ON SUPER $(a, d)-H$-ANTIMAGIC TOTAL COVERING OF STAR RELATED GRAPHS

KM. Kathiresan
Centre for Research and Post Graduate Studies in Mathematics Ayya Nadar Janaki Ammal College (Autonomous) Sivakasi-626 124, Tamil Nadu, INDIA
e-mail: kathir2esan@yahoo.com

AND
S. DAVID LAURENCE ${ }^{1}$

Department of Mathematics
Rajapalayam Rajus' College
Rajapalayam-626 117, Tamil Nadu, INDIA
e-mail: danipravin@yahoo.co.in

Abstract

Let $G=(V(G), E(G))$ be a simple graph and H be a subgraph of G. G admits an H-covering, if every edge in $E(G)$ belongs to at least one subgraph of G that is isomorphic to H. An $(a, d)-H$-antimagic total labeling of G is a bijection $\lambda: V(G) \cup E(G) \rightarrow\{1,2,3, \ldots,|V(G)|+|E(G)|\}$ such that for all subgraphs H^{\prime} isomorphic to H, the H^{\prime} weights $$
w t\left(H^{\prime}\right)=\sum_{v \in V\left(H^{\prime}\right)} \lambda(v)+\sum_{e \in E\left(H^{\prime}\right)} \lambda(e)
$$ constitute an arithmetic progression $a, a+d, a+2 d, \ldots, a+(n-1) d$ where a and d are positive integers and n is the number of subgraphs of G isomorphic to H. Additionally, the labeling λ is called a super (a, d) - H-antimagic total labeling if $\lambda(V(G))=\{1,2,3, \ldots,|V(G)|\}$.

In this paper we study super (a, d) - H-antimagic total labelings of star related graphs $G_{u}\left[S_{n}\right]$ and caterpillars. Keywords: super (a, d)-H-antimagic total labeling, star. 2010 Mathematics Subject Classification: 05C78.

[^0]
1. Introduction

Let $G=(V(G), E(G))$ and $H=(V(H), E(H))$ be simple and finite graphs. Let $|V(G)|=p,|E(G)|=q$. An edge covering of G is a family of different subgraphs $H_{1}, H_{2}, H_{3}, \ldots, H_{k}$ such that any edge of $E(G)$ belongs to at least one of the subgraphs H_{j} 's, $1 \leq j \leq k$. If the H_{j} are isomorphic to a given graph H, then G admits an H-covering.

Suppose G admits an H-covering. Gutiérrez and Lladó [1] defined an H magic labeling which is a generalization of Kotzig and Rosa's edge magic total labeling [5]. A bijection $f: V(G) \cup E(G) \rightarrow\{1,2,3, \ldots, p+q\}$ is called an H magic labeling of G if there exists a positive integer k such that each subgraph H^{\prime} isomorphic to H satisfies

$$
f\left(H^{\prime}\right)=\sum_{v \in V\left(H^{\prime}\right)} f(v)+\sum_{e \in E\left(H^{\prime}\right)} f(e)=k .
$$

In this case, we say that G is H magic. When $f(V(G))=\{1,2,3, \ldots, p\}$, we say that G is H-super magic.

On the other hand, Inayah et al. [2] introduced an $(a, d)-H$-antimagic total labeling of G which is defined as a bijection $f: V(G) \cup E(G) \rightarrow\{1,2,3, \ldots, p+q\}$ such that for all subgraphs H^{\prime} isomorphic to H, the set of H^{\prime}-weights

$$
w t\left(H^{\prime}\right)=\sum_{v \in V\left(H^{\prime}\right)} f(v)+\sum_{e \in E\left(H^{\prime}\right)} f(e)
$$

constitutes an arithmetic progression $a, a+d, a+2 d, \ldots, a+(n-1) d$ where a and d are some positive integers and n is the number of subgraphs isomorphic to H. In this case we say that G is (a, d) - H-antimagic. When $f(V(G))=\{1,2,3, \ldots, p\}$, we say that f is a super (a, d) - H-antimagic total labeling and G is super (a, d) -H-antimagic.

In [1] Gutiérrez and Lladó discussed H-supermagic labelings of stars, complete bipartite graphs, paths and cycles. In [6], Lladó and Moragas studied C_{h}-supermagic labelings of some graphs, namely, wheels, windmills, prisms and books. In [7], Maryati et al. proved that some classes of trees such as subdivisions of stars, shrubs and banana tree graphs are P_{h}-supermagic for some h. In [2], Inayah et al. studied some properties of (a, d)- H-antimagic total labeling for any graph and also discussed the $(a, d)-C_{h}$-antimagic total labelings of fans. Recently, Inayah, Simanjuntak and Salman [4] proved that there exists a super (a, d)- H -antimagic total labeling for shackles of a connected graph H.

In this paper we study super (a, d) - H-antimagic total labelings of star related graphs $G_{u}\left[S_{n}\right]$ and caterpillars.

Figure 1. Super $(21,1)-P_{3}$-antimagic total labeling and super $(33,1)-C_{3}$-antimagic total labeling.

2. Sum Set Partitions

As in $[1,3,8]$, the proofs of our main results are based on the use of sum set partitions. We recall in this section some useful facts on this concept.

Let $x<y$ be positive integers. Throughout the paper we denote by $[x, y]$ to mean $\{i \in N: x \leq i \leq y\}$. Given a set X of integers and a partition $\mathcal{P}=$ $\left\{X_{1}, X_{2}, \ldots, X_{k}\right\}$ of X into k parts. We denote by $\sum(\mathcal{P})=\left(\sum X_{1}, \sum X_{2}, \ldots\right.$, $\sum X_{k}$), the sum set partition of \mathcal{P} where $\sum X_{i}=\sum_{x \in X_{i}} x$. We will always order the partition in such a way that the sequence of subset sums $\sum X_{1} \leq \sum X_{2} \leq$ $\cdots \leq \sum X_{k}$ is non decreasing.

When all sets in \mathcal{P} have the same cardinality then we say that \mathcal{P} is an equipartition of X or k-equipartition or a k-balanced multisets of X.

We have the following lemmas.
Lemma 1 [8]. Let x and y be nonnegative integers. Let $X=[x+1, x(y+1)]$ with $|X|=x y$ and $Y=[x(y+2), 2 x(y+1)-1]$ with $|Y|=x y$. Then, there exists a partition K of $X \cup Y$ such that $\sum(K)$ is an arithmetic progression starting at $x(y+3)+1$ with common difference 2 and hence K is $x y$-balanced with all its subsets being 2 -sets.
Proof. For each $i \in[1, x y]$, define $K_{i}=\left\{a_{i}, b_{i}\right\}$ such that $a_{i}=x+i, b_{i}=$ $x(y+2)+i-1$. Thus $\sum K_{i}=x(y+3)+2 i-1$, for all $i \in[1, x y]$.

Hence, the sum set partition of $K, \sum(K)=\left(\sum K_{1}, \sum K_{2}, \ldots, \sum K_{x y}\right)$ forms an arithmetic progression with common difference 2. Therefore, K is $x y$-balanced with all its subsets being 2 -sets.

Lemma 2. Let x, y and z be nonnegative integers. Let $X=[x+1, x+y]$ with $|X|=y$ and $Y=[x+y+z+1, x+2 y+z]$ with $|Y|=y$. Then, there exists a partition K of $X \cup Y$ such that
(i) $\sum(K)$ is an arithmetic progression starting at $2 x+2 y+z+1$ with common difference 0, and
(ii) $\sum(K)$ is an arithmetic progression starting at $2 x+y+z+2$ with common difference 2 and hence K is y-balanced with all its subsets being 2 -sets.

Proof. (i) For each $i \in[1, y]$ define the sets $K_{i}=\left\{a_{i}, b_{i}\right\}$ such that $a_{i}=x+i$, $b_{i}=x+2 y+z-i+1$. Then $\sum K_{i}=2 x+2 y+z+1$, for each $i \in[1, y]$.

Hence, the sum set partition of $K, \sum(K)=\left(\sum K_{1}, \sum K_{2}, \ldots, \sum K_{y}\right)$ forms an arithmetic progression with common difference 0 . Therefore, K is y-balanced with all its subsets being 2 -sets.
(ii) For each $i \in[1, y]$, we take the sets $K_{i}=\left\{a_{i}, b_{i}\right\}$ such that: $a_{i}=x+i$, $b_{i}=x+y+z+i$. Then $\sum K_{i}=2 x+y+z+2 i$, for each $i \in[1, y]$.

Hence, the sum set partition of $K, \sum(K)=\left(\sum K_{1}, \sum K_{2}, \ldots, \sum K_{y}\right)$ forms an arithmetic progression with common difference 2 . Therefore, K is y-balanced with all its subsets being 2 -sets.

Lemma 3. Let x, y and z be nonnegative integers. Let $X=\{1,3,5, \ldots, 2 y-1\}$ with $|X|=y$ and $Y=[x+y+z+1, x+2 y+z]$ with $|Y|=y$. Then, there exists a partition K of $X \cup Y$ such that
(i) $\sum(K)$ is an arithmetic progression starting at $x+2 y+z+1$ with common difference 1, and
(ii) $\sum(K)$ is an arithmetic progression starting at $x+y+z+2$ with common difference 3 and hence K is y-balanced with all its subsets being 2 -sets.

Proof. (i) For each $i \in[1, y]$, we define $K_{i}=\left\{a_{i}, b_{i}\right\}$ where $a_{i}=2 i-1, b_{i}=$ $x+2 y+z-i+1$. Then $\sum K_{i}=x+2 y+z+i$, for each $i \in[1, y]$.

Hence, the sum set partition of $K, \sum(K)=\left(\sum K_{1}, \sum K_{2}, \ldots, \sum K_{y}\right)$ forms an arithmetic progression with common difference 1 . Therefore, K is y-balanced and all its subsets are 2 -sets.
(ii) For each $i \in[1, y]$, we define $K_{i}=\left\{a_{i}, b_{i}\right\}$ where $a_{i}=2 i-1, b_{i}=$ $x+y+z+i$. Then $\sum K_{i}=x+y+z+3 i-1$, for each $i \in[1, y]$.

Hence, the sum set partition of $K, \sum(K)=\left(\sum K_{1}, \sum K_{2}, \ldots, \sum K_{y}\right)$ forms an arithmetic progression with common difference 3 . Therefore, K is y-balanced and all its subsets are 2 -sets.

3. Main Results

Let G be a (p, q) graph and S_{n} be a star with n edges. Fix a vertex u of G. Then $G_{u}\left[S_{n}\right]$ is the graph obtained by identifying the vertex u with the centre of S_{n}. Let w be any vertex of S_{n}. Then $G+e, e=u w$, is a subgraph of $G_{u}\left[S_{n}\right]$. In this section, we consider graphs G for which $G_{u}\left[S_{n}\right]$ contains exactly n subgraphs isomorphic to $G+e$.

Let $G^{\prime} \cong G_{u}\left[S_{n}\right]$. Let $v_{1}, v_{2}, \ldots, v_{p}$ and $w_{1}, w_{2}, \ldots, w_{n}$ be the vertices of G and S_{n} respectively. Let $e_{1}, e_{2}, \ldots, e_{q}$ and $e_{q+1}, e_{q+2}, \ldots, e_{q+n}$ be the edges of G and S_{n} respectively. Then $\left|V\left(G^{\prime}\right)\right|=p+n$ and $\left|E\left(G^{\prime}\right)\right|=q+n$.

Lemma 4. If the graph $G_{u}\left[S_{n}\right], n \geq 2$, admits a super $(a, d)-(G+e)$-antimagic total labeling, then $d \leq p+q+2$.
Proof. Let $G^{\prime} \cong G_{n}\left[S_{n}\right]$. Suppose there exists a bijection $f: V\left(G^{\prime}\right) \cup E\left(G^{\prime}\right) \rightarrow$ $\{1,2,3, \ldots, p+q+2 n\}$ which is a super $(a, d)-(G+e)$-antimagic total labeling of G^{\prime}. Let $w t\left(H^{\prime}\right)=\sum_{v \in V\left(H^{\prime}\right)} f(v)+\sum_{e \in E\left(H^{\prime}\right)} f(e)$ be the weights of the subgraph H^{\prime} isomorphic to $G+e$ and let $W=\left\{w\left(H^{\prime}\right): H^{\prime} \cong G+e\right\}=\{a, a+d, a+$ $2 d, \ldots, a+(t-1) d\}$ be the set of H^{\prime} weights and t be the number of subgraphs. Here $t=n$. Now, it is easy to see that the minimum possible weight of H^{\prime} is at least $(p+1)(p+2) / 2+(q+1)(p+n)+(q+1)(q+2) / 2$ i.e., $a \geq(p+1)(p+$ $2) / 2+(q+1)(p+n)+(q+1)(q+2) / 2$. Also the maximum possible weight of H^{\prime} is not more than $(p+1)(p+n)-p(p+1) / 2+(q+1)(p+q+2 n)-q(q+1) / 2$, i.e., $a+(t-1) d \leq(p+1)(p+n)-p(p+1) / 2+(q+1)(p+q+2 n)-q(q+1) / 2$, $(n-1) d \leq(n-1)(p+q+2)$, thus $d \leq p+q+2$.

Theorem 5. The graph G^{\prime} admits a super $\left(\frac{1}{2}(p+q)(p+q+3)+n(q+2)+p\right.$ $+1,0)-(G+e)$-antimagic total labeling.
Proof. Let $Z=[1, p+q+2 n]$ and partition Z into four sets such that $Z=$ $A \cup B \cup C \cup D$ where $A=[1, p], B=[p+1, p+n], C=[p+n+1, p+q+n]$ and $D=[p+q+n+1, p+q+2 n]$. Let $K=B \cup D$ and let $x=p, y=n$ and $z=q$. Then by Lemma 2(i), K is n-balanced multisets with all its subsets being 2 -sets and $\sum K_{i}=2 p+q+2 n+1$, for each $i \in[1, n]$.

Now we define a total labeling f on G^{\prime} as follows:
Label the vertices $v_{i}, 1 \leq i \leq p$ by the elements of A and label the edges $e_{i}, 1 \leq i \leq q$ by the elements of C in any manner. Next use the elements of K to label all the vertices and edges of the star, use the smaller labels for the vertices and bigger labels for the edges in reverse order. Then for each $i, 1 \leq i \leq n$,

$$
\begin{aligned}
w t\left(G+e_{q+i}\right) & =(1+2+3+\cdots+p)+(p+n+1+p+n+2, \ldots, p+q+n) \\
& +\sum K_{i} \\
& =\frac{p(p+1)}{2}+q(p+n)+\frac{q(q+1)}{2}+2 p+q+2 n+1 \\
& =\frac{p(p+1)}{2}+\frac{q(q+1)}{2}+(p+n)(q+2)+q+1 \\
& =\frac{1}{2}(p+q)(p+q+3)+n(q+2)+p+1 .
\end{aligned}
$$

Hence G^{\prime} has a super $\left(\frac{1}{2}(p+q)(p+q+3)+n(q+2)+p+1,0\right)-(G+e)$-antimagic total labeling.

Theorem 6. The graph G^{\prime} has a super $\left(\frac{1}{2}\left[(p+q)^{2}+(p+q)(2 n+3)+5 n-n^{2}\right]\right.$ $+1,1)-(G+e)$-antimagic total labeling.

Proof. Let $Z=[1, p+q+2 n]$ and partition Z into four sets such that $Z=A \cup B \cup$ $C \cup D$ where $A=\{2,4, \ldots, 2 n, 2 n+1,2 n+2, \ldots, p+n\}, B=\{1,3,5, \ldots, 2 n-1\}$, $C=[p+n+1, p+q+n]$ and $D=[p+q+n+1, p+q+2 n]$. Let $K=B \cup D$ and let $x=p, y=n$ and $z=q$. Then by Lemma $3(\mathrm{i}), K$ is n-balanced multisets with all its subsets being 2 -sets and $\sum K_{i}=p+q+2 n+i$, for each $i \in[1, n]$.

Now we define a total labeling f on G^{\prime} as follows:
Label the vertices $v_{i}, 1 \leq i \leq p$ with the elements of A and label the edges $e_{i}, 1 \leq i \leq q$ with the elements of C in any order. Next use the elements of K to label all the vertices and edges of the star, use the smaller labels for the vertices and bigger labels for the edges in reverse order. Then for each $i, 1 \leq i \leq n$,

$$
\begin{aligned}
w t\left(G+e_{q+i}\right) & =2+4+6+\cdots+2 n+2 n+1+2 n+2+\cdots+2 n+p-n \\
& +p+n+1+p+n+2+\cdots+p+n+q+\sum K_{i} \\
& =n(n+1)+(p-n) 2 n+\frac{(p-n)(p-n+1)}{2} \\
& +q(p+n)+\frac{q(q+1)}{2}+p+q+2 n+i \\
& =\frac{1}{2}\left((p+q)^{2}+(p+q)(2 n+3)+5 n-n^{2}\right)+i .
\end{aligned}
$$

Hence G^{\prime} has a super $\left(\frac{1}{2}\left[(p+q)^{2}+(p+q)(2 n+3)+5 n-n^{2}\right]+1,1\right)-(G+e)$-antimagic total labeling.

Theorem 7. The graph G^{\prime} has a super $\left(\frac{1}{2}(p+q)(p+q+3)+(q+1) n+p+2,2\right)$ - $(G+e)$-antimagic total labeling.

Proof. Consider the partition of $[1, p+q+2 n]$ introduced in the proof of Theorem 5. By Lemma 2(ii), $\sum K_{i}=2 p+q+n+2 i$, for each $i \in[1, n]$.

$$
\begin{aligned}
w t\left(G+e_{q+i}\right) & =\frac{p(p+1)}{2}+q(p+n)+\frac{q(q+1)}{2}+2 p+q+n+2 i \\
& =\frac{1}{2}(p+q)(p+q+3)+(q+1) n+p+2 i
\end{aligned}
$$

Hence G^{\prime} has a super $\left(\frac{1}{2}(p+q)(p+q+3)+(q+1) n+p+2,2\right)-(G+e)$-antimagic total labeling.

Theorem 8. The graph G^{\prime} has a super $\left(\frac{1}{2}\left[(p+q)^{2}+(p+q)(2 n+3)-(n-1)\right.\right.$ $(n-2)]+3,3)-(G+e)$-antimagic total labeling.

Proof. Consider the partition of $[1, p+q+2 n]$ introduced in the proof of Theorem 6. By Lemma 3(ii), $\sum K_{i}=p+q+n-1+3 i$, for each $i \in[1, n]$.

$$
\begin{aligned}
w t\left(G+e_{q+i}\right) & =\frac{n(n+1)}{2}+(p-n)(2 n)+\frac{(p-n)(p-n+1)}{2} q(p+n) \\
& +\frac{q(q+1)}{2}+p+q+n-1+3 i \\
& =\frac{1}{2}\left[(p+q)^{2}+(p+q)(2 n+3)-(n-1)(n-2)\right]+3 i .
\end{aligned}
$$

Hence G^{\prime} has a super $\left(\frac{1}{2}\left[(p+q)^{2}+(p+q)(2 n+3)-(n-1)(n-2)\right]+3,3\right)-(G+$ $e)$-antimagic total labeling.

Theorem 9. The graph $G_{u}\left[S_{2}\right]$ admits a super $(a, d)-(G+e)$-antimagic total labeling if and only if $d \in\{0,1,2, \ldots, p+q+2\}$.

Proof. By Theorems 5-8, we have $d \in\{0,1,2,3\}$. The weight of G is the same for all the weights of the subgraphs $\left(G+e_{i}\right), i=1,2$. So it is enough to find the labels of vertices and edges of the star S_{2}. Now, for each $i, 1 \leq i \leq p-2$ we define the labeling f_{i} as follows.

$$
\begin{aligned}
f_{i}\left(w_{1}\right) & =p-i, \quad 1 \leq i \leq p-2, \\
f_{i}\left(e_{q+1}\right) & =p+q+3, \\
f_{i}\left(w_{2}\right) & =p+2, \text { and } \\
f_{i}\left(e_{q+2}\right) & =p+q+4 .
\end{aligned}
$$

Thus, the induced sums of the labels of vertices and edges of S_{2} are $2 p+q+3-i$ and $2 p+q+6$. Hence, $d=3+i, 1 \leq i \leq p-2$. Therefore, $d=4,5, \ldots, p+1$.

Also for each $i, 1 \leq i \leq q+1$, we define the labeling f_{i} as follows

$$
\begin{aligned}
f_{i}\left(w_{1}\right) & =1, \\
f_{i}\left(e_{q+1}\right) & =p+q+4-i, 1 \leq i \leq q+1, \\
f_{i}\left(w_{2}\right) & =p+2, \text { and } \\
f_{i}\left(e_{q+2}\right) & =p+q+4 .
\end{aligned}
$$

Thus, the induced sums of the labels of vertices and edges of S_{2} are $p+q+5-i, 2 p+$ $q+6$. Hence $d=p+1+i, 1 \leq i \leq q+1$. Therefore, $d=p+2, p+4, \ldots, p+q+2$.

Hence the results follows.
Open Problem 10. For each $d, 4 \leq d \leq p+q+2$, either find the super (a, d) -$(G+e)$-antimagic total labeling of the graph $G_{u}\left[S_{n}\right], n \geq 3$, or prove that this labeling does not exist.

4. Caterpillar

Definition 11. The backbone of a caterpillar is the graph obtained from it by removing its pendant edges.

Figure 2
Theorem 12. A caterpillar $S_{n_{1}, n_{2}, \ldots, n_{k}}$ has a super $\left(2(k+2) n^{2}+7 k n+2 k+1\right.$ $\left.+\left\lceil\frac{k}{2}\right\rceil, 4 n^{2}\right)-S_{n, n}$-antimagic total labeling for $n_{1}=n_{2}=\cdots=n_{k}=n$.

Proof. As in [8], let $G \cong S_{n_{1}, n_{2}, \ldots, n_{k}}$ with $n_{1}=n_{2}=\cdots=n_{k}=n$. Then $|V(G)|=k(n+1)$ and $|E(G)|=k(n+1)-1$.

Let $V(G)=\left\{c_{i}: 1 \leq i \leq k\right\} \cup\left\{v_{i j}: 1 \leq i \leq k, 1 \leq j \leq n\right\}$ and
$E(G)=\left\{c_{i} c_{i+1}: 1 \leq i \leq k-1\right\} \cup\left\{c_{i} v_{i j}: 1 \leq i \leq k, 1 \leq j \leq n\right\}$.
Let $Z=[1,2 k(n+1)-1]$ and partition Z into four sets such that $Z=A \cup B \cup$ $C \cup D$, where $A=[1, k], B=[k+1, k(n+1)], C=[k(n+1)+1, k(n+1)+k-1]$ and $D=[k(n+2), 2 k(n+1)-1]$. Let us take $A=\left\{x_{i}: 1 \leq i \leq k\right\}$ such that

$$
x_{i}= \begin{cases}\left\lfloor\frac{i}{2}+1\right\rfloor & \text { for odd } i \\ \left\lceil\frac{k}{2}\right\rceil+\frac{i}{2} & \text { for even } i\end{cases}
$$

Let $K=B \cup D$ and let $x=k, y=n$. Then by Lemma $1, K$ is $k n$-balanced with all its subsets being 2 -sets and $\sum K_{i}=k(n+3)+2 i-1$, for each $i \in\left[1, k_{n}\right]$.

Now we define a total labeling f on G as follows:
Label the vertices of the backbone by the elements of A with the ordering from left to right and label the backbone edges by the elements of C from right to left. Next we use the elements of K to label all the remaining edges and vertices, use the smaller labels for the vertices.

Now for each $1 \leq h \leq k-1$, we have

$$
\begin{aligned}
w t\left(S_{n, n}^{h}\right) & =\sum_{j=n h-n+1}^{(h+1) n}[k(n+3)+2 j-1]+\frac{h+1}{2}+\left\lceil\frac{k}{2}\right\rceil+\frac{h+1}{2} \\
& +k(n+1)+k-h=2 k n^{2}+7 k n+2 k+1+\left\lceil\frac{k}{2}\right\rceil+4 h n^{2} .
\end{aligned}
$$

In particular, we obtain that $a=w t\left(S_{n, n}^{1}\right)=2(k+2) n^{2}+7 k n+2 k+1+\left\lceil\frac{k}{2}\right\rceil$ and $d=w t\left(S_{n, n}^{h+1}\right)-w t\left(S_{n, n}^{h}\right)=4 n^{2}$, then G has a super $\left(2(k+2) n^{2}+7 k n+2 k+1+\right.$ $\left.\left\lceil\frac{k}{2}\right\rceil, 4 n^{2}\right)$ - $S_{n, n}$-antimagic total labeling.

Figure 3. Super $(245,36)-S_{3,3}$-antimagic total graph.

Figure 4. Super (440, 64)- $S_{4,4}$-antimagic total graph.

Acknowledgment

The authors thank the referees for a very meticulous reading of the manuscript. The suggestions of the referees have helped us to improve the readability of the articles.

References

[1] A. Gutierrez and A. Lladó, Magic coverings, J. Combin. Math. Combin. Comput. 55 (2005) 43-56.
[2] N. Inayah, A.N.M. Solmankl and R. Simanjuntak, On (a,d)-H-antimagic coverings of graphs, J. Combin. Math. Combin. Comput. 71 (2009) 273-281.
[3] N. Inayah, A. Llado and J. Moragas, Magic and antimagic H-decompositions, Discrete Math. 312 (2012) 1367-1371.
doi:10.1016/j.disc.2011.11.041
[4] N. Inayah, R. Simanjuntak and A.N.M. Salman, Super (a, d)-H-antimagic total labelings for shackles of a connected graph H, Australas. J. Combin. 57 (2013) 127138.
[5] A. Kotzig and A. Rosa, Magic valuations of finite graph, Canad. Math. Bull. 13 (1970) 451-461. doi:10.4153/CMB-1970-084-1
[6] A. Llado and J. Moragas, Cycle-magic graphs, Discrete Math. 307 (2007) 29252933.
doi:10.1016/j.disc.2007.03.007
[7] T.K. Maryati, E.T. Baskoro and A.N.M. Salman, P_{h}-supermagic labelings some trees, J. Combin. Math. Combin. Comput. 65 (2008) 197-204.
[8] M. Roswitha and E.T. Baskoro, H-magic covering on some classes of graphs, AIP Conf. Proc. 1450 (2012) 135-138. doi:10.1063/1.4724129

Received 10 March 2014
Revised 27 February 2015
Accepted 27 February 2015

[^0]: ${ }^{1}$ This research was supported by Universty Grants Commission (UGC) with an aid to Minor Research Project (MRP-5271/14) (SERO/UGC).

