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Abstract

Let G = (V (G), E(G)) be a simple graph and H be a subgraph of G. G
admits anH-covering, if every edge in E(G) belongs to at least one subgraph
of G that is isomorphic to H. An (a, d)-H-antimagic total labeling of G is a
bijection λ : V (G) ∪ E(G) → {1, 2, 3, . . . , |V (G)|+ |E(G)|} such that for all
subgraphs H ′ isomorphic to H, the H ′ weights

wt(H ′) =
∑

v∈V (H′)
λ(v) +

∑

e∈E(H′)
λ(e)

constitute an arithmetic progression a, a+d, a+2d, . . . , a+(n−1)d where a
and d are positive integers and n is the number of subgraphs of G isomorphic
to H. Additionally, the labeling λ is called a super (a, d)-H-antimagic total
labeling if λ(V (G)) = {1, 2, 3, . . . , |V (G)|}.

In this paper we study super (a, d)-H-antimagic total labelings of star
related graphs Gu[Sn] and caterpillars.
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1. Introduction

Let G = (V (G), E(G)) and H = (V (H), E(H)) be simple and finite graphs. Let
|V (G)| = p, |E(G)| = q. An edge covering of G is a family of different subgraphs
H1, H2, H3, . . . , Hk such that any edge of E(G) belongs to at least one of the
subgraphs Hj ’s, 1 ≤ j ≤ k. If the Hj are isomorphic to a given graph H, then G
admits an H-covering.

Suppose G admits an H-covering. Gutiérrez and Lladó [1] defined an H-
magic labeling which is a generalization of Kotzig and Rosa’s edge magic total
labeling [5]. A bijection f : V (G) ∪ E(G) → {1, 2, 3, . . . , p + q} is called an H-
magic labeling of G if there exists a positive integer k such that each subgraph
H ′ isomorphic to H satisfies

f(H ′) =
∑

v∈V (H′)
f(v) +

∑

e∈E(H′)
f(e) = k.

In this case, we say that G is H magic. When f(V (G)) = {1, 2, 3, . . . , p}, we say
that G is H-super magic.

On the other hand, Inayah et al. [2] introduced an (a, d)-H-antimagic total
labeling of G which is defined as a bijection f : V (G)∪E(G) → {1, 2, 3, . . . , p+q}
such that for all subgraphs H ′ isomorphic to H, the set of H ′-weights

wt(H ′) =
∑

v∈V (H′)
f(v) +

∑

e∈E(H′)
f(e)

constitutes an arithmetic progression a, a+d, a+2d, . . . , a+(n−1)d where a and
d are some positive integers and n is the number of subgraphs isomorphic to H. In
this case we say that G is (a, d)-H-antimagic. When f(V (G)) = {1, 2, 3, . . . , p},
we say that f is a super (a, d)-H-antimagic total labeling and G is super (a, d)-
H-antimagic.

In [1] Gutiérrez and Lladó discussed H-supermagic labelings of stars, com-
plete bipartite graphs, paths and cycles. In [6], Lladó and Moragas studied
Ch-supermagic labelings of some graphs, namely, wheels, windmills, prisms and
books. In [7], Maryati et al. proved that some classes of trees such as subdi-
visions of stars, shrubs and banana tree graphs are Ph-supermagic for some h.
In [2], Inayah et al. studied some properties of (a, d)-H-antimagic total labeling
for any graph and also discussed the (a, d)-Ch-antimagic total labelings of fans.
Recently, Inayah, Simanjuntak and Salman [4] proved that there exists a super
(a, d)-H-antimagic total labeling for shackles of a connected graph H.

In this paper we study super (a, d)-H-antimagic total labelings of star related
graphs Gu[Sn] and caterpillars.
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Figure 1. Super (21, 1)-P3-antimagic total labeling

and super (33, 1)-C3-antimagic total labeling.

2. Sum Set Partitions

As in [1, 3, 8], the proofs of our main results are based on the use of sum set
partitions. We recall in this section some useful facts on this concept.

Let x < y be positive integers. Throughout the paper we denote by [x, y]
to mean {i ∈ N : x ≤ i ≤ y}. Given a set X of integers and a partition P =
{X1, X2, . . . , Xk} of X into k parts. We denote by

∑

(P) = (
∑

X1,
∑

X2, . . . ,
∑

Xk), the sum set partition of P where
∑

Xi =
∑

x∈Xi
x. We will always order

the partition in such a way that the sequence of subset sums
∑

X1 ≤
∑

X2 ≤
· · · ≤

∑

Xk is non decreasing.
When all sets in P have the same cardinality then we say that P is an

equipartition of X or k-equipartition or a k-balanced multisets of X.
We have the following lemmas.

Lemma 1 [8]. Let x and y be nonnegative integers. Let X = [x + 1, x(y + 1)]
with |X| = xy and Y = [x(y+2), 2x(y+1)− 1] with |Y | = xy. Then, there exists

a partition K of X ∪ Y such that
∑

(K) is an arithmetic progression starting at

x(y + 3) + 1 with common difference 2 and hence K is xy-balanced with all its

subsets being 2-sets.

Proof. For each i ∈ [1, xy], define Ki = {ai, bi} such that ai = x + i, bi =
x(y + 2) + i− 1. Thus

∑

Ki = x(y + 3) + 2i− 1, for all i ∈ [1, xy].
Hence, the sum set partition of K,

∑

(K) = (
∑

K1,
∑

K2, . . . ,
∑

Kxy) forms
an arithmetic progression with common difference 2. Therefore, K is xy-balanced
with all its subsets being 2-sets.

Lemma 2. Let x, y and z be nonnegative integers. Let X = [x + 1, x + y] with
|X| = y and Y = [x + y + z + 1, x + 2y + z] with |Y | = y. Then, there exists a

partition K of X ∪ Y such that

(i)
∑

(K) is an arithmetic progression starting at 2x+2y+ z+1 with common

difference 0, and
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(ii)
∑

(K) is an arithmetic progression starting at 2x+ y + z + 2 with common

difference 2 and hence K is y-balanced with all its subsets being 2-sets.

Proof. (i) For each i ∈ [1, y] define the sets Ki = {ai, bi} such that ai = x + i,
bi = x+ 2y + z − i+ 1. Then

∑

Ki = 2x+ 2y + z + 1, for each i ∈ [1, y].

Hence, the sum set partition of K,
∑

(K) = (
∑

K1,
∑

K2, . . . ,
∑

Ky) forms
an arithmetic progression with common difference 0. Therefore, K is y-balanced
with all its subsets being 2-sets.

(ii) For each i ∈ [1, y], we take the sets Ki = {ai, bi} such that: ai = x + i,
bi = x+ y + z + i. Then

∑

Ki = 2x+ y + z + 2i, for each i ∈ [1, y].

Hence, the sum set partition of K,
∑

(K) = (
∑

K1,
∑

K2, . . . ,
∑

Ky) forms
an arithmetic progression with common difference 2. Therefore, K is y-balanced
with all its subsets being 2-sets.

Lemma 3. Let x, y and z be nonnegative integers. Let X = {1, 3, 5, . . . , 2y − 1}
with |X| = y and Y = [x+ y + z + 1, x+ 2y + z] with |Y | = y. Then, there exists

a partition K of X ∪ Y such that

(i)
∑

(K) is an arithmetic progression starting at x+ 2y + z + 1 with common

difference 1, and

(ii)
∑

(K) is an arithmetic progression starting at x + y + z + 2 with common

difference 3 and hence K is y-balanced with all its subsets being 2-sets.

Proof. (i) For each i ∈ [1, y], we define Ki = {ai, bi} where ai = 2i − 1, bi =
x+ 2y + z − i+ 1. Then

∑

Ki = x+ 2y + z + i, for each i ∈ [1, y].

Hence, the sum set partition of K,
∑

(K) = (
∑

K1,
∑

K2, . . . ,
∑

Ky) forms
an arithmetic progression with common difference 1. Therefore, K is y-balanced
and all its subsets are 2-sets.

(ii) For each i ∈ [1, y], we define Ki = {ai, bi} where ai = 2i − 1, bi =
x+ y + z + i. Then

∑

Ki = x+ y + z + 3i− 1, for each i ∈ [1, y].

Hence, the sum set partition of K,
∑

(K) = (
∑

K1,
∑

K2, . . . ,
∑

Ky) forms
an arithmetic progression with common difference 3. Therefore, K is y-balanced
and all its subsets are 2-sets.

3. Main Results

Let G be a (p, q) graph and Sn be a star with n edges. Fix a vertex u of G. Then
Gu[Sn] is the graph obtained by identifying the vertex u with the centre of Sn.
Let w be any vertex of Sn. Then G + e, e = uw, is a subgraph of Gu[Sn]. In
this section, we consider graphs G for which Gu[Sn] contains exactly n subgraphs
isomorphic to G+ e.
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Let G′ ∼= Gu[Sn]. Let v1, v2, . . . , vp and w1, w2, . . . , wn be the vertices of G
and Sn respectively. Let e1, e2, . . . , eq and eq+1, eq+2, . . . , eq+n be the edges of G
and Sn respectively. Then |V (G′)| = p+ n and |E(G′)| = q + n.

Lemma 4. If the graph Gu[Sn], n ≥ 2, admits a super (a, d)-(G + e)-antimagic

total labeling, then d ≤ p+ q + 2.

Proof. Let G′ ∼= Gn[Sn]. Suppose there exists a bijection f : V (G′) ∪ E(G′) →
{1, 2, 3, . . . , p+ q+2n} which is a super (a, d)-(G+ e)-antimagic total labeling of
G′. Let wt(H ′) =

∑

v∈V (H′) f(v) +
∑

e∈E(H′) f(e) be the weights of the subgraph

H ′ isomorphic to G + e and let W = {w(H ′) : H ′ ∼= G + e} = {a, a + d, a +
2d, . . . , a+ (t− 1)d} be the set of H ′ weights and t be the number of subgraphs.
Here t = n. Now, it is easy to see that the minimum possible weight of H ′ is at
least (p + 1)(p + 2)/2 + (q + 1)(p + n) + (q + 1)(q + 2)/2 i.e., a ≥ (p + 1)(p +
2)/2+ (q+1)(p+n)+ (q+1)(q+2)/2. Also the maximum possible weight of H ′

is not more than (p+ 1)(p+ n)− p(p+ 1)/2 + (q + 1)(p+ q + 2n)− q(q + 1)/2,
i.e., a+ (t− 1)d ≤ (p+ 1)(p+ n)− p(p+ 1)/2 + (q + 1)(p+ q + 2n)− q(q + 1)/2,
(n− 1)d ≤ (n− 1)(p+ q + 2), thus d ≤ p+ q + 2.

Theorem 5. The graph G′ admits a super
(

1
2(p+ q)(p+ q + 3) + n(q + 2) + p

+1, 0)-(G+ e)-antimagic total labeling.

Proof. Let Z = [1, p + q + 2n] and partition Z into four sets such that Z =
A∪B ∪C ∪D where A = [1, p], B = [p+ 1, p+ n], C = [p+ n+ 1, p+ q + n] and
D = [p+ q + n+ 1, p+ q + 2n]. Let K = B ∪D and let x = p, y = n and z = q.
Then by Lemma 2(i), K is n-balanced multisets with all its subsets being 2-sets
and

∑

Ki = 2p+ q + 2n+ 1, for each i ∈ [1, n].
Now we define a total labeling f on G′ as follows:
Label the vertices vi, 1 ≤ i ≤ p by the elements of A and label the edges

ei, 1 ≤ i ≤ q by the elements of C in any manner. Next use the elements of K to
label all the vertices and edges of the star, use the smaller labels for the vertices
and bigger labels for the edges in reverse order. Then for each i, 1 ≤ i ≤ n,

wt(G+ eq+i) = (1 + 2 + 3 + · · ·+ p) + (p+ n+ 1 + p+ n+ 2, . . . , p+ q + n)

+
∑

Ki

=
p(p+ 1)

2
+ q(p+ n) +

q(q + 1)

2
+ 2p+ q + 2n+ 1

=
p(p+ 1)

2
+

q(q + 1)

2
+ (p+ n)(q + 2) + q + 1

=
1

2
(p+ q)(p+ q + 3) + n(q + 2) + p+ 1.

Hence G′ has a super (12(p+ q)(p+ q+3)+n(q+2)+ p+1, 0)-(G+ e)-antimagic
total labeling.
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Theorem 6. The graph G′ has a super
(

1
2 [(p+ q)2 + (p+ q)(2n+ 3) + 5n− n2]

+1, 1)-(G+ e)-antimagic total labeling.

Proof. Let Z = [1, p+q+2n] and partition Z into four sets such that Z = A∪B∪
C∪D where A = {2, 4, . . . , 2n, 2n+1, 2n+2, . . . , p+n}, B = {1, 3, 5, . . . , 2n−1},
C = [p + n + 1, p + q + n] and D = [p + q + n + 1, p + q + 2n]. Let K = B ∪D
and let x = p, y = n and z = q. Then by Lemma 3(i), K is n-balanced multisets
with all its subsets being 2-sets and

∑

Ki = p+ q + 2n+ i, for each i ∈ [1, n].

Now we define a total labeling f on G′ as follows:

Label the vertices vi, 1 ≤ i ≤ p with the elements of A and label the edges
ei, 1 ≤ i ≤ q with the elements of C in any order. Next use the elements of K to
label all the vertices and edges of the star, use the smaller labels for the vertices
and bigger labels for the edges in reverse order. Then for each i, 1 ≤ i ≤ n,

wt(G+ eq+i) = 2 + 4 + 6 + · · ·+ 2n+ 2n+ 1 + 2n+ 2 + · · ·+ 2n+ p− n

+ p+ n+ 1 + p+ n+ 2 + · · ·+ p+ n+ q +
∑

Ki

= n(n+ 1) + (p− n)2n+
(p− n)(p− n+ 1)

2

+ q(p+ n) +
q(q + 1)

2
+ p+ q + 2n+ i

=
1

2

(

(p+ q)2 + (p+ q)(2n+ 3) + 5n− n2
)

+ i.

Hence G′ has a super (12 [(p+q)2+(p+q)(2n+3)+5n−n2]+1, 1)-(G+e)-antimagic
total labeling.

Theorem 7. The graph G′ has a super
(

1
2(p+ q)(p+ q + 3) + (q + 1)n+ p+ 2, 2

)

-(G+ e)-antimagic total labeling.

Proof. Consider the partition of [1, p+ q+2n] introduced in the proof of Theo-
rem 5. By Lemma 2(ii),

∑

Ki = 2p+ q + n+ 2i, for each i ∈ [1, n].

wt(G+ eq+i) =
p(p+ 1)

2
+ q(p+ n) +

q(q + 1)

2
+ 2p+ q + n+ 2i

=
1

2
(p+ q)(p+ q + 3) + (q + 1)n+ p+ 2i.

Hence G′ has a super (12(p+ q)(p+ q+3)+ (q+1)n+ p+2, 2)-(G+ e)-antimagic
total labeling.

Theorem 8. The graph G′ has a super
(

1
2 [(p+ q)2 + (p+ q)(2n+ 3)− (n− 1)

(n− 2)] + 3, 3)-(G+ e)-antimagic total labeling.
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Proof. Consider the partition of [1, p+ q+2n] introduced in the proof of Theo-
rem 6. By Lemma 3(ii),

∑

Ki = p+ q + n− 1 + 3i, for each i ∈ [1, n].

wt(G+ eq+i) =
n(n+ 1)

2
+ (p− n)(2n) +

(p− n)(p− n+ 1)

2
q(p+ n)

+
q(q + 1)

2
+ p+ q + n− 1 + 3i

=
1

2
[(p+ q)2 + (p+ q)(2n+ 3)− (n− 1)(n− 2)] + 3i.

Hence G′ has a super
(

1
2 [(p+ q)2 + (p+ q)(2n+ 3)− (n− 1)(n− 2)] + 3, 3

)

-(G+
e)-antimagic total labeling.

Theorem 9. The graph Gu[S2] admits a super (a, d)-(G + e)-antimagic total

labeling if and only if d ∈ {0, 1, 2, . . . , p+ q + 2}.

Proof. By Theorems 5–8, we have d ∈ {0, 1, 2, 3}. The weight of G is the same
for all the weights of the subgraphs (G+ ei), i = 1, 2. So it is enough to find the
labels of vertices and edges of the star S2. Now, for each i, 1 ≤ i ≤ p−2 we define
the labeling fi as follows.

fi(w1) = p− i, 1 ≤ i ≤ p− 2,

fi(eq+1) = p+ q + 3,

fi(w2) = p+ 2, and

fi(eq+2) = p+ q + 4.

Thus, the induced sums of the labels of vertices and edges of S2 are 2p+ q+3− i
and 2p+ q + 6. Hence, d = 3 + i, 1 ≤ i ≤ p− 2. Therefore, d = 4, 5, . . . , p+ 1.

Also for each i, 1 ≤ i ≤ q + 1, we define the labeling fi as follows

fi(w1) = 1,

fi(eq+1) = p+ q + 4− i, 1 ≤ i ≤ q + 1,

fi(w2) = p+ 2, and

fi(eq+2) = p+ q + 4.

Thus, the induced sums of the labels of vertices and edges of S2 are p+q+5−i, 2p+
q+6. Hence d = p+1+ i, 1 ≤ i ≤ q+1. Therefore, d = p+2, p+4, . . . , p+ q+2.

Hence the results follows.

Open Problem 10. For each d, 4 ≤ d ≤ p+ q + 2, either find the super (a, d)-
(G + e)-antimagic total labeling of the graph Gu[Sn], n ≥ 3, or prove that this

labeling does not exist.
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4. Caterpillar

Definition 11. The backbone of a caterpillar is the graph obtained from it by

removing its pendant edges.

r rr r r rr r

▲
▲
▲▲

✡
✡✡

r

rrrrrrrr

r r r
r

S2,3,5,3

Backbone graph of S2,3,5,3

Figure 2

Theorem 12. A caterpillar Sn1,n2,...,nk
has a super

(

2(k + 2)n2 + 7kn+ 2k + 1

+
⌈

k
2

⌉

, 4n2
)

-Sn,n-antimagic total labeling for n1 = n2 = · · · = nk = n.

Proof. As in [8], let G ∼= Sn1,n2,...,nk
with n1 = n2 = · · · = nk = n. Then

|V (G)| = k(n+ 1) and |E(G)| = k(n+ 1)− 1.
Let V (G) = {ci : 1 ≤ i ≤ k} ∪ {vij : 1 ≤ i ≤ k, 1 ≤ j ≤ n} and
E(G) = {cici+1 : 1 ≤ i ≤ k − 1} ∪ {civij : 1 ≤ i ≤ k, 1 ≤ j ≤ n}.
Let Z = [1, 2k(n+1)−1] and partition Z into four sets such that Z = A∪B∪

C ∪D, where A = [1, k], B = [k+1, k(n+1)], C = [k(n+1)+1, k(n+1)+k− 1]
and D = [k(n+ 2), 2k(n+ 1)− 1]. Let us take A = {xi : 1 ≤ i ≤ k} such that

xi =

{ ⌊

i
2 + 1

⌋

for odd i,
⌈

k
2

⌉

+ i
2 for even i.

Let K = B ∪D and let x = k, y = n. Then by Lemma 1, K is kn-balanced with
all its subsets being 2-sets and

∑

Ki = k(n+ 3) + 2i− 1, for each i ∈ [1, kn].
Now we define a total labeling f on G as follows:
Label the vertices of the backbone by the elements of A with the ordering

from left to right and label the backbone edges by the elements of C from right to
left. Next we use the elements of K to label all the remaining edges and vertices,
use the smaller labels for the vertices.

Now for each 1 ≤ h ≤ k − 1, we have

wt(Sh
n,n) =

∑(h+1)n

j=nh−n+1
[k(n+ 3) + 2j − 1] +

h+ 1

2
+

⌈

k

2

⌉

+
h+ 1

2

+ k(n+ 1) + k − h = 2kn2 + 7kn+ 2k + 1 +

⌈

k

2

⌉

+ 4hn2.

In particular, we obtain that a = wt(S1
n,n) = 2(k+2)n2+7kn+2k+1+ ⌈k2⌉ and

d = wt(Sh+1
n,n )−wt(Sh

n,n) = 4n2, then G has a super (2(k+2)n2+7kn+2k+1+

⌈k2⌉, 4n
2)-Sn,n-antimagic total labeling.
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Figure 3. Super (245, 36)-S3,3-antimagic total graph.
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Figure 4. Super (440, 64)-S4,4-antimagic total graph.
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