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Abstract

Unichord-free graphs are defined as having no cycle with a unique chord.
They have appeared in several papers recently and are also characterized by
minimal separators always inducing edgeless subgraphs (in contrast to char-
acterizing chordal graphs by minimal separators always inducing complete
subgraphs). A new characterization of unichord-free graphs corresponds to
a suitable reformulation of the standard simplicial vertex characterization of
chordal graphs.
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1. Chordal Versus Unichord-Free Graphs

A graph is chordal if every non-triangular cycle has a chord (an edge between
nonconsecutive vertices of the cycle)—in other words, if every cycle large enough
to have a chord does have a chord. Chordal graphs form an extremely well studied
and successfully applied graph class; see [3, 11].

A graph is unichord-free if no cycle has a unique chord, which is equivalent
to every chord of every cycle having a crossing chord in the cycle (where chords
ab and cd of a cycle C are crossing chords if their four endpoints come in the
order a, c, b, d around C). The unichord-free graphs were introduced (but not
called unichord-free) independently in [9, 14]; they have since been studied (and
called unichord-free) in additional papers, including [6, 7, 8]. Complete bipartite
graphs, the Petersen graph, and the Heawood graph are examples of unichord-
free graphs. Reference [14] gives a detailed structural characterization of the
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unichord-free graphs and observes that 2-connected non-complete unichord-free
graphs must be triangle-free.

For nonadjacent vertices v and w in a connected graph G, a v,w-separator

is a set S ⊆ V (G)− {v, w} such that v and w are in different connected compo-
nents of the subgraph of G induced by V (G)− S. A minimal v,w-separator is a
v,w-separator that is not a proper subset of another v,w-separator. A minimal

separator of G is a minimal v,w-separator for some v, w ∈ V (G). For every vertex
v of a graph G, let the neighborhood N(v) of v be {x ∈ V (G) : xv ∈ E(G)} and
let N [v] = N(v) ∪ {v}. Two vertices v and w are adjacent twins if N [v] = N [w].

In 1961, Dirac famously characterized chordal graphs by every minimal sep-
arator inducing a complete subgraph; see [3, 11]. Proposition 1, from [9], charac-
terized unichord-free graphs (calling them the independent separator graphs) in
contrast to Dirac’s characterization.

Proposition 1. A graph is unichord-free if and only if every minimal separator

induces an edgeless subgraph.

It is intriguing that testing whether a graph with n vertices and m edges has
a minimal separator that induces an edgeless graph (a “stable cutset” in [2, 4])
is NP-complete, while testing for a minimal separator that induces a complete
graph (a “clique cutset” in [13, 15]) can be done by a O(nm) algorithm—and yet
testing whether a graph is unichord-free or is chordal can be done by, respectively,
O(n+m) and O(nm) algorithms, see [3] and [14].

A block of a graph is a either an edge that is in no cycle or a maximal 2-
connected subgraph—in other words, a block is a maximal subgraph such that
every two edges are in a common cycle. A graph is both chordal and unichord-
free if and only if every block is complete (and so every minimal separator is a
singleton). Figure 1 illustrates the other combinations of being chordal and being
unichord-free. Reference [10] shows that the graphs in which every minimal
separator induces either a complete or an edgeless subgraph are precisely the
edge-sums of chordal and unichord-free graphs.
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Figure 1. The smallest graphs that are: (a) chordal but not unichord-free, (b) unichord-
free but not chordal, (c) neither chordal nor unichord-free.

A graph is unichord-free [or, respectively, chordal] if and only each of its
blocks is unichord-free [respectively, chordal], since cycles are always contained
inside blocks. In terms of minimal separators, a graph is unichord-free if and only
if every minimal x, y-separator S for which x and y are in different blocks must
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have |S| = 1, making the subgraph induced by S be simultaneously edgeless and
complete. This motivates the 2-connectedness assumption in the theorems in the
present paper.

Section 2 contains a new characterization of unichord-free graphs that some-
what evokes the often-used characterization that G is chordal if and only if every
induced subgraph of G contains a simplicial vertex—a vertex v such that N(v)
induces a complete subgraph; see [3, 11]. Section 3 then discusses the correspon-
dence between the two characterizations in detail.

2. A New Unichord-Free Graph Characterization

Theorem 2. A graph is unichord-free if and only if, in every 2-connected induced

subgraph H that is not complete, every N(v) is a minimal separator of H that

induces an edgeless subgraph of H.

Proof. First suppose G is a unichord-free graph with an induced subgraph H

that is 2-connected and not complete, say containing nonadjacent vertices v and
w. Since H is also unichord-free, H is triangle-free and so N(v) is an independent
set.

Suppose for the moment that w ∈ V (H)−N [v] and the v, w-separator N(v)
is not a minimal separator. Let S ⊂ N(v) be a minimal v, w-separator and
x ∈ N(v) − S. Since H is 2-connected, H has a cycle C that contains the edge
vx and the vertex w. Let π be the v-to-x-to-w subpath of C, and let y be the
first vertex in V (π) ∩ S met when traveling along π from v toward w (such a
y exists since S is a minimal v, w-separator). Let τ be a v-to-x-to-y path with
V (τ) ⊆ V (π) whose x-to-y subpath is chordless. Since H is 2-connected and S

is a minimal v, w-separator, |S| ≥ 2 and so H has a cycle C ′ that contains vy

and w but not x, with no vertex of τ adjacent to a vertex in V (C ′) − (S ∪ {v})
(again since S is a minimal v, w-separator). Let τ ′ be a chordless v-to-y path in
H − vy with V (τ ′) ⊆ V (C ′). But now, since N(v) is independent, vy would be
the unique chord of the cycle τ ∪ τ ′ (contradicting that H is unichord-free).

Therefore, N(v) must be a minimal separator of H that induces an edgeless
subgraph.

Conversely, suppose G is not unichord-free. Thus G contains an induced
subgraph H that consists of a cycle C of length 4 or more with a unique chord
xy (and so H is 2-connected and not complete). But then N(x) would not even
be a minimal separator of H.

The condition that H is 2-connected is necessary in Theorem 2, since trees
are unichord-free without N(v) being a minimal separator whenever v is a non-
leaf vertex. The condition thatH is not complete is also necessary, since complete
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graphs are unichord-free without any N(v) being a minimal separator.

3. Comparison with Chordal Graph Results

It is natural to wonder about a chordal graph analog to the characterization of
unichord-free graphs in Theorem 2, given the similarity between Proposition 1 and
Dirac’s complete minimal separator characterization of chordal graphs. To this
end, Theorem 3 can be viewed as a mixture of Dirac’s characterization and the
familiar characterization of chordal graphs by every induced subgraph containing
a simplicial vertex (see [3, 11]).

Define a maxclique of a graph G to be a maximal complete subgraph of G
(and so a vertex is simplicial if and only if it is in a unique maxclique). Following
[12], a simplicial clique is a maxclique that contains at least one simplicial vertex
of G, and a boundary clique is a simplicial clique Q such that either every vertex
in Q is simplicial (which makes G complete) or there is a second maxclique Q′

of G that contains all the nonsimplicial vertices in Q. Equivalently, a simplicial
clique Q is a boundary clique if and only if all the nonsimplicial vertices in Q

have a common neighbor outside of Q (and inside Q′). Every chordal graph G

that is not complete will have such maxcliques Q and Q′, and V (Q) ∩ V (Q′) will
always be a minimal separator of G; see [3, 11, 12] for details (including that the
boundary cliques Q of a chordal graph G will correspond to the leaf nodes of a
clique tree T for G, with edges QQ′ corresponding to the pendant edges of T ).

Theorem 3. A graph is chordal if and only if, in every 2-connected induced

subgraph H that has no adjacent twins, some N(v) is a minimal separator of H

that induces a complete subgraph of H.

Proof. First suppose G is a chordal graph with an induced subgraph H that is
2-connected without adjacent twins. Thus H is also chordal and is not complete,
so H has a boundary clique Q and a second maxclique Q′ such that Q contains
a unique simplicial vertex v (since distinct simplicial vertices would be adjacent
twins) and V (Q) ∩ V (Q′) = V (Q) − {v} = N(v) is a minimal separator of H.
Therefore, N(v) is a minimal separator that induces a complete subgraph.

Conversely, suppose G is not chordal. Thus G contains an induced subgraph
H that consists of a chordless cycle C of length 4 or more (and soH is 2-connected
without adjacent twins). But then each vertex v in H = C would have N(v) be
a minimal separator of H that would not induce a complete subgraph of H.

The condition that H is 2-connected is necessary in Theorem 3, since trees
are chordal without N(v) being a minimal separator whenever v is a non-leaf
vertex. The condition that H has no adjacent twins is also necessary, since the
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2-connected graph shown in Figure 2 is chordal, with (three pairs of) adjacent
twins without any N(v) being a minimal separator.
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Figure 2. A chordal graph that is not complete and has adjacent twins in which no
neighborhood is a minimal separator.

Theorem 4 will be a combined—but more awkward—form of Theorems 2
and 3, replacing the condition “not complete” and the stronger condition “no
adjacent twins” in those theorems with the logically intermediate condition “every
boundary clique contains a unique simplicial vertex”.

Theorem 4. A graph is unichord-free [or, respectively, chordal] if and only if, in

every 2-connected induced subgraph H in which every boundary clique contains a

unique simplicial vertex, every [respectively, some] N(v) is a minimal separator

of H that induces an edgeless [respectively, a complete] subgraph of H.

Proof. Theorem 4 has essentially the same proofs as do Theorems 2 and 3 after
the substitution of “every boundary clique contains a unique simplicial vertex”.
This follows from the four observations below for, respectively, the “only if”
direction (⇒) and the “if” direction (⇐) of Theorems 2 and 3.

(⇒, Theorem 2): If a unichord-free graph G has a 2-connected induced sub-
graph H in which every boundary clique contains a unique simplicial vertex, then
H is not complete.

(⇐, Theorem 2): If H consists of a cycle C of length 4 or more with a unique
chord xy, then H is 2-connected. When |V (C)| = 4, H has two boundary cliques:
its two triangles, each containing a unique simplicial vertex. When |V (C)| ≥ 5,
H has no boundary cliques, and so every boundary clique of H would, vacuously,
contain a unique simplicial vertex of H.

(⇒, Theorem 3): If a chordal graph G has a 2-connected induced subgraph
H in which every boundary clique contains a unique simplicial vertex, then H is
also chordal and so has Q, Q′, and v as in the proof of Theorem 3.

(⇐, Theorem 3): If H consists of a cycle of length 4 or more with no chord,
then H is 2-connected and has no boundary cliques, and so every boundary clique
of H would, vacuously, contain a unique simplicial vertex of H.

In closing, observe how the nearly parallel characterizations of unichord-free
and chordal in Theorem 4 highlight the unexpected quantifier switch occuring be-
tween “every” and “some.” This switch apparently combines with the conflicting
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properties of “edgeless” and “complete” to cause—somehow—the intriguing re-
semblance of the cycle-and-chord definitions of unichord-free graphs and chordal
graphs in Section 1.
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