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Abstract

One of the best known results in spectral graph theory is the following
lower bound on the chromatic number due to Alan Hoffman, where µ1 and
µn are respectively the maximum and minimum eigenvalues of the adjacency
matrix: χ ≥ 1+µ1/−µn. We recently generalised this bound to include all
eigenvalues of the adjacency matrix.

In this paper, we further generalize these results to include all eigenval-
ues of the adjacency, Laplacian and signless Laplacian matrices. The various
known bounds are also unified by considering the normalized adjacency ma-
trix, and examples are cited for which the new bounds outperform known
bounds.
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1. Introduction

We introduce some notation to state the lower bounds on the chromatic number.
Let G be a graph with n vertices, m edges, chromatic number χ and adjacency
matrix A. Let D be the diagonal matrix of vertex degrees. Let L = D − A
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denote the Laplacian of G and Q = D + A denote the signless Laplacian of G.
The eigenvalues of A are denoted by µ1 ≥ · · · ≥ µn; of L by θ1 ≥ · · · ≥ θn = 0;
of Q by δ1 ≥ · · · ≥ δn ≥ 0. It is known that for all graphs δi ≥ 2µi holds for
i = 1, . . . , n.

Theorem 1 (Lower bounds on the chromatic number). The chromatic number

is bounded from below by:

χ ≥ 1 +
µ1

−µn
,(1)

χ ≥ 1 +
µ1

θ1 − µ1

,(2)

χ ≥ 1 +
µ1

µ1 − δ1 + θ1
,(3)

χ ≥ 1 +
µ1

µ1 − δn + θn
.(4)

The bound (1) was proved by Hoffman [3] in 1970, the bound (2) by Nikiforov
[6] in 2007, and the bounds (3) and (4) by Kolotilina [4] in 2010. Observe that
θn = 0 is included in (4) on purpose because the generalization of this bound
makes use of the eigenvalues of L.

The purpose of this paper is to prove the following multi-eigenvalue general-
ization of the above lower bounds.

Theorem 2 (Generalized lower bounds on the chromatic number). The chro-

matic number is bounded from below by:

χ ≥ 1 +

∑m
i=1

µi

−
∑m

i=1
µn+1−i

,(5)

χ ≥ 1 +

∑m
i=1

µi
∑m

i=1
(θi − µi)

,(6)

χ ≥ 1 +

∑m
i=1

µi
∑m

i=1
(µi − δi + θi)

,(7)

χ ≥ 1 +

∑m
i=1

µi
∑m

i=1
(µi − δn+1−i + θn+1−i)

,(8)

for all m = 1, . . . , n.

Bound (5) was proved by Wocjan and Elphick [7] in 2013. The other bounds
are new.

Remark 3. In 2011 Lima, Oliveira, Abreu and Nikiforov [5] proved that

χ ≥ 1 +
2m

2m− nδn
.(9)
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A new proof of this result is provided, based on the method of converting the
adjacency matrix into the zero matrix. Observe that since µ1 ≥ 2m/n, bound
(4) follows immediately from this result.

2. Proof of Theorem 1

To put the generalized multi-eigenvalue lower bounds on the chromatic number
in Theorem 2 and our proof into context, we outline the proof of Theorem 1.

Let V = {1, . . . , n}. Let A ∈ C
n×n be an arbitrary non-zero Hermitian matrix

with the restriction that its diagonal entries are all zero. Let c be an arbitrary
integer with c ≥ 2. We say that A can be colored with c colors if there exists
a partition of V into disjoint subsets V1, . . . , Vc such that for each s = 1, . . . , c
akℓ = 0 for all k, ℓ ∈ Vs.

In the special case when A is the adjacency matrix of a graph, this corre-
sponds to the usual graph coloring. A graph can be colored with c colors if it is
possible to assign at most c different colors to its vertices such that any two ad-
jacent vertices receive different colors. The chromatic number χ is the minimum
number of colors required to color the graph.

In 2007, Nikiforov proved the following result [6]:

Lemma 4. Let A ∈ C
n×n be an arbitrary non-zero Hermitian matrix (with zeros

on the diagonal ) that is colorable with c > 1 colors. Then, for any real diagonal

matrix B ∈ C
n×n,

λmax(B −A) ≥ λmax

(

B +
1

c− 1
A

)

.(10)

This result implies immediately several known lower bounds on the chromatic
number. It is convenient to formulate the following corollary to obtain derivations
of these bounds.

Corollary 5. Let A ∈ C
n×n be an arbitrary non-zero Hermitian matrix (with

zeros on the diagonal) that is colorable with c > 1 colors. Then, for any real

diagonal matrix B ∈ C
n×n,

λmax(B −A) ≥ λmax(B +A)−
c− 2

c− 1
λmax(A),(11)

and consequently

c ≥ 1 +
λmax(A)

λmax(A)− λmax(B +A) + λmax(B −A)
.(12)



776 C. Elphick and P. Wocjan

To obtain the statement of the corollary, consider the statement of Lemma 4
and write the matrix on the right hand side as B + 1

c−1
A = B +A− c−2

c−1
A. It is

easy to see that λmax(X−Y ) ≥ λmax(X)−λmax(Y ) holds for arbitrary Hermitian
matrices. In particular, this inequality holds for X = B+A and Y = c−2

c−1
A, which

yields the statement of the corollary.
We are now ready to outline the proof of Theorem 1.

Proof of Theorem 1. Hoffman’s bound (1) is equivalent to the statement of
Corollary 5 when A is the adjacency matrix and B is the zero matrix. Kolotilina’s
bounds (3) and (4) are equivalent to the statement of Corollary 5 when A is the
adjacency matrix and B = ±D, respectively. Note that Nikiforov’s hybrid bound
(2) follows from (3) since δ1 ≥ 2µ1.

3. Proof of Theorem 2

For an arbitrary Hermitian matrix X ∈ C
n×n, let λ↓

1
(X), . . . , λ↓

n(X) denote its
eigenvalues sorted in non-increasing order.

We use the following result, which is well known in majorization theory [1].
Let X1, . . . , Xd ∈ C

n×n be arbitrary Hermitian matrices. Then

∑m

i=1
λ↓
i (X1) + · · ·+

∑m

i=1
λ↓
i (Xd) ≥

∑m

i=1
λ↓
i (X1 + · · ·+Xd) .(13)

Let S, T ∈ C
n×n be two arbitrary Hermitian matrices. Setting d = 2, X1 = S−T

and X2 = T , implies the bound

∑m

i=1
λ↓
i (S − T ) ≥

∑m

i=1
λ↓
i (S)−

∑m

i=1
λ↓
i (T ).(14)

We are now ready to formulate and prove our multi-eigenvalue generalization
of Lemma 4 and Corollary 5.

Lemma 6. Let A ∈ C
n×n be an arbitrary non-zero Hermitian matrix (with zeros

on the diagonal) that can be colored with c > 1 colors. Then, for any real diagonal

matrix B ∈ C
n×n,

∑m

i=1
λ↓
i (B −A) ≥

∑m

i=1
λ↓
i

(

B +
1

c− 1
A

)

(15)

for all m = 1, . . . , n.

Proof. In [7], the authors proved the following conversion result: there exist c−1
diagonal matrices Us whose diagonal entries are complex roots of unity such that

∑c−1

s=1
U †
s (−A)Us = A.
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This conversion result immediately implies

∑c−1

s=1
U †
s (B −A)Us = (c− 1)B +A.(16)

since UsBU †
s = BUsU

†
s = B holds because the diagonal matrices Us and B

commute and UsU
†
s = I for all s. The statement

∑m

i=1
λ↓
i (B −A) ≥

∑m

i=1
λ↓
i

(

B +
1

c− 1
A

)

(17)

is obtained by applying the result in (13) with Xs = U †
s (B − A)Us for s =

1, . . . , c − 1 to the left hand side of (16) and by dividing everything by (c − 1).
This uses that conjugation by a unitary matrix does not change the spectrum of
a Hermitian matrix, that is, λ↓

i (Xs) = λ↓
i (B −A) for all i and s.

As noted in the introduction, the above result encompasses the special case

λ↓
1
(B −A) ≥ λ↓

1

(

B +
1

c− 1
A

)

,

which was proved by Nikiforov in [6, Theorem 1] using entirely different tech-
niques.

Corollary 7. Let A ∈ C
n×n be an arbitrary non-zero Hermitian matrix (with

zeros on the diagonal) that can be colored with c > 1 colors. Then, we have

∑m

i=1
λ↓
i

(

B +
1

c− 1
A

)

≥
∑m

i=1
λ↓
i (B +A)−

c− 2

c− 1

∑m

i=1
λ↓
i (A)(18)

and consequently

c ≥ 1 +

∑m
i=1

λ↓
i (A)

∑m
i=1

λ↓
i (A)−

∑m
i=1

λ↓
i (B +A) +

∑m
i=1

λ↓
i (B −A)

.(19)

Proof. The first statement is obtained by writing B+ 1

c−1
A = B+A− c−2

c−1
A and

applying the result in (14) with S = B + A and T = c−2

c−1
A to the left hand side

of (18). The second statement follows from the first one by elementary algebra.

We are now ready to prove the multi-eigenvalue bounds of Theorem 2.

Proof of Theorem 2. The generalized Hoffman bound (5) is equivalent to the
statement of Corollary 7 when A is the adjacency matrix and B is the zero matrix.
The generalized Kolotilina bounds (7) and (8) are equivalent to the statement
of equation (19) in Corollary 7 when A is the adjacency matrix and B = ±D,
respectively. Note that the generalized Nikiforov bound (6) follows from (7) since
δi ≥ 2µi for all i.
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Using the conversion result, we can also give an alternative proof of the Lima,
Oliveira, Abreu and Nikiforov bound in (9).

Proof of Remark 3. The identity D − Q = −A, and the invariance of the
diagonal entries under conjugation by the diagonal unitary matrices Us imply

A =
∑c−1

s=1
Us(−A)U †

s =
∑c−1

s=1
Us(D −Q)U †

s = (c− 1)D −
∑c−1

s=1
UsQU †

s .

Define the column vector v = 1√
n
(1, 1, . . . , 1)T . Multiply the left and right most

sides of the above matrix equation by v† from the left and by v from the right to
obtain

2m

n
= v†Av = (c− 1)

2m

n
−
∑c−1

s=1
v†UsQU †

sv ≤ (c− 1)
2m

n
− (c− 1)δn.

This uses that v†Av = v†Dv = 2m/n, which is equal to the sum of all entries
of respectively A and D divided by n due to the special form of v, and that
w†UsQU †

sw ≥ λmin(Q) = δn. This inequality follows from [1, Problem I.6.15]

since U †
sw is a unit vector, which is not necessarily an eigenvector of Q corre-

sponding to the eigenvalue δn.

4. Unification of Bounds

Let G be a graph with no isolated vertices. Let D denote the diagonal matrix
whose entries d1, . . . , dn are the degrees of the vertices. Chung [2] defined a
normalized adjacency matrix ofG, A = D−1/2AD−1/2, and similarly a normalized
Laplacian matrix L = I − A and a normalized signless Laplacian matrix Q =
I + A. Let 1 = µ∗

1 ≥ µ∗
2 ≥ · · · ≥ µ∗

n denote the eigenvalues of A; θ∗1 ≥ θ∗2 ≥
· · · ≥ θ∗n = 0 denote the eigenvalues of L; and δ∗1 ≥ δ∗2 ≥ · · · ≥ δ∗n denote the
eigenvalues of Q. Note that θ∗i = 1− µ∗

n−i+1 and δ∗i = 1 + µ∗
i , for all i.

In Corollary 5, consider the three cases: B = 0 and A = A, B = I and
A = A, and B = −I and A = A. These lead to normalized versions of the
Hoffman and Kolotilina bounds. However, because of the relationships between
the eigenvalues of A, L, and Q, all three normalized bounds are equal to the
following inequality:

χ ≥ 1 +
1

−µ∗
n

.(20)

Bound (20) therefore unifies the Hoffman and Kolotilina bounds and is equivalent
to a special case of [2, Theorem 6.7]. Bound (20) is exact for all bipartite graphs
and for regular graphs for which bound (1) is exact. It is also exact for some
irregular graphs for which bound (4) is not exact, such as Sierpiński and some
windmill graphs.
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In Corollary 7, consider again the three cases: B = 0 and A = A, B = I and
A = A, and B = −I and A = A. These lead to normalized versions of bounds
(5), (7) and (8), all of which are equal to:

χ ≥ 1 +

∑m
i=1

µ∗
i

∑m
i=1

−µ∗
n+i−1

(21)

for all m = 1, . . . , n.

These normalized bounds are equal to the equivalent un-normalized bounds
for regular graphs. However, bounds (20) and (21) perform better than the un-
normalized bounds for many named irregular graphs.

There are graphs for which each of the bounds discussed in this paper per-
forms the best. For example the NoPerfectMatching Graph on 16 vertices, with
χ = 4, has bound (1) equal to 2.5 but bound (7) with m = 3 is the best, equal
to 2.9. Circulant(16,(1,7,8)), with χ = 4, has bound (1) equal to 2.7 but bound
(21) with m = 3 is the best, equal to 2.9.

5. Conclusions

This paper generalises an eigenvalue inequality due to Nikiforov. This enables
several lower bounds for the chromatic number to be generalised to encompass
all eigenvalues of the adjacency, Laplacian and signless Laplacian matrices. A
bound using the normalized adjacency matrix is also derived, which often per-
forms better than any of the un-normalized bounds.

The proof of Theorem 2 is straightforward because of the power of combin-
ing the conversion result with majorization, and because the proof uses graph
matrices rather than the eigenvectors of these matrices.
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