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Abstract

We give necessary and sufficient conditions for the decomposition of com-
plete bipartite multigraph K, »()) into paths and cycles having k edges. In
particular, we show that such decomposition exists in Ky, n(A), when A =0
(mod 2), m,n > %, m+n >k, and k(p+ q) = 2mn for k = 0(mod 2) and
also when A > 3, Am = An = 0(mod 2), k(p + q) = Amn, m,n > k, (resp.,
m,n > 3k/2) for k = 0(mod 4) (respectively, for k = 2(mod 4)). In fact,
the necessary conditions given above are also sufficient when \ = 2.
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1. INTRODUCTION

Unless stated otherwise all graphs considered here are finite, simple, and undi-
rected. For the standard graph-theoretic terminology the readers are referred to
[8]. A cycle of length m is called an m-cycle and it is denoted by C,, and a path
of length m is called an m-path and it is denoted by P,,4+1. A circuit (directed
cycle) of length m is called an m-circuit and it is denoted by C',. Let K,;,, denote
a complete graph on m vertices, K,,, denote a complete bipartite graph with
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m and n vertices in the parts, and K7, , denote a complete bipartite symmetric
directed graph with m and n vertices in the parts. A graph whose vertex set
is partitioned into sets Vi,...,V,, such that the edge set is Ui;ﬁje[m] Vi x Vj is
called a complete m-partite graph denoted by Ky, . n,., where |V;| = n; for all i.
For any integer a@ > 0, aG denotes a union of a edge-disjoint copies of G. The
A-multiplication of G, denoted G()), is the multigraph obtained from a graph G
by replacing each edge with A\ edges. For a graph G, G — I denotes the graph G
with a 1-factor I removed. Let zgx; - xg_oxk_1 and (zoxy - xp_120) respec-
tively denote the path P, and the cycle Cy with vertices xg,x1,...,25—1 and
edges xox1,T1T2, ..., Tp 2Tk_1, Tk—_1L0-

By a decomposition of the graph G, we mean a list of edge-disjoint subgraphs
of G whose union is G (ignoring isolated vertices). For the graph G, if E(G) can
be partitioned into E1,..., E) such that the subgraph induced by E; is H;, for
all i, 1 < i < k, then we say that Hy,..., Hr decompose G and we write G =
H{®---® Hy, since Hy,..., H; are edge-disjoint subgraphs of G. For 1 <i < k,
if H; =2 H, we say that G has a H-decomposition. If G has a decomposition
into p copies of H; and ¢ copies of Hy, then we say that G has a {pHy,qH2}-
decomposition. If such a decomposition exists for all admissible pairs of p and ¢
satisfying trivial necessary conditions, then we say that G has a full {H;, H2}-
decomposition or G is fully {Hy, Ha}-decomposable.

Study on full {H;, Hs }-decomposition of graphs is not new. Abueida, Daven,
and Roblee [1, 3] completely determined the values of n for which K, ()\) ad-
mits the {pHi, gHs}-decomposition such that Hy & He = K;, when A > 1 and
|V(Hy)| = |V(Ha2)| =t, where t € {4,5}. Let Sy denotes a star on k vertices, i.e.
Sk = Kij—1. Abueida and Daven [2] proved that there exists a {pKy, ¢Si+1}-
decomposition of K, for k¥ > 3 and n = 0,1(mod k). Abueida and O’Neil [4]
proved that for £k € {3,4,5}, the {pCk, ¢Sk }-decomposition of K, ()) exists,
whenever n > k + 1 except for the ordered triples (k,n,\) € {(3,4,1),(4,5,1),
(5,6,1),(5,6,2),(5,6,4),(5,7,1),(5,8,1)}. Abueida and Daven [2] obtained nec-
essary and sufficient conditions for the {pCy, ¢(2K32) }-decomposition of the Carte-
sian product and tensor product of paths, cycles, and complete graphs. Shyu [17]
obtained a necessary and sufficient condition for the existence of a full {Ps, Cy}-
decomposition of K,. Shyu [18] proved that K, has a full { Py, S4}-decomposition
if and only if n > 6 and 3(p + q) = (g) Also he proved that K, has a full
{ Py, Sy }-decomposition with a restriction p > k/2, when k even (resp., p > k,
when k£ odd). Shyu [19] obtained a necessary and sufficient condition for the
existence of a full { Py, K3}-decomposition of K,. Shyu [20] proved that K, has
a full {C4, S5}-decomposition if and only if 4(p + ¢q) = (g), g # 1, when n is
odd and ¢ > max {3, [%]}, when n is even. Shyu [21] proved that K, has
a full {Py, S }-decomposition for some m and n and also obtained some neces-
sary and sufficient condition for the existence of a full {Py, S4}-decomposition of
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K, . Sarvate and Zhang [16] obtained necessary and sufficient conditions for the
existence of a {pPs3, ¢K3}-decomposition of K, (\), when p = q.

Chou et al. [9] proved that for a given triple (p, ¢, ) of nonnegative integers,
G decompose into p copies of Cy, g copies of Cg, and r copies of Cg such that
4p 4+ 6¢ + 8r = |E(G)| in the following two cases: (a) G = K, ,, with m and n
both even and greater than four (b) G = K, ,, — I, where n is odd. Chou and Fu
[10] proved that the existence of a full {Cy, Cy; }-decomposition of Ko, 2,, where
t/2 < u,v < t, when ¢t even (resp., (t+1)/2 < u,v < (3t —1)/2, when ¢ odd)
implies such decomposition in Ky, 25, where m,n >t (resp., m, n > (3t +1)/2).
The authors [11] reduced the bounds of the sufficient conditions obtained by
Chou and Fu [10] for the existence of a full {C4, Cy }-decomposition of Koy, 2n,
when ¢ > 2. Lee and Chu [13, 14] obtained a necessary and sufficient condition
for the existence of a full {Py, Si}-decomposition of K, , and K,,,. Lee and
Lin [15] obtained a necessary and sufficient condition for the existence of a full
{pCk, ¢Sk+1}-decomposition of K, ,, —I. Abueida and Lian [7] obtained necessary
and sufficient conditions for the existence of a {pC}, ¢Sk+1 }-decomposition of K,
for some n. Recently, the authors [12] obtained some necessary and sufficient
conditions for the existence of a full {Py41, C }-decomposition of K, and K, ,,.

In this paper, we study only the existence of a full { Py, Cy }-decomposition
of K (), we abbreviate the notation for such decomposition as (k; p, q)-decom-
position of Ky, »,(X). The obvious necessary condition for such existence is k(p +
q) = |E(Kmn(N))|. As we consider only cases where all vertices are of even degree,
the case p # 1 is also obviously necessary, since the presents of a single path in
the decomposition would give two vertices of odd degree and the resulting graph
is not cycle decomposable. Call the situation with k(p + q) = |E(Kmn(N))], all
vertex degrees are even, and p # 1 the good case.

We prove that in the good case K, »(\) has a (k; p, ¢)-decomposition, when
A =0(mod 2), m,n > % m+mn >k, and k(p + q) = 2mn for k = 0(mod 2).
Further, we show that if K, ,(A), A > 3, k = 0(mod 4) (resp., kK = 2(mod 4))
has a (k;p,q)-decomposition in the good case with k/2 < m,n < k, (resp.,
k/2 <m,n < 3k/2,) then such decomposition also exists in the good case, when
A >3; m,n >k (resp., m,n > 3k/2).

To prove our results, we use the following;:

Theorem 1 [12]. Let p and q be nonnegative integers and k, m, n be positive
even integers such that k = 0(mod 4). For m < n, the graph K, », has a (k;p,q)-
decomposition if and only if m > %, n > [%], k(p+ q) = mn, and p # 1.

H
Theorem 2 [22]. K, has a Cg-decomposition if and only if m > g, n > g,
and k divides 2mn.

By considering the underlying graph of K7,
Theorem 2.

n» we have the following from
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Theorem 3. The graph Ky, ,(2) has a Cy-decomposition if and only if m > g,

n > g, and k divides 2mn.

2. (k;p,q)-DECOMPOSITION OF K, ,(A) WHEN k = 0(mod 2)

In this section, we investigate the existence of (k; p, ¢)-decomposition of Ky, » (),
when k = 0(mod 2).

Construction 4. Let Cy and C, be two cycles of length k, where Cy = (x122 - -
xrx1) and Cy, = (y1y2 -+ yry1). If v is a common vertex of Cy and C,, such that
at least one neighbour of v from each cycle (say, x; and y;) does not belongs to
the other cycle, then we have two edge-disjoint paths of length k, say Py and P,
from Cy and C,, as follows (see Figure 1), where Py = (Cy —vx;) Uvy;,P, =
(Cp —vyj) Uva,.

- — — — OenotesPP,

denotes P,

Figure 1. C, UC, =P\ UP,.

Remark 5. Let £ € N. If G and H have a (k;p, ¢)-decomposition, then G & H
has such a decomposition.

Lemma 6. Let p,q be nonnegative integers and {k,m,n} € N such that k =0
(mod 2) and m +n > k. The graph K, »(2) has a (k;p, q)-decomposition if and
only if myn > k/2, k(p+ q) =2mn, and p # 1.

Proof. Necessity. Conditions m,n > k/2, k(p + q) = 2mn, and p # 1 are
trivial.

Sufficiency. Let £ = 0(mod 2). In order to have a Cg-decomposition in
K n(2), we can always find w, v such that k = 2uv, m = ru, n = sv, r > v, and
s > u, where r and s are positive integers. We denote the vertices of the partite
sets of Ky s by 2;, 0 <4 <7ru—1and y;, 0 < j < sv — 1. By Theorem 3, the
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graph K, s»(2) has a Cy,,-decomposition as follows:

Cow= ( o ( C T (i uti Y Ao )Oﬁiﬁv—l)ogjgu—l ’
0<A<s—10< u<r—1,
where the indices of x are to be taken with modulo ru and those of y with modulo

sv. Now we construct the required number of Py1q from the Cj-decomposition
given above, in two cases.

Case 1: p is even. For a fixed p and 0 < A < s — 1, we can have Cy,
and C(y;1), as above. Since zuuyny € E(Cau); TpuYrturiyv—1 € E(Cotiyp)s
Yo & V(Cirs)u), and yoquriyw—1 ¢ V(Cay), we have two edge-disjoint paths of
length k, say Py, and P51, from C,, and C(y11), as follows (see Figure 2).

IP)M = (CM - xuuykv) U ZpuYAtut1)v—1s

P(A—f—l)u = (C(A—&—l)u - xuuy()\+u+1)v—1) U ZpuYre-

== S < \\
\.\. .\.\.\.\.\l.ll..
R AN
e e - W@ ) o« . e
v Yxo+1 < <
Yxo C/X Qx
% %,
7
denotes C)y,

----- denotes C()\Jr])u

Figure 2. (C,\“ U (C()\Jrl)u = P)\M U P(AJ’,I)M.

Similarly, we can find pairs of paths of length k& from the pairs of cycles Cy,
and C(y,1),, where A = 0,2,...,s =2 or s —1 and 0 < po < r — 1. Hence the
graph K, (2) has the desired decomposition.

Now for a fixed A and 0 < p < 7 — 1, we can have Cy, and Cy(,41) as
above. Since upYrtp)g—1 € E(Con)s T(urqr1)p—1Y04p)a—1 € E(Crur)), Tup ¢
V(Cx(u+1)), and 2 4q41)p—1 ¢ V(Cau), we have two edge-disjoint paths of length
k, say Py, and Py, from Cy, and Cy(,1) as follows (see Figure 3).

Py, = (C)\M - $#Py(/\-ﬁ-p)t;{—l) UZ (it g+1)p—1Y(Mp)g—15

Pxu+1) = ((CA(uH) - x(u+q+1)pfly(k+p)q71) UZupY(rtp)g—1-
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Figure 3. (C)\M U (C/\(P«+1) = IP)\M U PA(H‘H)'

Similarly, we can find pairs of paths of length k from the pairs of cycles Cy,,
and Cy(,41), where g =10,2,...,7 —2 or r — 1. Hence we have the desired paths.

Case 2: p is odd. Fixing v = ged(n, k/2), we have u = k/2v, s = n/v. Since

k divides 2mn, i.e. 2uv divides 2mn and v divides n, we have r = m/u.
x0 Yo Ty, Y1 x(’ufl)ufl Yuv—2 Lyv—1 Yuv—1
[ L 4 L ® - - - @ L \ 9
Sea - -- g
. o mmm ommmmemomeEm W mmmmm == -
Yuv—2 Z(v+1)u—1 Yuv—1

Ty Y1 Tyv—1
. ¢« . @ —— — Q= = = =

Yo
®

an
—
T(v+2)u—1 Yuv—1

Y1 L(v+D)u—1  Yuv—2
® —o —— Q= = = =

Yo

o
S —

Subcase 2a: (v+2)u—1 < mand v+2 < r. Since r > 3 and s > 1, we
can have Cpg, Cp1, and Cpa (see Figure 4). By applying a procedure similar to
Construction 4, we have three edge-disjoint paths of length k, say Pgyg, Po1, and

Ppo from Cog, Cp1, and Cpo as follows (see Figure 5).

Figure 4. Cyo U Cp1 U Copo.



DECOMPOSITION OF COMPLETE BIPARTITE MULTIGRAPHS INTO PATHS ... 721

Poo = (COO - ‘Toyuvfl) ) L(v4+1)u—1Yuv—1;
POl = ((Col - (E(v+1)u,1yuv_1) U m(v+2)u,1yuv_1,

Po2 = (Coz — Z(v42)u—1Yuv—1) U ToYuv—1.

o Yo Ty, Y1 Two—Du—1 Yuv—2 Tuv—1 Yuv—1 T(v4+1)u—1
® VY 7Y ® * - .09 —@= === -2
Ty, Yo Ty Y1 Tyv—1 Yuv—2 Z(v+1)u—1 Yuv—1 T(v42)u—1
— i T
ZTou Yo T34 Y1 T(v+)u—1 Yuv—2 T(p+2)u—1 Yuv—1 Zo

— e

Figure 5. IPOQ @] POI @] ]POQ.

By applying a procedure similar to Case 1, the remaining pairs of cycles
Cxn ® Co(ugrys (\p), (A e+ 1) # (0,0),(0,1),(0,2) decomposes into pairs of
paths. Hence the graph K, ,,(2) has the desired decomposition.

) Yo Ty Y1 Tw—1)u-1 Yuv—2 Luv—1 Yuv—1
® L L ® - - - @ L & 9
.h..---- ---___—’
T Yo Ty Yut1 T(o-1)u—1 Yutlp-2 Tup—1 YutDv-1
. ® ° o - . e o —o—o
~._____ -_____'
o Y2u Ty Y2u+1 T(v—Du—1 Yu+2)v—2 Luv—1 Y(u+2)v—1
g g ® ®: - 0——o—o—9

~
-~ -
- -
--------------------------

Figure 6. (COO U (CIO ] (CQ().

Subcase 2b: (u+2)v —1 < nand u+2 < s. Since r > 1 and s > 3, we
can have Cgyg, Cyp, and Co (see Figure 6). By applying a procedure similar to
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Construction 4, we have three edge-disjoint paths of length k, say Pgyg, P19, and
Pyp from Cog, Cyg, and Cyp as follows (see Figure 7).

Poo = (Coo — T0Yuv—1) U T0Y(ut1)v—1;
P10 = (Ci0 — T0Y(u+1)v—1) U T0Y(u+2)v—1;
Pao = (Ca0 — T0Y(u+2)0—1) U T0Yuv—1-

Y(u+1)v—1 Zo Yo Ty, Y1 T(y—1u—1 Yuv—2 Tyv—1 Yuv—1
G- & ¢ 0 - -0—o . o

Y(u+2)v-1 Zo Yo Ty Yo+1 T(o—1yu—1 Yutlyp—2 ZTup—1 JutDv-1
’ - - - - ' . ' . . . . ‘ '

Yuv—1 Lo Y20 Lu Y2u+1 Lw-1Du-1 Yut+2)v—2 Luv—1 Y(u+2)v—1
Gemmmmng PY ° o - . o

Figure 7. POO ] PIO U ]Pgo.

By applying a procedure similar to Case 1, the remaining pairs of cycles
Coxn @ Cingryy (), (A+1,1) # (0,0),(1,0),(2,0) decomposes into pairs of
paths. Hence the graph K, ,,(2) has the desired decomposition.

Subcase 2¢c: (v+1u—1<m, (u+1v—1<n,u+1<s,andv+1<r mor
n # k/2. Since r, s > 2 we can have Cyg, Cy9, and Cq;. By applying a procedure
similar to Case 1, we have two edge-disjoint paths of length k, say P19 and Py
from Ciy and Cq; as follows:

Pio = ((Cm - xOy(qul)vfl) UZ (1) u—1Y(ut1)v—1>
Pun = ((Cll - x(v—i—l)u—ly(u—i—l)v—l) U LOY(u+1)v—1-
Now consider Cop and P11 (see Figure 8); since woyuv—1 € E(Coo), (y41)yu—2Yuv—1
€ E(P11), (vt 1)u—2 & V(Coo), and ¢ € V(PP11), we have two edge-disjoint paths
of length k, say Poy and P11 from Coy and Pyq as follows (see Figure 9).
Poo = (COO - xoyuv—l) U T(v+1)u—2Yuv—1,
P = (]Pll - x(v+1)u—2yuv—1) U ZoYuv—1-

By applying a procedure similar to Case 1, the remaining pairs of cycles both
(C)\u S5 C(A—l—l)u and C)\u @ C/\(/H-l)a (A> ,U)a ()‘ +1, ,U) (Aa M+ 1) 7& (Oa 0)7 (07 1)7 (17 1)
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Zo Yo m Y1 T(y—1)u—1 Yuv—2 Tyv—1 Yuv—1
e ° - - t———0
-~ -
- - - m mmm mmemmmm W m W m = --- -=
Zo Y(ut1)v—1 Ty Yo Yuv—2 T(v+1)u—2 Yuv—1 Toy—1

Y(u+1)v—2 T(v+1)u—1
> ———-0 ° -+ OO = =-—— - o ——o

Figure 8. C()(] and ]P)ll'

Zo Yo Ty Y1 T(v—1)u—1  Yuv—2 Tup—1 Yuv—1 L(o+1)u—2
P Py PY ® ° -  O— O ===9

xo Y(ut1)v—1 Ty, Yv Yuv—2 T(v+1)u—2 Yuv—1 T2u—1

-

Yu+1)v—2 L(v+1)u—1
*-—

Figure 9. Py and ]@11.

decomposes into pairs of paths. Hence the graph K, ,(2) has the desired decom-
position.

Subcase 2d: m =k/2+ 1 and n = k/2. When m = k/2+ 1 and n = k/2, we
have s=p=1and r =g+ 1. Since A =2 and 0 < u < r — 1, we can have Cqg
and Co; (see Figure 10). By applying a procedure similar to Case 1, we have two

edge-disjoint paths of length k, say Pgp and Py; from Cpp and Cp; as follows (see
Figure 11).

Poo = (Coo — 0Y20—3) U T20—2Y20—3,

Po1 = (Co1 — 2a—2Y2a—3) U ToY2a—3-

z1 Yo To Y1 X2q-3 Y2a—4  T2a-2 Y2a-3

— e,

Figure 10. Cyg U Cp; .
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Zo Yo 1 Y1 T2a—4 Y2a—4 ZT2a-3 Y2a-3 Toa—2
— o & e - e— & ¢ @======9
T Yo Zo Y1 Toq_3 Y2a—a T2q—2 Y2a-3 Zo

Figure 11. IPQO U P()l.

Let a = r + 1/2. Now we consider Pyy and Cpy, (see Figure 12). Since
T2a—1Ya—2 € E((CaO)a Ta-1Ya—2 € EUPOAO)v and xq—1 ¢ V((CaO) we have two edge-
disjoint paths of length k, say Py, and Pgg from Co, and Py as follows (see Figure
13).

To Yo € Y1 Ta—2 Ya—2 Ta—1 Ya—1 2203 Yoa—3 Toa_2
b . . e - - —@===¢— 9@ - .. o ° o

1 T x Y2q— Tq— Y2a-3
Za Yo Ta+1 Y1 Ya—3 T2a-2 Ya—2 0 Y2a—4 a2

Zo Yo 21 " Tgq—2 Ya—2 Tg—1 Ya—1 T2q—3 Y2a-3 Tog—2
o ®- L ° ——o *——o0 r——o—o
L4
~ -
~ -
B T e
. ; _ Lo Y2a-3

Zq Yo Tatl v Ya—3 Z2q—2 Ta—1 Ya—2 Zo Y2a—4 a2 Y2a

Figure 13. POO U P()l.

By applying a procedure similar to Case 1, the remaining pairs of cycles Co,,
and Cy(,41), 2 < p # a <r —1 decomposes into pairs of paths. Hence the graph
K7 (2) has the desired decomposition. |

Theorem 7. Let p, g be nonnegative integers and {k,m,n,A\} € N such that k =
A=0(mod 2), m+n >k >4, and k divides 2mn. If m,n > k/2, k(p+q) = Amn,
and p # 1, then the graph Ky, »()\) has a (k;p, q)-decomposition.



DECOMPOSITION OF COMPLETE BIPARTITE MULTIGRAPHS INTO PATHS ... 725

Proof. When X\ > 2, we can write Ky, n(A) = (A\/2) K, n(2). By Lemma 6 and
Remark 5, the graph (A/2) K, ,(2) has a (k;p,q)-decomposition. Hence the
graph K, ,(\) has the desired decomposition. |

Remark 8.

1. Let k, m, n be positive even integers such that k& > 4. If the graph K, »(\)
has a (k;p, q)-decomposition, then for every positive integer x, the graph
Ky, n(xX) has a (k; p, g)-decomposition.

2. Let k, m, n be positive even integers such that k > 4. If the graph K, ()
has a (k; p, ¢)-decomposition, then for all positive integers r and s, the graph
Kym sn(A) has a (k; p, ¢)-decomposition.

3. Let k, n1,n9,...,n,, be positive even integers such that k > 4. If the graph
Kp;n;(A), for 1 <i # j < m has a (k;p, g)-decomposition, then the graph
K, no....nm (M) has a (k; p, ¢)-decomposition.

3. (k;p,q)-DECOMPOSITION OF K, ,,(\), WHEN \ > 3

In this section, we investigate the existence of a (k; p, ¢)-decomposition of Ky, » (),
when A > 3 and Am = An = k = 0(mod 2).

Theorem 9. Let {k,m,n,A\} € N and i, j be nonnegative integers such that
A>3, Am = An =0(mod 2), and k = 0(mod 4). IfK§+i,§+j()‘)’ 0<1i,5<k/2
has a (k;p,q)-decomposition, then the graph Kp n(\), where m,n > k, has a
(k; p, q)-decomposition.

Proof. By the hypothesis, let m = tk + x and n = sk 4+ y, where ¢ and s are
positive integers, x and y are nonnegative integers such that 0 < z,y < k.

When z = y = 0, we can write Ky, n(A) = Ky sk(A) = AtsKy . When
x =y =k/2, we can write

Kmn(A) = K(t—l)k+3’2—’“,(s—1)k+%()‘)
= K1)k, (s~ 1)k (A) @ Ky 3 (A) @ Koa () (A) © Kook sk (V)
=((t—1)(s— l)A)Kk’k @ (t— 1)/\Kk,% @ (s— 1))‘K%,k P AK sk sk

3k 3k .
2072

Since k = 0(mod 4), by Theorem 1 the graphs Kj j, K, sr, and Kz s have a
2 272

(k; p, q)-decomposition. Hence the graph K, ,,(A) has the desired decomposition.
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Casel:  =0and 0 <y < k. When 0 < y < k/2, we can write

Knn(A) = Ktk,(sfl)k+§+§+y()‘) = Ktk,(s—l)kJr%()‘) & Ktk,erg()\)
- (t)‘)Kk,(s—l)k+§ b th,y+§()\)
= (t(s — )N Ky @ (t)‘)Kk,g P th,y+§()‘)'

By Theorem 1, the graphs Ky, K, r both have a (k;p, q)-decomposition
2
and by the hypothesis, the graph K, y+&()\) has a (k; p, q)-decomposition.
Y3
When k/2 <y < k, we can write

Km,n()\) = Ktk,sker()‘) = Ktk,sk()\) @ Ktk,y(A)
= (ts)\)Kk’k ® th,y()\).

By Theorem 1, the graph K} j has a (k;p, ¢)-decomposition and by the hypoth-
esis, the graph Ky, () has a (k;p, q)-decomposition. Hence the graph K, n())
has the desired decomposition.

Case 2: k/2 < x <k and k/2 <y < k. We can write

Km,n()\) = Ktk—i—az,sk—i—y()‘) = Ktk’,sk()‘) S Ktk,y()‘) @ Kx,sk(A) S5 Kﬂc,y()‘)
= (tsA) Kp i ® tKp y(N) @ sKy 1(A) @ Ky y(N),

and Amn/k = Atk + x)(sk + y)/k = Atsk + sx + ty) + A\zy/k. By Theorem 1,
the graph Ky has a (k;p, ¢)-decomposition and by the hypothesis, the graphs
Kj () and K5 ;(A) both have a (k;p, ¢)-decomposition. Since k divides Amn,
we have k divides Azy and also k/2 < z,y < k, then by the hypothesis, K, ,())
has a (k;p, q)-decomposition. Hence, by Remark 5, the graph K,, ,(\) has the
desired decomposition.

Case 3: 0 < z,y < k/2. We can write

Kinn(A) = K1)kt (kta), (s 1)k (ky) (A)
= K- 1)k, (s—1)k(N) & Kt 1)k kry(A) & Ko (s 1)k (A) © Kipa by (N)
={t—-1)(s—1)Kpr(N) @ (t = 1)Kppyy(N) @ (5 = 1) Kpgz 1 (N)
® Ky /2 kry(N) © Kijota oty (A)
=AMt =1)(s = D)EKpk @ (¢ — 1)Ky p2(A) @ (£ — 1)Ky ky244(N)
® (s = 1) Kpj21(A) @ (s = 1)Ky 240k (A) © Ki g pgy (N
D Kijotak/2(N) © Kijoyak/24y(A),

and dmn/k = A(tk+z)(sk+y)/k = Mk(t—1)(s—= 1)+ Xt —1)(k+y) + AN(k+z)(s—
1) + A(k + 2 + y) + (A\xy)/k. By Theorem 1, the graphs K} and Kj o) both
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have a (k;p, ¢)-decomposition and by the hypothesis, the graphs Kj ;. a4, ()),
K} /242,k()), both have a (k; p, g)-decomposition. Since k divides Amn and k =0
(mod 4), we have k divides A(k/2 + z)(k/2 + y), 2 divides Az, and 2 divides
Ay and k/2 < (k/2 4+ x),(k/2 +y) < k. Then by the hypothesis, the graphs
Ky jotak/24y(N)s Kijogak/2(A), and Ky ja 1701 (A) have a (k; p, ¢)-decomposition.
The graph K}, 5 1.1, (A) can be viewed as Ky, /5 1 /2(A) O Kp j2, 1 /244 (A) = MK} j2 /2@
Kpj2,1/24y(A). By Theorem 2, the graph K 1./2 has a Cg-decomposition and by
the hypothesis, the graph Ky /9 1/24,(A) has a (k;p, ¢)-decomposition. Now for
any pair of cycles of length &, one from the graph AKj, /5 1 /2, say C, and the other
from the graph Ky, /s /2+4(A), say Cg, we have a common vertex in C,, @ Cg, say
v, such that at least one neighbor of v from each cycle does not belongs to the
other cycle. Then by the Construction 4 we have two edge-disjoint paths of length
k from C, and Cg. By applying a similar procedure to the remaining pairs of
cycles, we have edge-disjoint pairs of paths. Hence the graph K, /2,k+y()\) has
a (k;p,q)-decomposition. Therefore, by Remark 5, the graph K, ,,(\) has the
desired decomposition.

Case 4: 0 < x < k/2 and k/2 < y < k. We can write

Km,n@\) = K(tfl)k+(k+z),sk+y()‘)
= K )k,sk(A) © K—1)y(A) © Kiya,s6(A) © Kppay(A)
=((t—1DsN)Kpp ® (t — 1) Kpy(N) & Kpt0 k(N & Kiyay(N)
= ((t = 1)sAN)Kpp @ (t — 1) Kgy(A) © 5Ky 21 (A) © 8Ky jo40.5(N)
® Ki2,y(A) © Kijaiay(N),

and dmn/k = Ntk +z)(sk+y)/k = N(t—1)sk+ (t — 1)y +sk/2+s(k/2+x))+
A(k + x)y/k. By Theorem 1, the graphs Ky and Ky, both have a (k;p,q)-
decomposition. Since k divides Amn, we have 2 divides Ay, k divides xy\ and also
k/2 < (k/2+z),y <k, then by the hypothesis, the graphs Ky ,(A), Kj/24a1(N),
and Kj/o14,(\) have a (k;p, g)-decomposition. Hence, by Remark 5, the graph
K n(X) has the desired decomposition. |

Theorem 10. Let {k,m,n,\} € N and i, j be nonnegative integers such that
A>3, dm = An = 0(mod 2), and k = 2(mod 4). IfK%H,%H()‘)’ 0<4,j <k
has a (k;p, q)-decomposition, then the graph K, n()\), where m,n > 3k/2, has a
(k; p, q)-decomposition.

Proof. By the hypothesis, let m = tk + x and n = sk + y, where ¢ and s are
positive integers, x and y are nonnegative integers such that 0 < z,y < k.
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When & =y = k/2, we can write

Knn(A) = K(tfl)k+%,(sfl)k+%()\)
= K1p (s—1)p(A) @ Ky _yyp 28 (A) © K (1) () & Kae s (V)
=((t-1(s—1DNKpr @ (t — I)AKk%% @ (s — ))\KSk kD )\Ksk 3k .

2
By Theorem 1, the graph K}, j, has a (k;p, ¢)-decomposition and by the hypothe-
sis, the graphs K,C 8k, and ng 3k both have a (k; p, q)-decomposition. Hence the

graph K, »(\) has the desired decomposmon
Case1l: 0 < z,y < k/2. When 0 < z,y < k/2, we have t, s > 2. We can write

Kinn(A) = K@)kt (k) (s- Db+ (hy) (A)
= Kt 1)k,(s— 1)k (A) @ K1)k oy (A) & Kiya (s-1)6(A) S Kt iy (A)
=((t-1(s =N Kpp ® (t — 1) Kp oy (N) © (s = 1) Kigz k. (N)
@ Kk+x,k+y(/\)7

and Amn/k = Atk + z)(sk +y)/k = Mt —1)(s = Dk + (s — 1)(k+2) + (t —
D(k+9) + Ak +z)(k+y)/k.

By Theorem 1, the graph Ky has a (k;p, ¢)-decomposition and by the hy-
pothesis, the graphs K, 4, () and Ky (A) both have a (k; p, ¢)-decomposition.
Since k divides Amn, we have k divides A(k + z)(k + y) and also k/2 < (k +
x), (k+y) < 3k/2, then by the hypothesis, the graph Kj; r+y()\) has a (k;p, q)-
decomposition. Hence, by Remark 5, the graph K, ,(A) has the desired decom-
position.

Case 2: k/2 < z < k and k/2 < y < k. We can write K, ,(\) =
Ktk—i—x,sk—i—y()\) = Ktk,sk()\)@Ktk,y()‘)@Kz,sk()‘)@K%y()‘) = (tSA)Kk’,k‘@th,y()‘)@
sKy 1 (N) @ Ky y(N), and Amn/k = MNtk+x)(sk+y)/k = Atsk+sz+ty)+Azy/k.
By Theorem 1, the graph K}, has a (k;p, ¢)-decomposition and by the hypoth-
esis, the graphs Kj ,(\) and K, ;(A\) both have a (k;p, ¢)-decomposition. Since
k divides Amn, we have k divides Azy and also k/2 < x,y < k, then by the
hypothesis, the graph K, ,(\) has a (k;p, ¢)-decomposition. Hence, by Remark
5, the graph K, ,(\) has the desired decomposition.

Case3: 0 <z <k/2and k/2 <y <k. When 0 <z < k/2and k/2 <y <k,
we have t > 2 and s > 1. We can write

Km,n()‘) = K(t—l)k+(k+a:),sk+y(>‘)
= K(-1)k,st(N) ® K- 1)y (A)  Kigz,sk(A) & Kgay (A
= ((t = 1)sA) Ky p @ (t — 1)Ky y(A) & sKytz.5(A) © Kz gy (N,
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and Amn/k = XNtk + x)(sk +y)/k = M((t — 1)sk + s(k+x) + (t — Dy) + Mk +
x)y/k. By Theorem 1, the graph K} has a (k;p, g)-decomposition and by the
hypothesis, the graphs Kj, ,(\) and Ky (A\) both have a (k; p, ¢)-decomposition.
Since k divides Amn, we have k divides A(k+z)y and also k/2 < (k+z),y < 3k/2,
then by the hypothesis, the graph K, ,(\) has a (k; p, ¢)-decomposition. Hence,
by Remark 5, the graph K, () has the desired decomposition. [ |
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