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Abstract

The construction of a homing tour is known to be NP-complete. On the
other hand, the Euler formula puts sufficient restrictions on plane graphs
that one should be able to assert the existence of such tours in some cases;
in particular we focus on split Euler tours (SETs) in 3-connected, 4-regular,
planar graphs (tfps). An Euler tour S in a graph G is a SET if there is
a vertex v (called a half vertex of S) such that the longest portion of the
tour between successive visits to v is exactly half the number of edges of G.
Among other results, we establish that every tfp G having a SET S in which
every vertex of G is a half vertex of S can be transformed to another tfp G′

having a SET S′ in which every vertex of G′ is a half vertex of S′ and G′

has at most one point having a face configuration of a particular class. The
various results rely heavily on the structure of such graphs as determined
by the Euler formula and on the construction of tfps from the octahedron.
We also construct a 2-connected 4-regular planar graph that does not have
a SET.
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1. Introduction

Froemke et al. [6] have shown that the construction of a homing tour is NP-
complete. Herein, we study the special case of split Euler tours (SETs) in
4-regular planar graphs. Lehel [11], Manca [12], and Broersma et al. [2], re-
spectively, have studied closely the construction of 4-regular planar 3-connected
graphs from the octahedron. By utilizing these results, one may construct infinite
classes of such graphs admitting SETs. Moreover, we show that every tfp G hav-
ing a SET S in which every vertex of G is a half vertex of S can be transformed
to another tfp G′ having a SET S′ in which every vertex of G′ is a half vertex
of S′ and G′ has at most one point having a face configuration of a particular
class. We also construct a 2-connected 4-regular planar graph that does not have
a SET.

2. Preliminaries

We use the terminology of Bondy and Murty [1]. All graphs are finite, simple,
and undirected.

This work is devoted to the study of the existence of a split Euler tour in
4-regular planar Eulerian graphs. For brevity we will often abbreviate split Euler
tour as SET. An Euler tour S in a graph G is a SET if there is a vertex v (called
a half vertex of S) such that the longest portion of the tour between successive
visits to v is exactly half the number of edges of G.

If T is a SET of G with half vertex v0 and n vertices then T may be written
as a listing of its vertices v0v1v2 · · · vn−2vn−1v0v

′

1v
′

2 · · · v
′

n−1v0 and we will refer to
each of the subtours v0v1v2 · · · vn−2vn−1v0 and v0v

′

1v
′

2 · · · v
′

n−1v0 as halves of T .
We will often denote such halves by drawing the graph and illustrating one half
of a SET by dotted lines and the other half by solid lines.
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Figure 1

Following the notation of [2], we will say that a graph is a tfp if and only if
it is 3-connected, 4-regular, and planar. The octahedron O (see Figure 1) is the
basis for the construction of all 4-regular planar 3-connected graphs. We adopt
additional notation of [2] in defining three operations, their inverse operations,
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and associated graphs. By Theorem 1 of [2], there is for each tfp G a finite
sequence of tfps G0, G1, . . . , Gn such that G0 = O, Gn = G, Gi is a tfp for each
i = 0, 1, . . . , n, and, for each i = 1, . . . , n, Gi is constructible from Gi−1 from one
of A, B, and C, where A, B, and C are as below. The first main result of this
work is the construction of an infinite family of tfps having a SET S in which
each vertex of G is a half vertex of S using combinations of B and C.

We shall say that a planar graph G has been enlarged by the operations A,
B, or C when the configurations A−, B−, or C− have been substituted with A+,
B+, or C+, respectively. If G′ is a graph that is obtained from enlarging graph G

as above, we also say that G′ is constructible from G. Similarly, we shall say that
a planar graph G has been reduced by the operations A−1, B−1, or C−1 when
the configurations A+, B+, or C+ have been substituted with A−, B−, or C−,
respectively.
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Figure 2

Note that in B+, there is no edge ab. The generalized versions of the following
theorems appear in [12], but we restrict to the case where G is a tfp.

Theorem 1. If G is a tfp and one of the operations A, B, or C is performed,

then the resulting graph is also a tfp.

Theorem 2. If G is a tfp and one of the operations A−1, B−1, or C−1 is per-

formed, then the resulting graph is also a tfp.
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Theorem 3. If G is a tfp and not isomorphic to the graph of the octahedron, O,

then G has at least one of the configurations A+, B+, or C+.

We now classify control points in the tfps. From a classical theorem of
Lebesgue (see [3], [9], or [10]), it follows that every tfp graph contains a ver-
tex x incident with either

1. three triangles and one k-gon, k ≥ 3, or

2. with two triangles, one quadrangle, and one l-gon, 4 ≤ l ≤ 11; or

3. with two triangles, one pentagon, and one m-gon, 5 ≤ m ≤ 7, or

4. with one triangle, two quadrangles, and one n-gon, 4 ≤ n ≤ 5.

If vertex x has property (1), it is called a control point of Type I. If x has
one of the properties (2), (3), or (4), it is called a control point of Type II.

3. Main Results

We begin with the following lemma, with its simple proof left to the reader.

Lemma 4. The octahedron O has a SET S such that each vertex of O is a half

vertex of S.

Lemma 5. If G and G′ are tfps, G has a SET S such that each vertex of G is

a half vertex of S, and G′ can be obtained from G by B, then G′ has a SET S′

such that each vertex of G′ is a half vertex of S′.

Proof. We will fix the notation of operation B in Figure 2. Assume that S has
halves S1 and S2. We will construct S′ with halves S′

1 and S′

2. Without loss of
generality, suppose cv ∈ S1.

Case 1: Suppose that bv ∈ S1, ab ∈ S1. Without loss of generality, further
suppose that aa1 ∈ S1. Then dv ∈ S2, va ∈ S2, and aa2 ∈ S2 (and bb1 ∈ S2 and
bb2 ∈ S2).

Form SET S′ in G′ by replacing the path cvba in S1 with cv1v2bua and by
replacing the path dva in S2 with dv2uv1a. Note that the case where va ∈ S1,
ab ∈ S1, and, without loss of generality, bb1 ∈ S1 is parallel.

Case 2: Suppose that va 6∈ S1 and vb 6∈ S1. Then vd ∈ S1, va ∈ S2, and
vb ∈ S2. It must also be the case that ab ∈ S1 and, without loss of generality,
aa1 ∈ S1 and bb1 ∈ S1.

Form SET S′ in G′ by replacing the path cvd in S1 with cvv1d and the edge
ab in S1 with the path aub, and by replacing the path avb in S2 with av1uv2b.

All other cases are very similar.
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Lemma 6. If G and G′ are tfps, G has a SET S such that each vertex of G is

a half vertex of S, and G′ can be obtained from G by C, then G′ has a SET S′

such that each vertex of G′ is a half vertex of S′.

Proof. We will fix the notation of operation C in Figure 2. Assume that S has
halves S1 and S2. We will construct S′ with halves S′

1 and S′

2. Without loss
of generality, suppose av ∈ S1. Now, assume that vd ∈ S1. Thus bv ∈ S2 and
cv ∈ S2.

Form SET S′ in G′ by replacing path avd in S1 with path aa1c1vb1d1d and by
replacing path bvc in S2 by path bb1a1vd1c1c. The cases that vb ∈ S1 or vc ∈ S1

are similar; all other cases follow by symmetry.

Theorem 7. If G is tfp and there is a finite sequence G0, G1, . . . , Gn such that

G0 = O, Gn = G, and, for each i = 1, . . . , n, Gi is constructible from Gi−1 from

one of B and C, then G has a SET S such that each vertex of G is a half vertex

of S.
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Lemma 8. Suppose tfp G contains one of the subgraphs, T1 or T2, as in Figure

3 and Figure 4, respectively. Further suppose that G has SET S such that each

vertex of G is a half vertex of S. Let T ′ be as in Figure 5 and let G′ be the tfp

constructed by replacing T1 or T2 in G by T ′. Then G′ is a tfp and has SET S′

such that each vertex of G′ is in each half of S′.
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Proof. Suppose G contains T1. S meets T1 such that each of the paths p1pp2
and qiqbacrrj with i, j in {1, 2} are in one half of S (S1) and q3−iqapcbrr3−j are
in the other (S2).

We construct G′ by replacing T1 in G by T ′. As an example, with i = 1 and
j = 1, we construct SET S′ in G′ such that S′ has halves S′

1 and S′

2 defined so
that q2qbacrr2 in S1 is replaced by q2qrr2 and q1qapcbrr1 in S2 is replaced by
q1qprr1.

We may iterate the construction above to yield the result for T2.
As an example, suppose S meets T2 such that each of the paths p1pp2 and

q2qkbjhadgfcnmsrr2 are in half S1 of S and q1qhkjagdpfcnmsrr1 is in the other
half, S2.

Construct G′ by replacing T2 in G by T ′. We construct S′ in G′ so that S′

has halves S′

1 and S′

2 defined so that q2qkbjhadgfcnmsrr2 in S1 is replaced by
q2qrr2 and q1qhkjagdpfcnmsrr1 is replaced by q1qrr2 in S2.

The remaining cases are very similar; their constructions are left to the
reader.

In the following theorem, the term elementary transformation will mean the
replacement of a triangular face of tfp G with one of the “triangular” subgraphs
of T1 or T2 of Lemma 8.

Theorem 9. Every tfp G having a SET S such that each vertex of G is a half

vertex of S can be transformed using (at most) two elementary transformations

to a tfp G′ having a SET S′ in which every vertex of G′ is a half vertex of S and

G′ has at most one control point of Type II.

Proof. Let G be a tfp having a SET S such that each vertex of G is a half vertex
of S. If G has fewer than 2 control points of Type II, then we are done. Hence,
we will assume G has at least 2 control points of Type II.

Case 1: There is a Type II control point w with face with two triangles, one
quadrangle, and one l-gon, 4 ≤ l ≤ 11. We replace one of the triangular faces on
which w lies with the appropriate triangular subgraph of T1 or T2 such that w is
no longer a control point of Type II.

The resulting graph is a tfp with fewer control points of Type II than G and,
by Lemma 8, this graph has a SET such that each vertex of the graph is in each
half of the SET.

Case 2: Suppose we do not have Case 1 and H has a control point w with
face with two triangles, one pentagon, and one m-gon, 5 ≤ m ≤ 7. Again, we
replace a triangular face with T1 so that w is no longer a control point of Type
II. The resulting graph is a tfp with fewer control points of Type II than G and,
by Lemma 8, this graph has a SET such that each vertex of the graph is in each
half of the SET.
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Case 3: Suppose we have neither Case 1 nor Case 2. Then there exists a
control point w with face with one triangle, two quadrangles, and one n-gon,
4 ≤ n ≤ 5. We use the same technique as in Case 2.

We iteratively apply the algorithm implied by the 3 cases (in the order pre-
sented) until the constructed graph contains fewer than 2 control points of Type
II.

In a related result, one can show that each tfp H with no Type II control
points and with all faces sizes 3 or 4 has an SET S such that each vertex of H is
a half vertex of S. One method of proof is to induct on the number of 4-faces of
H.

We also offer the conjecture that the question of determining whether each
tfp G has a SET S such that each vertex of G is a half vertex of S is NP-complete.
In particular, we suspect that it is possible to show directly its equivalence to
the NP-complete question of deciding whether a planar, cubic, 3-connected graph
with minimum face size 5 admits a Hamiltonian circuit [8].

x yH

Figure 6

Figure 7

Theorem 10. There exists a 2-connected 4-regular planar graph that does not

have a SET.

Proof. Let G be any 2-connected 4-regular planar graph, such as the octahedron,
with n vertices. Define H to be the graph in Figure 6, where H contains n copies
of the graph in Figure 7.

Let G′ be the graph obtained by replacing an edge xy in G by graph H. It is
clear that G′ is 2-connected, 4-regular, and planar, but cannot contain any SET.
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