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Abstract

We give necessary and sufficient conditions for the decomposition of com-
plete bipartite multigraph Km,n(λ) into paths and cycles having k edges. In
particular, we show that such decomposition exists in Km,n(λ), when λ ≡ 0
(mod 2), m, n ≥ k

2 , m + n > k, and k(p + q) = 2mn for k ≡ 0(mod 2) and
also when λ ≥ 3, λm ≡ λn ≡ 0(mod 2), k(p + q) = λmn, m, n ≥ k, (resp.,
m,n ≥ 3k/2) for k ≡ 0(mod 4) (respectively, for k ≡ 2(mod 4)). In fact,
the necessary conditions given above are also sufficient when λ = 2.
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1. Introduction

Unless stated otherwise all graphs considered here are finite, simple, and undi-
rected. For the standard graph-theoretic terminology the readers are referred to
[8]. A cycle of length m is called an m-cycle and it is denoted by Cm and a path
of length m is called an m-path and it is denoted by Pm+1. A circuit (directed

cycle) of length m is called an m-circuit and it is denoted by
−→
Cm. Let Km denote

a complete graph on m vertices, Km,n denote a complete bipartite graph with
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m and n vertices in the parts, and K∗
m,n denote a complete bipartite symmetric

directed graph with m and n vertices in the parts. A graph whose vertex set
is partitioned into sets V1, . . . , Vm such that the edge set is

⋃

i 6=j∈[m] Vi × Vj is
called a complete m-partite graph denoted by Kn1,...,nm , where |Vi| = ni for all i.
For any integer α > 0, αG denotes a union of α edge-disjoint copies of G. The
λ-multiplication of G, denoted G(λ), is the multigraph obtained from a graph G
by replacing each edge with λ edges. For a graph G, G− I denotes the graph G
with a 1-factor I removed. Let x0x1 · · ·xk−2xk−1 and (x0x1 · · ·xk−1x0) respec-
tively denote the path Pk and the cycle Ck with vertices x0, x1, . . . , xk−1 and
edges x0x1, x1x2, . . . , xk−2xk−1, xk−1x0.

By a decomposition of the graph G, we mean a list of edge-disjoint subgraphs
of G whose union is G (ignoring isolated vertices). For the graph G, if E(G) can
be partitioned into E1, . . . , Ek such that the subgraph induced by Ei is Hi, for
all i, 1 ≤ i ≤ k, then we say that H1, . . . , Hk decompose G and we write G =
H1 ⊕ · · · ⊕Hk, since H1, . . . , Hk are edge-disjoint subgraphs of G. For 1 ≤ i ≤ k,
if Hi

∼= H, we say that G has a H-decomposition. If G has a decomposition
into p copies of H1 and q copies of H2, then we say that G has a {pH1, qH2}-
decomposition. If such a decomposition exists for all admissible pairs of p and q
satisfying trivial necessary conditions, then we say that G has a full {H1, H2}-
decomposition or G is fully {H1, H2}-decomposable.

Study on full {H1, H2}-decomposition of graphs is not new. Abueida, Daven,
and Roblee [1, 3] completely determined the values of n for which Kn(λ) ad-
mits the {pH1, qH2}-decomposition such that H1 ⊕ H2

∼= Kt, when λ ≥ 1 and
|V (H1)| = |V (H2)| = t, where t ∈ {4, 5}. Let Sk denotes a star on k vertices, i.e.
Sk = K1,k−1. Abueida and Daven [2] proved that there exists a {pKk, qSk+1}-
decomposition of Kn for k ≥ 3 and n ≡ 0, 1(mod k). Abueida and O’Neil [4]
proved that for k ∈ {3, 4, 5}, the {pCk, qSk}-decomposition of Kn(λ) exists,
whenever n ≥ k + 1 except for the ordered triples (k, n, λ) ∈ {(3, 4, 1), (4, 5, 1),
(5, 6, 1), (5, 6, 2), (5, 6, 4), (5, 7, 1), (5, 8, 1)}. Abueida and Daven [2] obtained nec-
essary and sufficient conditions for the {pC4, q(2K2)}-decomposition of the Carte-
sian product and tensor product of paths, cycles, and complete graphs. Shyu [17]
obtained a necessary and sufficient condition for the existence of a full {P5, C4}-
decomposition of Kn. Shyu [18] proved that Kn has a full {P4, S4}-decomposition
if and only if n ≥ 6 and 3(p + q) =

(

n
2

)

. Also he proved that Kn has a full
{Pk, Sk}-decomposition with a restriction p ≥ k/2, when k even (resp., p ≥ k,
when k odd). Shyu [19] obtained a necessary and sufficient condition for the
existence of a full {P4,K3}-decomposition of Kn. Shyu [20] proved that Kn has
a full {C4, S5}-decomposition if and only if 4(p + q) =

(

n
2

)

, q 6= 1, when n is
odd and q ≥ max {3, ⌈n4 ⌉}, when n is even. Shyu [21] proved that Km,n has
a full {Pk, Sk}-decomposition for some m and n and also obtained some neces-
sary and sufficient condition for the existence of a full {P4, S4}-decomposition of
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Km,n. Sarvate and Zhang [16] obtained necessary and sufficient conditions for the
existence of a {pP3, qK3}-decomposition of Kn(λ), when p = q.

Chou et al. [9] proved that for a given triple (p, q, r) of nonnegative integers,
G decompose into p copies of C4, q copies of C6, and r copies of C8 such that
4p + 6q + 8r = |E(G)| in the following two cases: (a) G = Km,n with m and n
both even and greater than four (b) G = Kn,n − I, where n is odd. Chou and Fu
[10] proved that the existence of a full {C4, C2t}-decomposition of K2u,2v, where
t/2 ≤ u, v < t, when t even (resp., (t+ 1)/2 ≤ u, v ≤ (3t− 1)/2, when t odd)
implies such decomposition in K2m,2n, where m,n ≥ t (resp., m, n ≥ (3t+ 1)/2).
The authors [11] reduced the bounds of the sufficient conditions obtained by
Chou and Fu [10] for the existence of a full {C4, C2t}-decomposition of K2m,2n,
when t > 2. Lee and Chu [13, 14] obtained a necessary and sufficient condition
for the existence of a full {Pk, Sk}-decomposition of Kn,n and Km,n. Lee and
Lin [15] obtained a necessary and sufficient condition for the existence of a full
{pCk, qSk+1}-decomposition of Kn,n−I. Abueida and Lian [7] obtained necessary
and sufficient conditions for the existence of a {pCk, qSk+1}-decomposition of Kn

for some n. Recently, the authors [12] obtained some necessary and sufficient
conditions for the existence of a full {Pk+1, Ck}-decomposition of Kn and Km,n.

In this paper, we study only the existence of a full {Pk+1, Ck}-decomposition
of Km,n(λ), we abbreviate the notation for such decomposition as (k; p, q)-decom-
position of Km,n(λ). The obvious necessary condition for such existence is k(p+
q) = |E(Km,n(λ))|. As we consider only cases where all vertices are of even degree,
the case p 6= 1 is also obviously necessary, since the presents of a single path in
the decomposition would give two vertices of odd degree and the resulting graph
is not cycle decomposable. Call the situation with k(p + q) = |E(Km,n(λ))|, all
vertex degrees are even, and p 6= 1 the good case.

We prove that in the good case Km,n(λ) has a (k; p, q)-decomposition, when
λ ≡ 0(mod 2), m, n ≥ k

2 , m + n > k, and k(p + q) = 2mn for k ≡ 0(mod 2).
Further, we show that if Km,n(λ), λ ≥ 3, k ≡ 0(mod 4) (resp., k ≡ 2(mod 4))
has a (k; p, q)-decomposition in the good case with k/2 ≤ m,n ≤ k, (resp.,
k/2 ≤ m,n ≤ 3k/2,) then such decomposition also exists in the good case, when
λ ≥ 3; m,n ≥ k (resp., m,n ≥ 3k/2).

To prove our results, we use the following:

Theorem 1 [12]. Let p and q be nonnegative integers and k, m, n be positive
even integers such that k ≡ 0(mod 4). For m ≤ n, the graph Km,n has a (k; p, q)-
decomposition if and only if m ≥ k

2 , n ≥ ⌈k+1
2 ⌉, k(p+ q) = mn, and p 6= 1.

Theorem 2 [22]. K∗
m,n has a

−→
Ck-decomposition if and only if m ≥ k

2 , n ≥ k
2 ,

and k divides 2mn.

By considering the underlying graph of K∗
m,n, we have the following from

Theorem 2.



718 S. Jeevadoss and A. Muthusamy

Theorem 3. The graph Km,n(2) has a Ck-decomposition if and only if m ≥ k
2 ,

n ≥ k
2 , and k divides 2mn.

2. (k; p, q)-Decomposition of Km,n(λ) when k ≡ 0(mod 2)

In this section, we investigate the existence of (k; p, q)-decomposition of Km,n(λ),
when k ≡ 0(mod 2).

Construction 4. Let Cλ and Cµ be two cycles of length k, where Cλ = (x1x2 · · ·
xkx1) and Cµ = (y1y2 · · · yky1). If v is a common vertex of Cλ and Cµ such that
at least one neighbour of v from each cycle (say, xi and yj) does not belongs to
the other cycle, then we have two edge-disjoint paths of length k, say Pλ and Pµ

from Cλ and Cµ as follows (see Figure 1), where Pλ = (Cλ − vxi) ∪ vyj ,Pµ =
(Cµ − vyj) ∪ vxi.

b

b

b b

b

v

xi

ya

yb

yj

Cλ Cµ

denotes Pµ

denotes Pλ

Figure 1. Cλ ∪ Cµ = Pλ ∪ Pµ.

Remark 5. Let k ∈ N. If G and H have a (k; p, q)-decomposition, then G ⊕H
has such a decomposition.

Lemma 6. Let p, q be nonnegative integers and {k,m, n} ∈ N such that k ≡ 0
(mod 2) and m+ n > k. The graph Km,n(2) has a (k; p, q)-decomposition if and
only if m,n ≥ k/2, k(p+ q) = 2mn, and p 6= 1.

Proof. Necessity. Conditions m,n ≥ k/2, k(p + q) = 2mn, and p 6= 1 are
trivial.

Sufficiency. Let k ≡ 0(mod 2). In order to have a Ck-decomposition in
Km,n(2), we can always find u, v such that k = 2uv, m = ru, n = sv, r ≥ v, and
s ≥ u, where r and s are positive integers. We denote the vertices of the partite
sets of Kru,sv by xi, 0 ≤ i ≤ ru − 1 and yj , 0 ≤ j ≤ sv − 1. By Theorem 3, the
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graph Kru,sv(2) has a C2uv-decomposition as follows:

Cλµ =
(

· · ·
(

· · ·x(µ+i)u+jy(λ+j)v+i · · ·
)

0≤i≤v−1

)

0≤j≤u−1
,

0 ≤ λ ≤ s− 1; 0 ≤ µ ≤ r − 1,

where the indices of x are to be taken with modulo ru and those of y with modulo
sv. Now we construct the required number of Pk+1 from the Ck-decomposition
given above, in two cases.

Case 1: p is even. For a fixed µ and 0 ≤ λ ≤ s − 1, we can have Cλµ

and C(λ+1)µ as above. Since xµuyλv ∈ E(Cλµ), xµuy(λ+u+1)v−1 ∈ E(C(λ+1)µ),
yλv /∈ V (C(λ+1)µ), and y(λ+u+1)v−1 /∈ V (Cλµ), we have two edge-disjoint paths of
length k, say Pλµ and P(λ+1)µ from Cλµ and C(λ+1)µ as follows (see Figure 2).

Pλµ = (Cλµ − xµuyλv) ∪ xµuy(λ+u+1)v−1,

P(λ+1)µ =
(

C(λ+1)µ − xµuy(λ+u+1)v−1

)

∪ xµuyλv.

r b b b b b b b

r b b b b b b

xµu x (µ
+1

)u

x (µ+
2)u

x (µ
+v

)u

x (µ
+v

−1
)u

yλv yλv+1

b b b b b

y
(λ+

1)v

y
(λ+

1)v+
1

b rb b b

y
(λ+

u+1)v−1

y
(λ+u+1)v−2

y
(λ+

u)v−
1

y
(λ+

u)v−
2

denotes

denotes

Cλµ

C(λ+1)µ

Figure 2. Cλµ ∪ C(λ+1)µ = Pλµ ∪ P(λ+1)µ.

Similarly, we can find pairs of paths of length k from the pairs of cycles Cλµ

and C(λ+1)µ, where λ = 0, 2, . . . , s − 2 or s − 1 and 0 ≤ µ ≤ r − 1. Hence the
graph Km,n(2) has the desired decomposition.

Now for a fixed λ and 0 ≤ µ ≤ r − 1, we can have Cλµ and Cλ(µ+1) as
above. Since xµpy(λ+p)q−1 ∈ E(Cλµ), x(µ+q+1)p−1y(λ+p)q−1 ∈ E(Cλ(µ+1)), xµp /∈
V (Cλ(µ+1)), and x(µ+q+1)p−1 /∈ V (Cλµ), we have two edge-disjoint paths of length
k, say Pλµ and Pλ(µ+1) from Cλµ and Cλ(µ+1) as follows (see Figure 3).

Pλµ =
(

Cλµ − xµpy(λ+p)q−1

)

∪ x(µ+q+1)p−1y(λ+p)q−1,

Pλ(µ+1) =
(

Cλ(µ+1) − x(µ+q+1)p−1y(λ+p)q−1

)

∪ xµpy(λ+p)q−1.
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b b b b b b b r

r b
b b b b b

y
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y
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y
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y
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y
(λ+u)v−2

x µ
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µ+

1)
u
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x (
µ
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x µ
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x (
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+
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+
1
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v
−
1)
u
+
1

b b

x (
µ
+
1)
u
+
1

x (
µ
+
2)
u
+
1

bb

x (
µ
+
2)
u
−
1

x (
µ
+
1)
u
−
1

b b b
y
(λ+1)v

y
(λ+1)v+1

y
(λ+1)v+2

b b b
b
y
λv+3

b
y
(λ+1)v−1

b bx (
µ+

2)
u

x (
µ+

3)
u

b
y
(λ+u)v−3

denotes Cλµ denotes Cλ(µ+1)

b b b
b

x (
µ
+
v)
u

b bbb

x (
µ
+
3)
u
−
1

b

x (
µ
+
v−

1)
u
−
1

b
y
(λ+u−1)v+1

b
y
(λ+u−1)v

b b b
b
y
(λ+2)v−1

b b b

y
(λ+1)v−2

b

Figure 3. Cλµ ∪ Cλ(µ+1) = Pλµ ∪ Pλ(µ+1).

Similarly, we can find pairs of paths of length k from the pairs of cycles Cλµ

and Cλ(µ+1), where µ = 0, 2, . . . , r− 2 or r− 1. Hence we have the desired paths.

Case 2: p is odd. Fixing v = gcd(n, k/2), we have u = k/2v, s = n/v. Since
k divides 2mn, i.e. 2uv divides 2mn and v divides n, we have r = m/u.

b b b b b b b b b
x0 y0 xu y1 x(v−1)u−1 yuv−2 xuv−1

b b
yuv−1

b b b b b b b b b
xu

y0 x2u y1 xuv−1 yuv−2 x(v+1)u−1

b b
yuv−1

b b b b b b b b b
x2u y0 x3u y1 x(v+1)u−1 yuv−2 x(v+2)u−1

b b
yuv−1

Figure 4. C00 ∪ C01 ∪ C02.

Subcase 2a: (v + 2)u − 1 ≤ m and v + 2 ≤ r. Since r ≥ 3 and s ≥ 1, we
can have C00, C01, and C02 (see Figure 4). By applying a procedure similar to
Construction 4, we have three edge-disjoint paths of length k, say P00, P01, and
P02 from C00, C01, and C02 as follows (see Figure 5).
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P00 = (C00 − x0yuv−1) ∪ x(v+1)u−1yuv−1,

P01 =
(

C01 − x(v+1)u−1yuv−1

)

∪ x(v+2)u−1yuv−1,

P02 =
(

C02 − x(v+2)u−1yuv−1

)

∪ x0yuv−1.

b b b b b b b b b
x0 y0 xu y1 x(v−1)u−1 yuv−2 xuv−1

b b
yuv−1

b b b b b b b b b
xu

y0 x2u y1 xuv−1 yuv−2 x(v+1)u−1

b b
yuv−1

b b b b b b b b b
x2u y0 x3u y1 x(v+1)u−1 yuv−2 x(v+2)u−1

b b
yuv−1

b
x(v+1)u−1

x(v+2)u−1
b

b
x0

Figure 5. P00 ∪ P01 ∪ P02.

By applying a procedure similar to Case 1, the remaining pairs of cycles
Cλµ ⊕ Cλ(µ+1), (λ, µ), (λ, µ + 1) 6= (0, 0), (0, 1), (0, 2) decomposes into pairs of
paths. Hence the graph Km,n(2) has the desired decomposition.

b b b b b b b b b
x0 y0 xu y1 x(v−1)u−1 yuv−2 xuv−1

b b
yuv−1

b b b b b b b b b
x0 yv xu yv+1 x(v−1)u−1 y(u+1)v−2 xuv−1

b b
y(u+1)v−1

b b b b b b b b b
x0 y2v xu y2v+1 x(v−1)u−1 y(u+2)v−2 xuv−1

b b
y(u+2)v−1

Figure 6. C00 ∪ C10 ∪ C20.

Subcase 2b: (u + 2)v − 1 ≤ n and u + 2 ≤ s. Since r ≥ 1 and s ≥ 3, we
can have C00, C10, and C20 (see Figure 6). By applying a procedure similar to
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Construction 4, we have three edge-disjoint paths of length k, say P00, P10, and
P20 from C00, C10, and C20 as follows (see Figure 7).

P00 = (C00 − x0yuv−1) ∪ x0y(u+1)v−1,

P10 =
(

C10 − x0y(u+1)v−1

)

∪ x0y(u+2)v−1,

P20 =
(

C20 − x0y(u+2)v−1

)

∪ x0yuv−1.

b b b b b b b b b
x0 y0 xu y1 x(v−1)u−1 yuv−2 xuv−1

b b
yuv−1

b b b b b b b b b
x0 yv xu yv+1 x(v−1)u−1 y(u+1)v−2 xuv−1

b b
y(u+1)v−1

b b b b b b b b b
x0 y2v xu y2v+1 x(v−1)u−1 y(u+2)v−2 xuv−1

b b
y(u+2)v−1

b
y(u+1)v−1

b
y(u+2)v−1

b
yuv−1

Figure 7. P00 ∪ P10 ∪ P20.

By applying a procedure similar to Case 1, the remaining pairs of cycles
Cλµ ⊕ C(λ+1)µ (λ, µ), (λ + 1, µ) 6= (0, 0), (1, 0), (2, 0) decomposes into pairs of
paths. Hence the graph Km,n(2) has the desired decomposition.

Subcase 2c: (v+1)u−1 ≤ m, (u+1)v−1 ≤ n, u+1 ≤ s, and v+1 ≤ r, m or
n 6= k/2. Since r, s ≥ 2 we can have C00, C10, and C11. By applying a procedure
similar to Case 1, we have two edge-disjoint paths of length k, say P10 and P11

from C10 and C11 as follows:

P10 =
(

C10 − x0y(u+1)v−1

)

∪ x(v+1)u−1y(u+1)v−1,

P11 =
(

C11 − x(v+1)u−1y(u+1)v−1

)

∪ x0y(u+1)v−1.

Now consider C00 and P11 (see Figure 8); since x0yuv−1 ∈ E(C00), x(v+1)u−2yuv−1

∈ E(P11), x(v+1)u−2 /∈ V (C00), and x0 ∈ V (P11), we have two edge-disjoint paths

of length k, say P00 and P̂11 from C00 and P11 as follows (see Figure 9).

P00 = (C00 − x0yuv−1) ∪ x(v+1)u−2yuv−1,

P̂11 =
(

P11 − x(v+1)u−2yuv−1

)

∪ x0yuv−1.

By applying a procedure similar to Case 1, the remaining pairs of cycles both
Cλµ⊕C(λ+1)µ and Cλµ⊕Cλ(µ+1), (λ, µ), (λ+1, µ) (λ, µ+1) 6= (0, 0), (0, 1), (1, 1)
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b b b b b b b b b b b
x0

y(u+1)v−1 xu yv yuv−1x(v+1)u−2yuv−2 x2u−1

b b
y(u+1)v−2 x(v+1)u−1

bbbbbbbbbbb bbbbbbbbb b b b

b b b b b b b b b
x0 y0 xu y1 x(v−1)u−1 yuv−2 xuv−1

b b
yuv−1

Figure 8. C00 and P11.

b b b b b b b b b b b
x0

y(u+1)v−1 xu yv yuv−1x(v+1)u−2yuv−2 x2u−1

b b
y(u+1)v−2 x(v+1)u−1

bbbbbbbbbbb bbbbbbbbb b b b

b b b b b b b b b
x0 y0 xu y1 x(v−1)u−1 yuv−2 xuv−1

b b
yuv−1

b
x(v+1)u−2

Figure 9. P00 and P̂11.

decomposes into pairs of paths. Hence the graph Km,n(2) has the desired decom-
position.

Subcase 2d: m = k/2 + 1 and n = k/2. When m = k/2 + 1 and n = k/2, we
have s = p = 1 and r = q + 1. Since λ = 2 and 0 ≤ µ ≤ r − 1, we can have C00

and C01 (see Figure 10). By applying a procedure similar to Case 1, we have two
edge-disjoint paths of length k, say P00 and P01 from C00 and C01 as follows (see
Figure 11).

P00 = (C00 − x0y2a−3) ∪ x2a−2y2a−3,

P01 = (C01 − x2a−2y2a−3) ∪ x0y2a−3.

b b b b b b b b b
x0 y0 x1 y1 x2a−4 y2a−4 x2a−3

b b
y2a−3

b b b b b b b b b
x1 y0 x2 y1 x2a−3 y2a−4 x2a−2

b b
y2a−3

Figure 10. C00 ∪ C01.



724 S. Jeevadoss and A. Muthusamy

b b b b b b b b b
x0 y0 x1 y1 x2a−4 y2a−4 x2a−3

b b
y2a−3

b b b b b b b b b
x1 y0 x2 y1 x2a−3 y2a−4 x2a−2

b b
y2a−3

b

b

x2a−2

x0

Figure 11. P00 ∪ P01.

Let a = r + 1/2. Now we consider P00 and C0a (see Figure 12). Since
x2a−1ya−2 ∈ E(Ca0), xa−1ya−2 ∈ E(P00), and xa−1 /∈ V (Ca0) we have two edge-
disjoint paths of length k, say P0a and P̂00 from C0a and P00 as follows (see Figure
13).

b b b b b b b

x0 y0 x1 y1 x2a−3

b b
y2a−3

b b b b b b b b b
xa

y0 xa+1 y1 ya−3 x2a−2 ya−2

b b
y2a−4

b

b

x2a−2

x0

xa−2

b b
ya−2

b
xa−1

b b bb
ya−1

b b b

xa−2

b

y2a−3

b

Figure 12. C00 ∪ C01.

b b b b b b b

x0 y0 x1 y1 x2a−3

b b
y2a−3

b b b b b b b b b
xa

y0 xa+1 y1 ya−3 x2a−2 ya−2

b b
y2a−4

b

b

x2a−2

x0

xa−2

b b
ya−2

b
xa−1

b b bb
ya−1

b b b
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Figure 13. P00 ∪ P01.

By applying a procedure similar to Case 1, the remaining pairs of cycles C0µ

and C0(µ+1), 2 ≤ µ 6= a ≤ r− 1 decomposes into pairs of paths. Hence the graph
Km,n(2) has the desired decomposition.

Theorem 7. Let p, q be nonnegative integers and {k,m, n, λ} ∈ N such that k ≡
λ ≡ 0(mod 2), m+n > k ≥ 4, and k divides 2mn. If m,n ≥ k/2, k(p+q) = λmn,
and p 6= 1, then the graph Km,n(λ) has a (k; p, q)-decomposition.
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Proof. When λ ≥ 2, we can write Km,n(λ) = (λ/2)Km,n(2). By Lemma 6 and
Remark 5, the graph (λ/2)Km,n(2) has a (k; p, q)-decomposition. Hence the
graph Km,n(λ) has the desired decomposition.

Remark 8.

1. Let k, m, n be positive even integers such that k ≥ 4. If the graph Km,n(λ)
has a (k; p, q)-decomposition, then for every positive integer x, the graph
Km,n(xλ) has a (k; p, q)-decomposition.

2. Let k, m, n be positive even integers such that k ≥ 4. If the graph Km,n(λ)
has a (k; p, q)-decomposition, then for all positive integers r and s, the graph
Krm,sn(λ) has a (k; p, q)-decomposition.

3. Let k, n1, n2, . . . , nm be positive even integers such that k ≥ 4. If the graph
Kni,nj

(λ), for 1 ≤ i 6= j ≤ m has a (k; p, q)-decomposition, then the graph
Kn1,n2,...,nm(λ) has a (k; p, q)-decomposition.

3. (k; p, q)-Decomposition of Km,n(λ), when λ ≥ 3

In this section, we investigate the existence of a (k; p, q)-decomposition ofKm,n(λ),
when λ ≥ 3 and λm ≡ λn ≡ k ≡ 0(mod 2).

Theorem 9. Let {k,m, n, λ} ∈ N and i, j be nonnegative integers such that
λ ≥ 3, λm ≡ λn ≡ 0(mod 2), and k ≡ 0(mod 4). If K k

2
+i, k

2
+j(λ), 0 ≤ i, j ≤ k/2

has a (k; p, q)-decomposition, then the graph Km,n(λ), where m,n ≥ k, has a
(k; p, q)-decomposition.

Proof. By the hypothesis, let m = tk + x and n = sk + y, where t and s are
positive integers, x and y are nonnegative integers such that 0 ≤ x, y < k.

When x = y = 0, we can write Km,n(λ) = Ktk,sk(λ) = λtsKk,k. When
x = y = k/2, we can write

Km,n(λ) = K(t−1)k+ 3k
2
,(s−1)k+ 3k

2

(λ)

= K(t−1)k,(s−1)k(λ)⊕K(t−1)k, 3k
2

(λ)⊕K 3k
2
,(s−1)k(λ)⊕K 3k

2
, 3k
2

(λ)

= ((t− 1)(s− 1)λ)Kk,k ⊕ (t− 1)λKk, 3k
2

⊕ (s− 1)λK 3k
2
,k ⊕ λK 3k

2
, 3k
2

.

Since k ≡ 0(mod 4), by Theorem 1 the graphs Kk,k, Kk, 3k
2

, and K 3k
2
, 3k
2

have a

(k; p, q)-decomposition. Hence the graph Km,n(λ) has the desired decomposition.
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Case 1: x = 0 and 0 < y < k. When 0 < y < k/2, we can write

Km,n(λ) = Ktk,(s−1)k+ k
2
+ k

2
+y(λ) = Ktk,(s−1)k+ k

2

(λ)⊕Ktk,y+ k
2

(λ)

= (tλ)Kk,(s−1)k+ k
2

⊕ tKk,y+ k
2

(λ)

= (t(s− 1)λ)Kk,k ⊕ (tλ)Kk, k
2

⊕ tKk,y+ k
2

(λ).

By Theorem 1, the graphs Kk,k, Kk, k
2

both have a (k; p, q)-decomposition

and by the hypothesis, the graph Kk,y+ k
2

(λ) has a (k; p, q)-decomposition.

When k/2 ≤ y < k, we can write

Km,n(λ) = Ktk,sk+y(λ) = Ktk,sk(λ)⊕Ktk,y(λ)

= (tsλ)Kk,k ⊕ tKk,y(λ).

By Theorem 1, the graph Kk,k has a (k; p, q)-decomposition and by the hypoth-
esis, the graph Kk,y(λ) has a (k; p, q)-decomposition. Hence the graph Km,n(λ)
has the desired decomposition.

Case 2: k/2 < x < k and k/2 ≤ y < k. We can write

Km,n(λ) = Ktk+x,sk+y(λ) = Ktk,sk(λ)⊕Ktk,y(λ)⊕Kx,sk(λ)⊕Kx,y(λ)

= (tsλ)Kk,k ⊕ tKk,y(λ)⊕ sKx,k(λ)⊕Kx,y(λ),

and λmn/k = λ(tk + x)(sk + y)/k = λ(tsk + sx + ty) + λxy/k. By Theorem 1,
the graph Kk,k has a (k; p, q)-decomposition and by the hypothesis, the graphs
Kk,y(λ) and Kx,k(λ) both have a (k; p, q)-decomposition. Since k divides λmn,
we have k divides λxy and also k/2 ≤ x, y < k, then by the hypothesis, Kx,y(λ)
has a (k; p, q)-decomposition. Hence, by Remark 5, the graph Km,n(λ) has the
desired decomposition.

Case 3: 0 < x, y ≤ k/2. We can write

Km,n(λ) = K(t−1)k+(k+x),(s−1)k+(k+y)(λ)

= K(t−1)k,(s−1)k(λ)⊕K(t−1)k,k+y(λ)⊕Kk+x,(s−1)k(λ)⊕Kk+x,k+y(λ)

= (t− 1)(s− 1)Kk,k(λ)⊕ (t− 1)Kk,k+y(λ)⊕ (s− 1)Kk+x,k(λ)

⊕Kk/2,k+y(λ)⊕Kk/2+x,k+y(λ)

= λ(t− 1)(s− 1)Kk,k ⊕ (t− 1)Kk,k/2(λ)⊕ (t− 1)Kk,k/2+y(λ)

⊕ (s− 1)Kk/2,k(λ)⊕ (s− 1)Kk/2+x,k(λ)⊕Kk/2,k+y(λ)

⊕Kk/2+x,k/2(λ)⊕Kk/2+x,k/2+y(λ),

and λmn/k = λ(tk+x)(sk+y)/k = λk(t−1)(s−1)+λ(t−1)(k+y)+λ(k+x)(s−
1) + λ(k + x + y) + (λxy)/k. By Theorem 1, the graphs Kk,k and Kk/2,k both
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have a (k; p, q)-decomposition and by the hypothesis, the graphs Kk,k/2+y(λ),
Kk/2+x,k(λ), both have a (k; p, q)-decomposition. Since k divides λmn and k ≡ 0
(mod 4), we have k divides λ(k/2 + x)(k/2 + y), 2 divides λx, and 2 divides
λy and k/2 ≤ (k/2 + x), (k/2 + y) ≤ k. Then by the hypothesis, the graphs
Kk/2+x,k/2+y(λ), Kk/2+x,k/2(λ), and Kk/2,k/2+y(λ) have a (k; p, q)-decomposition.
The graphKk/2,k+y(λ) can be viewed asKk/2,k/2(λ)⊕Kk/2,k/2+y(λ) = λKk/2,k/2⊕
Kk/2,k/2+y(λ). By Theorem 2, the graph Kk/2,k/2 has a Ck-decomposition and by
the hypothesis, the graph Kk/2,k/2+y(λ) has a (k; p, q)-decomposition. Now for
any pair of cycles of length k, one from the graph λKk/2,k/2, say Cα and the other
from the graph Kk/2,k/2+y(λ), say Cβ , we have a common vertex in Cα⊕Cβ , say
v, such that at least one neighbor of v from each cycle does not belongs to the
other cycle. Then by the Construction 4 we have two edge-disjoint paths of length
k from Cα and Cβ . By applying a similar procedure to the remaining pairs of
cycles, we have edge-disjoint pairs of paths. Hence the graph Kk/2,k+y(λ) has
a (k; p, q)-decomposition. Therefore, by Remark 5, the graph Km,n(λ) has the
desired decomposition.

Case 4: 0 < x ≤ k/2 and k/2 < y < k. We can write

Km,n(λ) = K(t−1)k+(k+x),sk+y(λ)

= K(t−1)k,sk(λ)⊕K(t−1)k,y(λ)⊕Kk+x,sk(λ)⊕Kk+x,y(λ)

= ((t− 1)sλ)Kk,k ⊕ (t− 1)Kk,y(λ)⊕ sKk+x,k(λ)⊕Kk+x,y(λ)

= ((t− 1)sλ)Kk,k ⊕ (t− 1)Kk,y(λ)⊕ sKk/2,k(λ)⊕ sKk/2+x,k(λ)

⊕Kk/2,y(λ)⊕Kk/2+x,y(λ),

and λmn/k = λ(tk+x)(sk+ y)/k = λ((t− 1)sk+(t− 1)y+ sk/2+ s(k/2+x))+
λ(k + x)y/k. By Theorem 1, the graphs Kk,k and Kk/2,k both have a (k; p, q)-
decomposition. Since k divides λmn, we have 2 divides λy, k divides xyλ and also
k/2 ≤ (k/2+ x), y ≤ k, then by the hypothesis, the graphs Kk,y(λ), Kk/2+x,k(λ),
and Kk/2+x,y(λ) have a (k; p, q)-decomposition. Hence, by Remark 5, the graph
Km,n(λ) has the desired decomposition.

Theorem 10. Let {k,m, n, λ} ∈ N and i, j be nonnegative integers such that
λ ≥ 3, λm ≡ λn ≡ 0(mod 2), and k ≡ 2(mod 4). If K k

2
+i, k

2
+j(λ), 0 ≤ i, j ≤ k

has a (k; p, q)-decomposition, then the graph Km,n(λ), where m,n ≥ 3k/2, has a
(k; p, q)-decomposition.

Proof. By the hypothesis, let m = tk + x and n = sk + y, where t and s are
positive integers, x and y are nonnegative integers such that 0 ≤ x, y < k.
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When x = y = k/2, we can write

Km,n(λ) = K(t−1)k+ 3k
2
,(s−1)k+ 3k

2

(λ)

= K(t−1)k,(s−1)k(λ)⊕K(t−1)k, 3k
2

(λ)⊕K 3k
2
,(s−1)k(λ)⊕K 3k

2
, 3k
2

(λ)

= ((t− 1)(s− 1)λ)Kk,k ⊕ (t− 1)λKk, 3k
2

⊕ (s− 1)λK 3k
2
,k ⊕ λK 3k

2
, 3k
2

.

By Theorem 1, the graph Kk,k, has a (k; p, q)-decomposition and by the hypothe-
sis, the graphs Kk, 3k

2

, and K 3k
2
, 3k
2

both have a (k; p, q)-decomposition. Hence the

graph Km,n(λ) has the desired decomposition.

Case 1: 0 ≤ x, y < k/2. When 0 ≤ x, y < k/2, we have t, s ≥ 2. We can write

Km,n(λ) = K(t−1)k+(k+x),(s−1)k+(k+y)(λ)

= K(t−1)k,(s−1)k(λ)⊕K(t−1)k,k+y(λ)⊕Kk+x,(s−1)k(λ)⊕Kk+x,k+y(λ)

= ((t− 1)(s− 1)λ)Kk,k ⊕ (t− 1)Kk,k+y(λ)⊕ (s− 1)Kk+x,k(λ)

⊕Kk+x,k+y(λ),

and λmn/k = λ(tk + x)(sk + y)/k = λ((t − 1)(s − 1)k + (s − 1)(k + x) + (t −
1)(k + y)) + λ(k + x)(k + y)/k.

By Theorem 1, the graph Kk,k has a (k; p, q)-decomposition and by the hy-
pothesis, the graphsKk,k+y(λ) andKk+x,k(λ) both have a (k; p, q)-decomposition.
Since k divides λmn, we have k divides λ(k + x)(k + y) and also k/2 ≤ (k +
x), (k+ y) ≤ 3k/2, then by the hypothesis, the graph Kk+x,k+y(λ) has a (k; p, q)-
decomposition. Hence, by Remark 5, the graph Km,n(λ) has the desired decom-
position.

Case 2: k/2 ≤ x < k and k/2 < y < k. We can write Km,n(λ) =
Ktk+x,sk+y(λ) = Ktk,sk(λ)⊕Ktk,y(λ)⊕Kx,sk(λ)⊕Kx,y(λ) = (tsλ)Kk,k⊕tKk,y(λ)⊕
sKx,k(λ)⊕Kx,y(λ), and λmn/k = λ(tk+x)(sk+y)/k = λ(tsk+sx+ty)+λxy/k.
By Theorem 1, the graph Kk,k has a (k; p, q)-decomposition and by the hypoth-
esis, the graphs Kk,y(λ) and Kx,k(λ) both have a (k; p, q)-decomposition. Since
k divides λmn, we have k divides λxy and also k/2 ≤ x, y < k, then by the
hypothesis, the graph Kx,y(λ) has a (k; p, q)-decomposition. Hence, by Remark
5, the graph Km,n(λ) has the desired decomposition.

Case 3: 0 ≤ x < k/2 and k/2 ≤ y < k. When 0 ≤ x < k/2 and k/2 ≤ y < k,
we have t ≥ 2 and s ≥ 1. We can write

Km,n(λ) = K(t−1)k+(k+x),sk+y(λ)

= K(t−1)k,sk(λ)⊕K(t−1)k,y(λ)⊕Kk+x,sk(λ)⊕Kk+x,y(λ)

= ((t− 1)sλ)Kk,k ⊕ (t− 1)Kk,y(λ)⊕ sKk+x,k(λ)⊕Kk+x,y(λ),
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and λmn/k = λ(tk + x)(sk + y)/k = λ((t− 1)sk + s(k + x) + (t− 1)y) + λ(k +
x)y/k. By Theorem 1, the graph Kk,k has a (k; p, q)-decomposition and by the
hypothesis, the graphsKk,y(λ) andKk+x,k(λ) both have a (k; p, q)-decomposition.
Since k divides λmn, we have k divides λ(k+x)y and also k/2 ≤ (k+x), y ≤ 3k/2,
then by the hypothesis, the graphKk+x,y(λ) has a (k; p, q)-decomposition. Hence,
by Remark 5, the graph Km,n(λ) has the desired decomposition.
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