|I_{2 l}\right|\right) .
$$

It turns out that $\left|I_{k}\right|+\left|I_{k+1}\right|$ is maximum for all odd k if and only if (i) through (vi) of Theorem 5 is true. Here conditions (i) through (iv) guarantee that $\left|I_{k}\right|+$ $\left|I_{k+1}\right|=\left|I_{k+2}\right|+\left|I_{k+3}\right|$ for all odd k, and the additional conditions (v) and (vi) guarantee that $\left|I_{1}\right|+\left|I_{2}\right|$ is maximum.

Theorem 5. Let n be an even number and I an independent set in $P_{n} \times G$. Then I is a maximum independent set in $P_{n} \times G$ if and only if the following is true:
(i) $I_{k+2} \subseteq I_{k}$ for every odd k.
(ii) $I_{k} \subseteq I_{k+2}$ for every even k.
(iii) $I_{k+3} \backslash\left(I_{k} \cup I_{k+1}\right) \equiv\left(I_{k} \backslash I_{k+2}\right) \cap I_{k+1}$ for every odd k.
(iv) $I_{k} \backslash\left(I_{k+2} \cup I_{k+3}\right) \equiv\left(I_{k+3} \backslash I_{k+1}\right) \cap I_{k+2}$ for every odd k.
(v) $\left(V(G) \backslash\left(I_{1} \cup I_{4}\right)\right) \cup\left(I_{4} \backslash\left(I_{1} \cup I_{2}\right)\right) \lll\left(I_{2} \cap I_{3}\right) \cup\left(\left(I_{1} \backslash I_{3}\right) \cap I_{2}\right)$.
(vi) The sets $I_{2} \backslash I_{1}$ and $I_{3} \backslash I_{4}$, and $\left(I_{1} \backslash I_{3}\right) \cap\left(I_{4} \backslash I_{2}\right)$ are expansive.

Proof. For every odd k we denote

$$
\begin{aligned}
& A_{k}=\left(I_{k} \backslash I_{k+2}\right) \cap\left(I_{k+3} \backslash I_{k+1}\right), \\
& B_{k}=I_{k} \backslash\left(I_{k+2} \cup I_{k+3}\right), \\
& C_{k}=I_{k+2} \backslash I_{k+3}, \\
& D_{k}=\left(I_{k+3} \backslash I_{k+1}\right) \cap I_{k+2}, \\
& E_{k}=I_{k+1} \cap I_{k+2}, \\
& F_{k}=\left(I_{k} \backslash I_{k+2}\right) \cap I_{k+1},
\end{aligned}
$$

$$
\begin{aligned}
& G_{k}=I_{k+1} \backslash I_{k}, \\
& H_{k}=I_{k+3} \backslash\left(I_{k} \cup I_{k+1}\right), \\
& R_{k}=V(G) \backslash\left(I_{k} \cup I_{k+3}\right) .
\end{aligned}
$$

G

Figure 3. The sets I_{1}, \ldots, I_{4}.

Assume that I is a maximum independent set in $G \times P_{n}$. We have to prove (i)-(vi).

Proof of (i) and (ii). Since I is a maximum independent set, $\left|I_{k}\right|+\left|I_{k+1}\right|$ is maximum for every odd k. If $I_{k+2} \nsubseteq I_{k}$ for an odd k, then subsets $I_{k} \cup I_{k+2}$ and I_{k+1} are nonadjacent and $\left|I_{k} \cup I_{k+2}\right|+\left|I_{k+1}\right|>\left|I_{k}\right|+\left|I_{k+1}\right|$, a contradiction. Similarly, if there is an even k, such that $I_{k} \nsubseteq I_{k+2}$, then I_{k+1} and $I_{k} \cup I_{k+2}$ are nonadjacent and $\left|I_{k+1}\right|+\left|I_{k} \cup I_{k+2}\right|>\left|I_{k+1}\right|+\left|I_{k+2}\right|$, a contradiction.

Proof of (iii) and (iv). We claim that $H_{k} \equiv F_{k}$ for every odd k. Since I_{k} and I_{k+1} are nonadjacent for all k, we see that $N\left(F_{k}\right) \subseteq H_{k} \cup R_{k}$.

Let $X \subseteq F_{k}$ and note that $F_{k} \cap I_{k+2}=\emptyset$ and hence $X \cap I_{k+2}=\emptyset$. If $\left|N(X) \cap H_{k}\right|<|X|$, then $\left|N(X) \cap I_{k+3}\right|<|X|$, because $N(X) \cap I_{k+3} \subseteq H_{k}$. Therefore $\left|I_{k+2} \cup X\right|+\left|I_{k+3} \backslash N(X)\right|>\left|I_{k+2}\right|+\left|I_{k+3}\right|$, which is a contradiction.

Let $X \subseteq H_{k}$. If $\left|N(X) \cap F_{k}\right|<|X|$, then $\left|I_{k} \cup G_{k} \cup X\right|+\left|I_{k+1} \backslash\left(G_{k} \cup N(X)\right)\right|>$ $\left|I_{k}\right|+\left|I_{k+1}\right|$, which is also a contradiction, since these two sets are nonadjacent. This proves that there is a perfect matching between H_{k} and F_{k}. The proof of (iv) is similar.

Proof of (v). Denote $R=V(G) \backslash\left(I_{1} \cup I_{4}\right)$.
We have to prove that for all $X \subseteq R \cup H_{1},\left|N(X) \cap\left(E_{1} \cup F_{1}\right)\right| \geq|X|$. But if for some $X \subseteq R \cup H_{1},\left|N(X) \cap\left(E_{1} \cup F_{1}\right)\right|<|X|$, then $I_{1} \cup X \cup G_{1}$ and $I_{2} \backslash\left(G_{1} \cup N(X)\right)$ are nonadjacent sets and $\left|I_{1} \cup X \cup G_{1}\right|+\left|I_{2} \backslash\left(G_{1} \cup N(X)\right)\right|>$ $\left|I_{1}\right|+\left|I_{2}\right|$, a contradiction.

Proof of (vi). Now we will prove that G_{1} is expansive. If not, $\left|N(X) \cap G_{1}\right|<$ $|X|$ for some $X \subset G_{1}$. But then $I_{1} \cup X$ and $I_{2} \backslash N(X)$ are nonadjacent and $\left|I_{1} \cup X\right|+\left|I_{2} \backslash N(X)\right|>\left|I_{1}\right|+\left|I_{2}\right|$, a contradiction.

Similarly, if C_{1} is not expansive, then $\left|N(X) \cap C_{1}\right|<|X|$ for some $X \subset$ C_{1}, and hence we have $\left|I_{3} \backslash N(X)\right|+\left|I_{4} \cup X\right|>\left|I_{3}\right|+\left|I_{4}\right|$ for nonadjacent sets
$I_{3} \backslash N(X)$ and $I_{4} \cup X$.
And at last A_{1} is expansive. Note that A_{1} is adjacent to H_{1} and $\left|H_{1}\right|=\left|F_{1}\right|$. If A_{1} is not expansive, then $\left|N(X) \cap A_{1}\right|<|X|$ for some $X \subset A_{1}$ and we also have a contradiction, because $\left|I_{3} \cup X \cup F_{1}\right|+\left|I_{4} \backslash\left(N(X) \cup H_{1}\right)\right|>\left|I_{3}\right|+\left|I_{4}\right|$ for nonadjacent sets $I_{3} \cup X \cup F_{1}$ and $I_{4} \backslash\left(N(X) \cup H_{1}\right)$.

Assume now that (i) through (vi) is true. First we claim that

$$
A_{k} \cup B_{k} \cup F_{k}=I_{k} \backslash I_{k+2} .
$$

To see this note that $I_{k} \backslash\left(I_{k+2} \cup I_{k+3}\right)=\left(I_{k} \backslash I_{k+2}\right) \cap\left(I_{k} \backslash I_{k+3}\right)$ and therefore the left side of the above equality is
$\left(I_{k} \backslash I_{k+2}\right) \cap\left[\left(I_{k+3} \backslash I_{k+1}\right) \cup\left(I_{k} \backslash I_{k+3}\right) \cup I_{k+1}\right]=\left(I_{k} \backslash I_{k+2}\right) \cap\left(I_{k} \cup I_{k+1} \cup I_{k+3}\right)=I_{k} \backslash I_{k+2}$
which proves the claim. Similarly we see that

$$
A_{k} \cup H_{k} \cup D_{k}=I_{k+3} \backslash I_{k+1} .
$$

It follows from (iii) and (iv) that

$$
\left|I_{k+3} \backslash\left(I_{k} \cup I_{k+1}\right)\right|=\left|\left(I_{k} \backslash I_{k+2}\right) \cap I_{k+1}\right|
$$

and

$$
\left|I_{k} \backslash\left(I_{k+2} \cup I_{k+3}\right)\right|=\left|\left(I_{k+3} \backslash I_{k+1}\right) \cap I_{k+2}\right|
$$

and hence

$$
\left|I_{k} \backslash I_{k+2}\right|=\left|I_{k+3} \backslash I_{k+1}\right| .
$$

By (i) and (ii) we have

$$
\left|I_{k}\right|-\left|I_{k+2}\right|=\left|I_{k} \backslash I_{k+2}\right|=\left|I_{k+3} \backslash I_{k+1}\right|=\left|I_{k+3}\right|-\left|I_{k+1}\right|
$$

and therefore $\left|I_{k}\right|+\left|I_{k+1}\right|=\left|I_{k+2}\right|+\left|I_{k+3}\right|$ for every odd k. To prove that I is a maximum independent set in $G \times P_{n}$ we have to prove that $\left|I_{1}\right|+\left|I_{2}\right|$ is maximum. That is, for any pair of nonadjacent subsets J_{1} and J_{2} in G we have

$$
\left|I_{1}\right|+\left|I_{2}\right| \geq\left|J_{1}\right|+\left|J_{2}\right| .
$$

In Figure 3 the sets I_{1}, I_{2}, I_{3} and I_{4} are shown. Note that the picture is as general as possible because $I_{3} \subseteq I_{1}$ and $I_{2} \subseteq I_{4}$.

Let $R=V(G) \backslash\left(I_{1} \cup I_{4}\right)$. It follows from (iii) and (iv) that $H_{k} \equiv F_{k}$ and $B_{k} \equiv D_{k}$ for every odd k. From (vi) we have G_{1}, C_{1}, A_{1} are expansive, and (v) implies that $R \cup H_{1} \lll E_{1} \cup F_{1}$. Assume that J_{1} and J_{2} are nonadjacent. We claim that

$$
\left|J_{2} \backslash I_{2}\right| \leq\left|I_{1} \backslash J_{1}\right| \text { and }\left|J_{1} \backslash I_{1}\right| \leq\left|I_{2} \backslash J_{2}\right| .
$$

Since A_{1} is expansive we have $\left|\left(J_{2} \backslash I_{2}\right) \cap A_{1}\right|=\left|J_{2} \cap A_{1}\right| \leq\left|N\left(J_{2} \cap A_{1}\right) \cap A_{1}\right|$. Since J_{1} and J_{2} are nonadjacent, we find that $\left(N\left(J_{2} \cap A_{1}\right) \cap A_{1}\right) \cap J_{1}=\emptyset$ and so $N\left(J_{2} \cap A_{1}\right) \cap A_{1} \subseteq\left(I_{1} \backslash J_{1}\right) \cap A_{1}$. So we have $\left|\left(J_{2} \backslash I_{2}\right) \cap A_{1}\right| \leq\left|\left(I_{1} \backslash J_{1}\right) \cap A_{1}\right|$. Similarly we find that $\left|\left(J_{2} \backslash I_{2}\right) \cap C_{1}\right| \leq\left|\left(I_{1} \backslash J_{1}\right) \cap C_{1}\right|$. Since $R \cup H_{1} \lll E_{1} \cup F_{1}$ we have $\left|\left(J_{2} \backslash I_{2}\right) \cap\left(R \cup H_{1}\right)\right| \leq\left|\left(I_{1} \backslash J_{1}\right) \cap\left(E_{1} \cup F_{1}\right)\right|$. From $B_{1} \equiv D_{1}$ follows $\left|\left(J_{2} \backslash I_{2}\right) \cap B_{1}\right| \leq\left|\left(I_{1} \backslash J_{1}\right) \cap D_{1}\right|$ and $\left|\left(J_{2} \backslash I_{2}\right) \cap D_{1}\right| \leq\left|\left(I_{1} \backslash J_{1}\right) \cap B_{1}\right|$. Combining all inequalities we get $\left|J_{2} \backslash I_{2}\right| \leq\left|I_{1} \backslash J_{1}\right|$. The proof of $\left|J_{1} \backslash I_{1}\right| \leq\left|I_{2} \backslash J_{2}\right|$ is analogous. To prove that $\left|I_{1}\right|+\left|I_{2}\right| \geq\left|J_{1}\right|+\left|J_{2}\right|$ we write $\left|J_{k} \backslash I_{k}\right|=\left|J_{k}\right|-\left|J_{k} \cap I_{k}\right|$ and $\left|I_{k} \backslash J_{k}\right|=\left|I_{k}\right|-\left|J_{k} \cap I_{k}\right|$ for $k=1,2$. A straightforward calculation gives the desired inequality. Since for any independent set J, J_{k} and J_{k+1} are nonadjacent we have $\left|J_{k}\right|+\left|J_{k+1}\right| \leq\left|I_{1}\right|+\left|I_{2}\right|=\left|I_{k}\right|+\left|I_{k+1}\right|$ for every odd k. This proves $|J| \leq|I|$.

Figure 4. A graph G such that $P_{8} \times G$ has a maximum independent set which is not a union of two rectangles.

We give an example of a graph G, such that $P_{8} \times G$ has maximum independent set which is not a union of two rectangles. The graph G is shown in Figure 4 and the maximum independent set in $P_{8} \times G$ is shown in Figure 5. It is straightforward to check that (i)-(vi) of Theorem 5 holds.

Corollary 6. For every even n and every graph G there is a maximum independent set I in $P_{n} \times G$ such that

$$
I=(A \times C) \cup(B \times D)
$$

for some nonadjacent $C, D \subseteq V(G)$.

A	B	C	D	E

Figure 5. A maximum independent set in $P_{8} \times G$.

Proof. The argument is similar to the argument in the above proof. If I is a maximum independent set in $P_{n} \times G$, then I_{k} and I_{k+1} are nonadjacent and $\left|I_{k}\right|+\left|I_{k+1}\right|$ is maximum for every odd k. The converse is also true. Therefore if we choose $I_{\ell}=C$ for every odd ℓ and $I_{\ell}=D$ for every even ℓ, and C and D are maximum nonadjacent, we find that I has the desired structure as claimed.

References

[1] G. Abay-Asmerom, R. Hammack, C.E. Larson and D.T. Taylor, Notes on the independence number in the Cartesian product of graphs, Discuss. Math. Graph Theory 31 (2011) 25-35. doi:10.7151/dmgt. 1527
[2] N. Alon, I. Dinur, E. Friedgut and B. Sudakov, Graph products, Fourier analysis and spectral techniques, Geom. Funct. Anal. 14 (2004) 913-940. doi:10.1007/s00039-004-0478-3
[3] S.H. Badalyan and S.E. Markosyan, On the independence number of the strong product of cycle-powers, Discrete Math. 313 (2013) 105-110. doi:10.1016/j.disc.2012.09.008
[4] L.M. Friedler, The independence number of the Cartesian product of graphs, Ars Combin. 99 (2011) 205-216.
[5] D. Greenwell and L. Lovász, Applications of product colouring, Acta Math. Acad. Sci. Hungar. 25 (1974) 335-340. doi:/10.1007/BF01886093
[6] X.B. Geng, J. Wang and H. Zhang, Structure of independent sets in direct products of some vertex-transitive graphs, Acta Math. Sin. (Engl. Ser.) 28 (2012) 697-706.
[7] J. Hagauer and S. Klavžar, On independence numbers of the Cartesian product of graphs, Ars Combin. 43 (1996) 149-157.
[8] R. Hammack, W. Imrich and S. Klavžar, Handbook of Product Graphs, Second Edition (CRC Press, Boca Raton, FL, 2011).
[9] P.K. Jha, Further results on independence in direct-product graphs, Ars Combin. 56 (2000) 15-24.
[10] P.K. Jha and S. Klavžar, Independence in direct-product graphs, Ars Combin. 50 (1998) 53-63.
[11] S. Klavžar, Some new bounds and exact results on the independence number of Cartesian product graphs, Ars Combin. 74 (2005) 173-186.
[12] A. Klobučar, Independent sets and independent dominating sets in the strong product of paths and cycles, Math. Commun. 10 (2005) 23-30.
[13] D. Korže and A. Vesel, A note on the independence number of strong products of odd cycles, Ars Combin. 106 (2012) 473-481.
[14] B. Larose and C. Tardif, Projectivity and independent sets in powers of graphs, J. Graph Theory 40 (2002) 162-171. doi:10.1002/jgt. 10041
[15] S.P. Martin, J.S. Powell and D.F. Rall, On the independence number of the Cartesian product of caterpillars, Ars Combin. 60 (2001) 73-84.
[16] T. Sitthiwirattham, Independent and vertex covering number on Kronecker product of P_{n}, Int. J. Pure Appl. Math. 73 (2011) 227-234.
[17] T. Sitthiwirattham and J. Soontharanon, Independent and vertex covering number on Kronecker product of C_{n}, Int. J. Pure Appl. Math. 71 (2011) 149-157.
[18] S. Špacapan, The k-independence number of direct products of graphs and Hedetniemi's conjecture, European J. Combin. 32 (2011) 1377-1383. doi:10.1016/j.ejc.2011.07.002
[19] C. Tardif, Graph products and the chromatic difference sequence of vertex-transitive graphs, Discrete Math. 185 (1998) 193-200. doi:10.1016/S0012-365X(97)00171-4
[20] M. Valencia-Pabon and J. Vera, Independence and coloring properties of direct products of some vertex-transitive graphs, Discrete Math. 306 (2006) 2275-2281. doi:10.1016/j.disc.2006.04.013
[21] H. Zhang, Independent sets in direct products of vertex-transitive graphs, J. Combin. Theory Ser. B 102 (2012) 832-838. doi:10.1016/j.jctb.2011.12.005
[22] H. Zhang, Primitivity and independent sets in direct products of vertex-transitive graphs, J. Graph Theory 67 (2011) 218-225. doi:10.1002/jgt. 20526
[23] X. Zhu, A survey on Hedetniemi's conjecture, Taiwanese J. Math. 2 (1998) 1-24.
[24] X. Zhu, The fractional version of Hedetniemi's conjecture is true, European J. Combin. 32 (2011) 1168-1175.
doi:10.1016/j.ejc.2011.03.004
Received 26 June 2014
Revised 8 February 2015
Accepted 17 February 2015

