Discussiones Mathematicae Graph Theory 35 (2015) 663–673 doi:10.7151/dmgt.1829

ON SUPER EDGE-ANTIMAGICNESS OF SUBDIVIDED STARS

A. RAHEEM¹

Department of Mathematics COMSATS Institute of Information Technology Islamabad Campus, Pakistan e-mail: rahimciit7@gmail.com

M. $JAVAID^2$

School of Mathematical Sciences University of Science and Technology of China Hefei, Anhui, P.R.China 230026 **e-mail:** javaidmath@gmail.com.

AND

A.Q. BAIG

Department of Mathematics COMSATS Institute of Information Technology Attock Campus, Pakistan

e-mail: aqbaig1@gmail.com

Abstract

Enomoto, Llado, Nakamigawa and Ringel (1998) defined the concept of a super (a, 0)-edge-antimagic total labeling and proposed the conjecture that every tree is a super (a, 0)-edge-antimagic total graph. In the support of this conjecture, the present paper deals with different results on super (a, d)-edge-antimagic total labeling of subdivided stars for $d \in \{0, 1, 2, 3\}$.

Keywords: super (a, d)-EAT labeling, stars, subdivision of stars.

2010 Mathematics Subject Classification: 05C78.

¹Supported by COMSATS Institute of Information Technology, Islamabad, Pakistan.

²Supported by Chinese Academy of Science President's International Fellowship Initiative (CAS-PIFI), Beijing, China. Grant No: 2015 PM 035.

1. INTRODUCTION

All graphs in this paper are finite, undirected and simple. For a graph G, V(G) and E(G) denote the vertex-set and the edge-set, respectively. A (v, e)-graph G is a graph such that |V(G)| = v and |E(G)| = e. A general reference for graph-theoretic ideas can be seen in [30]. A *labeling* (or *valuation*) of a graph is a map that carries graph elements to numbers (usually to positive or non-negative integers). In this paper, the domain will be the set of all vertices and edges and such a labeling is called a *total labeling*. Some labelings use the vertex-set only or the edge-set only and we shall call them *vertex-labelings* or *edge-labelings*, respectively.

Definition 1.1. An (s, d)-edge-antimagic vertex ((s, d)-EAV) labeling of a (v, e)graph G is a bijective function $\lambda : V(G) \to \{1, 2, \dots, v\}$ such that the set of edgesums of all edges in G, $w(xy) = \{\lambda(x) + \lambda(y) : xy \in E(G)\}$, forms an arithmetic progression $\{s, s + d, s + 2d, \dots, s + (e - 1)d\}$, where s > 0 and $d \ge 0$ are two fixed integers.

Definition 1.2. A bijection $\lambda : V(G) \cup E(G) \rightarrow \{1, 2, \dots, v + e\}$ is called an (a, d)-edge-antimagic total ((a, d)-EAT) labeling of a (v, e)-graph G if the set of edge-weights $\{\lambda(x) + \lambda(xy) + \lambda(y) : xy \in V(G)\}$ forms an arithmetic progression starting from a and having common difference d, where a > 0 and $d \ge 0$ are two fixed integers. A graph that admits an (a, d)-EAT labeling is called an (a, d)-EAT graph.

Definition 1.3. If λ is an (a, d)-EAT labeling such that $\lambda(V(G)) = \{1, 2, \dots, v\}$, then λ is called a *super* (a, d)-EAT *labeling* and G is known as a *super* (a, d)-EAT *graph*.

In Definitions 1.2 and 1.3, if d = 0 then an (a, 0)-EAT labeling is called an *edge-magic total* (EMT) labeling and a super (a, 0)-EAT labeling is called a *super edge magic total* (SEMT) *labeling.* Moreover, in general a is called a *minimum edge-weight* but particularly a *magic constant* when d = 0. The definition of an (a, d)-EAT labeling was introduced by Simanjuntak, Bertault and Miller in [27] as a natural extension of *magic valuation* defined by Kotzig and Rosa [19, 20]. A super (a, d)-EAT labeling is a natural extension of the notion of *super edge-magic labeling* defined by Enomoto, Llado, Nakamigawa and Ringel. Moreover, Enomoto *et al.* [7] proposed the following conjecture.

Conjecture 1.1. Every tree admits a super (a, 0)-EAT labeling.

In the support of this conjecture, many authors have considered a super (a, 0)-EAT labeling for different particular classes of trees. Lee and Shah [21] verified this conjecture by a computer search for trees with at most 17 vertices. For different values of d, the results related to a super (a, d)-EAT labeling can

be found for w-trees [12], extended w-trees [13, 14], stars [22], subdivided stars [15, 16, 17, 18, 25, 26, 23, 24], path-like trees [3], caterpillars [19, 20, 29], disjoint union of stars and books [9], and wheels, fans and friendship graphs [28], paths and cycles [27] and complete bipartite graphs [1]. For detail studies of a super (a, d)-EAT labeling reader can see [2, 4, 5, 6, 8, 9, 10, 11].

Definition 1.4. Let $n_i \ge 1$, $1 \le i \le r$, and $r \ge 3$. A subdivided star $T(n_1, n_2, \ldots, n_r)$ is a tree obtained by inserting $n_i - 1$ vertices to each of the *i*th edge of the star $K_{1,r}$, where for all $n_i = 1$, $T(\underbrace{(1, 1, \ldots, 1)}_{r-times} \cong K_{1,r}$. Moreover

suppose that $V(G) = \{c\} \cup \{x_i^{l_i} : 1 \le i \le r ; 1 \le l_i \le n_i\}$ is the vertex-set and $E(G) = \{c \ x_i^1 : 1 \le i \le r\} \cup \{x_i^{l_i} x_i^{l_i+1} : 1 \le i \le r ; 1 \le l_i \le n_i - 1\}$ is the edgeset of the subdivided star $G \cong T(n_1, n_2, ..., n_r)$, thus $v = |V(G)| = \sum_{i=1}^r n_i + 1$ and $e = |E(G)| = \sum_{i=1}^r n_i$.

Lu [23, 24] called the subdivided star $T(n_1, n_2, n_3)$ as a three-path tree and proved that it is a super (a, 0)-EAT graph if n_1 and n_2 are odd with $n_3 = n_2 + 1$ or $n_3 = n_2 + 2$. Ngurah *et al.* [25] proved that the subdivided star $T(n_1, n_2, n_3)$ is also a super (a, 0)-EAT graph if $n_3 = n_2 + 3$ or $n_3 = n_2 + 4$. Salman *et al.* [26] found a super (a, 0)-EAT labeling of subdivided stars $T(\underline{n, n, n, \ldots, n})$, where r-times

 $n \in \{2,3\}$. Moreover, Javaid *et al.* [15, 16, 17] found the super (a, d)-EAT labelings on different subclasses of subdivided stars for $d \in \{0, 1, 2\}$. However, the investigation of the different results related to a super (a, d)-EAT labeling of the subdivided star $T(n_1, n_2, n_3, \ldots, n_r)$ with unequal n_i for $1 \le i \le r$ is still open. In this paper, we investigate a super (a, d)-EAT labeling on the subdivided stars for all possible values of d.

2. Basic Results

In this section, we present some basic results which will be used frequently to prove the main results.

Ngurah *et al.* [25] found lower and upper bounds of the minimum edge-weight a for a subclass of the subdivided stars, which is stated as follows.

Lemma 2.1. If $T(n_1, n_2, n_3)$ is a super (a, 0)-EAT graph, then $\frac{1}{2l}(5l^2 + 3l + 6) \le a \le \frac{1}{2l}(5l^2 + 11l - 6)$, where $l = \sum_{i=1}^{3} n_i$.

The lower and upper bounds of the minimum edge-weight a for another subclass of subdivided stars established by Salman *et al.* [26] are given below.

Lemma 2.2. If $T(\underline{(n,n,\ldots,n)}_{n-times})$ is a super (a,0)-EAT graph, then $\frac{1}{2l}(5l^2 + (9-2n)l + n^2 - n) \le a \le \frac{1}{2l}(5l^2 + (2n+5)l + n - n^2)$, where $l = n^2$.

Moreover, the following lemma presents the lower and upper bound of the minimum edge-weight a for the most generalized subclass of subdivided stars proved by Javaid and Bhatti [17, 18].

Lemma 2.3. If $T(n_1, n_2, n_3, ..., n_r)$ has a super (a, d)-EAT labeling, then $\frac{1}{2l}(5l^2 + r^2 - 2lr + 9l - r - (l-1)ld) \le a \le \frac{1}{2l}(5l^2 - r^2 + 2lr + 5l + r - (l-1)ld)$, where $l = \sum_{i=1}^r n_i$ and $d \in \{0, 1, 2, 3\}$.

Bača and Miller [4] state a necessary condition for a graph to be super (a, d)-EAT, which provides an upper bound on the parameter d. Let a (v, e)-graph Gbe a super (a, d)-EAT. The minimum possible edge-weight is at least v + 4. The maximum possible edge-weight is no more than 3v + e - 1. Thus $a + (e - 1)d \le 3v + e - 1$ or $d \le \frac{2v+e-5}{e-1}$. For any subdivided star, where v = e + 1, it follows that $d \le 3$.

Let us recall the following proposition which we will use frequently in the proofs of the main results.

Proposition 2.4 [3]. If a (v, e)-graph G has an (s, d)-EAV labeling, then (i) G has a super (s + v + 1, d + 1)-EAT labeling,

(ii) G has a super (s + v + e, d - 1)-EAT labeling.

3. Super (a, d)-EAT LABELING OF SUBDIVIDED STARS

This section deals with the main results related to super (a, d)-EAT labelings on more generalized families of subdivided stars for all possible values of d.

3.1. When $n \equiv 0 \pmod{2}$

The results of super (a, d)-EAT labelings for different values of d on the class of subdivided stars $T(n, n + 1, n_3, ..., n_r)$ when $n \equiv 0 \pmod{2}$ are as follows.

Theorem 3.1. For $n \equiv 0 \pmod{2}$ and $r \geq 3$, $G \cong T(n, n+1, n_3, \ldots, n_r)$ admits a super (a, 0)-EAT labeling with a = 2v + s - 1 and a super (a, 2)-EAT labeling with a = v + s + 1, where v = |V(G)| and $s = (n+3) + \sum_{m=3}^{r} [2^{m-3}(n+1)]$ and $n_m = 2^{m-2}(n+1)$ for $3 \leq m \leq r$.

Proof. According to the definition of graph G, we have that $v = (2n + 2) + \sum_{m=3}^{r} [2^{m-2}(n+1)]$ and e = v - 1. Define $\lambda : V(G) \to \{1, 2, \dots, v\}$ as follows.

666

 $\lambda(c) = 1.$

For even $1 \leq l_i \leq n_i$, where i = 1, 2 and $3 \leq i \leq r$, let

$$\lambda(u) = \begin{cases} 1 + \frac{l_1}{2}, & \text{for } u = x_1^{l_1}, \\ (n+2) - \frac{l_2}{2}, & \text{for } u = x_2^{l_2}. \end{cases}$$
$$\lambda(x_i^{l_i}) = (n+2) + \sum_{m=3}^{i} [2^{m-3}(n+1)] - \frac{l_i}{2}.$$

For odd $1 \le l_i \le n_i$ and $\alpha = (n+1) + \sum_{m=3}^r [2^{m-3}(n+1)]$, where i = 1, 2 and $3 \leq i \leq r$, let

$$\lambda(u) = \begin{cases} \alpha + \frac{l_1 + 1}{2}, & \text{for } u = x_1^{l_1}, \\ \\ (\alpha + n + 2) - \frac{l_2 + 1}{2} & \text{for } u = x_2^{l_2}, \end{cases}$$

and $\lambda(x_i^{l_i}) = (\alpha + n + 2) + \sum_{m=3}^{i} [2^{m-3}(n+1)] - \frac{l_i+1}{2}$.

The set of all edge-sums $\{\lambda(x) + \lambda(y) : xy \in E(G)\}$ generated by the above formulas forms a consecutive integer sequence $(\alpha+1)+1, (\alpha+1)+2, \ldots, (\alpha+1)+e$ where $s = \alpha + 2$. Therefore, by Proposition 2.1, λ can be extended to a super (a, 0)-EAT labeling with $a = 2v - 1 + s = 2v + (n+2) + \sum_{m=3}^{r} [2^{m-3}(n+1)]$ and to a super (a, 2)-EAT labeling with $a = v + 1 + s = v + (n+4) + \sum_{m=3}^{r} [2^{m-3}(n+1)]$.

Theorem 3.2. For $n \equiv 0 \pmod{2}$ and $r \geq 3$, $G \cong T(n, n+1, n_3, \ldots, n_r)$ admits a super (a, 1)-EAT labeling with a = 2v+2, where v = |V(G)| and $n_m = 2^{m-2}(n+1)$ for $3 \leq m \leq r$.

Proof. We define the vertex labeling $\lambda: V(G) \to \{1, 2, \dots, v\}$ as follows.

$$\lambda(c) = 1$$

For $1 \leq l_i \leq n_i$, where i = 1, 2 and $3 \leq i \leq r$,

$$\lambda(u) = \begin{cases} l_1 + 1, & \text{for } u = x_1^{l_1}, \\ \\ (2n+3) - l_2, & \text{for } u = x_2^{l_2}, \end{cases}$$

and $\lambda(x_i^{l_i}) = (2n+3) + \sum_{m=3}^{i} [2^{m-2}(n+1)] - l_i.$ Suppose $\alpha = (2n+2) + \sum_{m=3}^{r} [2^{m-2}(n+1)]$ and define $\lambda : E(G) \to \{v + 1\}$ $1, v + 2, \ldots, v + e$ as follows. For $l_i = 1$, where i = 1, 2 and $3 \le i \le r$, let

$$\lambda(cu) = \begin{cases} (2\alpha - 1), & \text{for } u = x_1^1, \\ \\ 2\alpha - (n+1), & \text{for } u = x_2^1, \end{cases}$$

and $\lambda(cx_i^1) = 2\alpha - (n+1) - \sum_{m=3}^{i} [2^{m-3}(n+1)].$ For $1 \le l_i \le n_i - 1$, where i = 1, 2 and $3 \le i \le r$,

$$\lambda(x_i^{1_i}x_i^{1_i+1}) = \begin{cases} (2\alpha - 1) - l_1, & \text{for } i = 1, \\ \\ 2\alpha - 2(n+1) + l_2, & \text{for } i = 2, \end{cases}$$

and $\lambda(x_i^{1_i}x_i^{1_i+1}) = 2\alpha - 2(n+1) - \sum_{m=3}^{i} [2^{m-2}(n+1)] + l_i$, for $3 \le i \le r$.

The set of edge-weights $\{\lambda(x) + \lambda(xy) + \lambda(y) : xy \in V(G)\}$ generated by the above formulas forms an integer sequence $2v + 2, 2v + 3, \dots, 2v + 1 + e$ with difference 1. Consequently, λ is a super (a, 1)-EAT labeling with a = 2v + 2.

Theorem 3.3. For $n \equiv 0 \pmod{2}$ and $r \geq 3$, the graph $G \cong T(n, n+1, n_3, \ldots, n_r)$ admits a super (a, 3)-EAT labeling with a = v + 4, where v = |V(G)| and $n_m = 2^{m-2}(n+1)$ for $3 \leq m \leq r$.

Proof. Consider the vertex labeling as in the proof of Theorem 3.2. Now, we define the edge labeling $\lambda : E(G) \to \{v + 1, v + 2, \dots, v + e\}$ as follows.

For $l_i = 1$, where i = 1, 2 and, $3 \le i \le r$, let

$$\lambda(cu) = \begin{cases} (\alpha + 1), & \text{for } u = x_1^1, \\ \\ (\alpha + n + 1), & \text{for } u = x_2^1, \end{cases}$$

and $\lambda(cx_i^1) = (\alpha + n + 1) + \sum_{m=3}^{i} [2^{m-3}(n+1)].$ For $1 \le l_i \le n_i - 1$,

$$\lambda(x_i^{1_i}x_i^{1_i+1}) = \begin{cases} (\alpha+1) + l_1, & \text{for } i = 1, \\ \\ (\alpha+2n+2) - l_2, & \text{for } i = 2, \end{cases}$$

and $\lambda(x_i^{1_i}x_i^{1_i+1}) = (\alpha + 2n + 2) + \sum_{m=3}^{i} [2^{m-2}(n+1)] - l_i$, for $3 \le i \le r$.

The set of edge-weights $\{\lambda(x) + \lambda(xy) + \lambda(y) : xy \in V(G)\}$ generated by the above formulas forms an integer sequence $(v+1) + 3(1), (v+1) + 3(2), (v+1) + 3(3), \ldots, (v+1) + 3(e)$ with difference 3. Consequently, λ is a super (a, 3)-EAT labeling with a = v + 4.

668

3.2. When $n \equiv 1 \pmod{2}$

The results of super (a, d)-EAT labelings for different values of d on the class of subdivided stars $T(n, n, n + 1, n_4, ..., n_r)$ when $n \equiv 1 \pmod{2}$ are as follows.

Theorem 3.4. For $n \equiv 1 \pmod{2}$ and $r \geq 4$, $G \cong T(n, n, n+1, n_4, \ldots, n_r)$ admits a super (a, 0)-EAT labeling with a = 2v + s - 1 and a super (a, 2)-EAT labeling with a = v + s + 1, where v = |V(G)| and $s = \frac{3(n+1)}{2} + \sum_{m=4}^{r} [2^{m-4}(n+1)]$, and $n_m = 2^{m-3}(n+1)$ for $4 \leq m \leq r$.

Proof. Let $G \cong T(n, n, n+1, n_4, ..., n_r)$. Then $v = (3n+2) + \sum_{m=4}^r [2^{m-3}(n+1)]$ and e = v - 1. Define $\lambda : V(G) \to \{1, 2, ..., v\}$ as follows.

$$\lambda(c) = \frac{n+1}{2}.$$

For even $1 \leq l_i \leq n_i$, where i = 1, 2, 3 and $4 \leq i \leq r$,

$$\lambda(u) = \begin{cases} \frac{n+1}{2} - \frac{l_1}{2}, & \text{for } u = x_2^{l_1}, \\ \frac{n+1}{2} + \frac{l_2}{2}, & \text{for } u = x_2^{l_2}, \\ \frac{3(n+1)}{2} - \frac{l_3}{2}, & \text{for } u = x_3^{l_3}. \end{cases}$$
$$\lambda(x_i^{l_i}) = \frac{3(n+1)}{2} + \sum_{m=4}^{i} [2^{m-4}(n+1)] - \frac{l_i}{2}.$$

For odd $1 \le l_i \le n_i$ and $\alpha = \frac{3(n+1)}{2} + \sum_{m=4}^r [2^{m-4}(n+1)]$, where i = 1, 2, 3 and $4 \le i \le r$,

$$\lambda(u) = \begin{cases} \alpha + \frac{n+3}{2} - \frac{l_1+1}{2}, & \text{for } u = x_1^{l_1}, \\ \alpha + \frac{n+1}{2} + \frac{l_2+1}{2}, & \text{for } u = x_2^{l_2}, \\ \alpha + \frac{3n+5}{2} - \frac{l_3+1}{2}, & \text{for } u = x_3^{l_3}, \end{cases}$$

and

$$\lambda(x_i^{l_i}) = \alpha + \frac{3n+5}{2} + \sum_{m=4}^{i} [2^{m-4}(n+1)] - \frac{l_i+1}{2}.$$

The set of all edge-sums $\{\lambda(x) + \lambda(y) : xy \in E(G)\}$ generated by the above formulas forms a consecutive integer sequence $(\alpha+1)+1, (\alpha+1)+2, \ldots, (\alpha+1)+e$, where $s = \alpha + 2$. Therefore, by Proposition 2.1, λ can be extended to a super (a, 0)-EAT labeling with $a = 2v + s - 1 = 2v + \frac{3(n+1)}{2} + \sum_{m=4}^{r} [2^{m-4}(n+1)]$ and to a super (a, 2)-EAT labeling with $a = v + 1 + s = v + \frac{3n+7}{2} + \sum_{m=4}^{r} [2^{m-4}(n+1)]$.

Theorem 3.5. For $n \equiv 1 \pmod{2}$ and $r \geq 4$, $G \cong T(n, n, n + 1, n_4, ..., n_r)$ admits a super (a, 1)-EAT labeling with a = 2v + 2, where v = |V(G)| and $n_m = 2^{m-3}(n+1)$ for $4 \le m \le r$.

Proof. We define the vertex labeling $\lambda : V(G) \to \{1, 2, \dots, v\}$ as follows.

$$\lambda(c) = n + 1.$$

For $1 \leq l_i \leq n_i$, where i = 1, 2, 3 and $4 \leq i \leq r$, let

$$\lambda(u) = \begin{cases} (n+1) - l_1, & \text{for } u = x_1^{l_1}, \\ (n+1) + l_2, & \text{for } u = x_2^{l_2}, \\ 3(n+1) - l_3, & \text{for } u = x_3^{l_3}, \end{cases}$$

and $\lambda(x_i^{l_i}) = 3(n+1) + \sum_{m=4}^{i} [2^{m-3}(n+1)] - l_i.$ Suppose that $\alpha = (2n+1) + \sum_{m=3}^{r} [2^{m-3}(n+1)]$ and define $\lambda : E(G) \to C(G)$ $\{v + 1, v + 2, \dots, v + e\}$ as follows.

For $l_i = 1$, where i = 1, 2, 3 and $4 \le i \le r$,

$$\lambda(cu) = \begin{cases} 2\alpha - n, & \text{for } u = x_1^1, \\ 2\alpha - (n+1), & \text{for } u = x_2^1, \\ 2\alpha - (2n+1), & \text{for } u = x_3^1, \end{cases}$$

and $\lambda(cx_i^1) = 2\alpha - (2n+1) - \sum_{m=4}^{i} [2^{m-4}(n+1)]$ respectively. For $1 \le l_i \le n_i - 1$, i = 1, 2, 3 and $4 \le i \le r$,

$$\lambda(x_i^{1_i}x_i^{1_i+1}) = \begin{cases} 2\alpha - n + l_1, & \text{for } i = 1, \\ 2\alpha - (n+1) - l_2, & \text{for } i = 2, \\ 2\alpha - (3n+2) + l_3, & \text{for } i = 3, \end{cases}$$

and $\lambda(x_i^{1_i}x_i^{1_i+1}) = 2\alpha - (3n+2) - \sum_{m=4}^i [2^{m-3}(n+1)] + l_i$. The set of edge-weights $\{\lambda(x) + \lambda(xy) + \lambda(y) : xy \in V(G)\}$ generated by

the above formulas forms an integer sequence $2v + 2, 2v + 3, \ldots, 2v + 1 + e$ with difference 1. Consequently, λ is a super (a, 1)-EAT labeling with a = 2v + 2.

Theorem 3.6. For $n \equiv 1 \pmod{2}$ and $r \geq 4$, $G \cong T(n, n, n + 1, n_4, ..., n_r)$ admits a super (a,3)-EAT labeling with a = v + 4, where v = |V(G)| and $n_m =$ $2^{m-3}(n+1)$ for $4 \le m \le r$.

Proof. Consider the vertex labeling as in the proof of Theorem 3.2.2. Now, we define the edge labeling $\lambda : E(G) \to \{v + 1, v + 2, \dots, v + e\}$ as follows.

For $l_i = 1$, where i = 1, 2, 3 and $4 \le i \le r$,

$$\lambda(cu) = \begin{cases} \alpha + n, & \text{for } u = x_1^1, \\ \alpha + (n+1), & \text{for } u = x_2^1, \\ \alpha + (2n+1), & \text{for } u = x_3^1, \end{cases}$$

and $\lambda(cx_i^1) = \alpha + (2n+1) + \sum_{m=4}^{i} [2^{m-4}(n+1)].$ For $1 \le l_i \le n_i - 1$, where i = 1, 2, 3 and $4 \le i \le r$,

$$\lambda(x_i^{1_i}x_i^{1_i+1}) = \begin{cases} \alpha + n - l_1, & \text{for } i = 1, \\\\ \alpha + (n+1) + l_2, & \text{for } i = 2, \\\\ \alpha + (3n+1) - l_3, & \text{for } i = 3, \end{cases}$$

and $\lambda(x_i^{1_i}x_i^{1_i+1}) = \alpha + (3n+2) + \sum_{m=4}^{i} [2^{m-3}(n+1)] - l_i.$ The set of edge-weights $\{\lambda(x) + \lambda(xy) + \lambda(y) : xy \in V(G)\}$ generated by

The set of edge-weights $\{\lambda(x) + \lambda(xy) + \lambda(y) : xy \in V(G)\}$ generated by the above formulas forms an integer sequence $(v+1) + 3(1), (v+1) + 3(2), (v+1) + 3(3), \dots, (v+1) + 3(e)$ with difference 3. Consequently, λ admits a super (a, 3)-EAT labeling with a = v + 4.

Acknowledgement

The authors are indebted to the referees for their valuable comments to improve the original version of this paper.

References

- M. Bača, Y. Lin, M. Miller and M.Z. Youssef, *Edge-antimagic graphs*, Discrete Math. **307** (2007) 1232–1244. doi:10.1016/j.disc.2005.10.038
- [2] M. Bača, Y. Lin, M. Miller and R. Simanjuntak, New constructions of magic and antimagic graph labelings, Util. Math. 60 (2001) 229–239.
- [3] M. Bača, Y. Lin and F.A. Muntaner-Batle, Super edge-antimagic labelings of the path-like trees, Util. Math. 73 (2007) 117–128.
- [4] M. Bača and M. Miller, Super Edge-Antimagic Graphs (Brown Walker Press, Boca Raton, Florida USA, 2008).
- [5] M. Bača, A. Semaničová-Feňovčíková and M.K. Shafiq, A method to generate large classes of edge-antimagic trees, Util. Math. 86 (2011) 33–43.

- [6] Dafik, M. Miller, J. Ryan and M. Bača, On super (a, d)-edge antimagic total labeling of disconnected graphs, Discrete Math. **309** (2009) 4909–4915. doi:10.1016/j.disc.2008.04.031
- H. Enomoto, A.S. Lladó, T. Nakamigawa and G. Ringel, Super edge-magic graphs, SUT J. Math. 34 (1998) 105–109.
- [8] R.M. Figueroa-Centeno, R. Ichishima and F.A. Muntaner-Batle, The place of super edge-magic labelings among other classes of labelings, Discrete Math. 231 (2001) 153-168. doi:0.1016/S0012-365X(00)00314-9
- [9] R.M. Figueroa-Centeno, R. Ichishima and F.A. Muntaner-Batle, On super edgemagic graph, Ars Combin. 64 (2002) 81–95.
- [10] Y. Fukuchi, A recursive theorem for super edge-magic labeling of trees, SUT J. Math. 36 (2000) 279–285.
- [11] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 17 (2010).
- [12] M. Javaid, M. Hussain, K. Ali and K.H. Dar, Super edge-magic total labeling on w-trees, Util. Math. 86 (2011) 183–191.
- [13] M. Javaid, A.A. Bhatti and M. Hussain, On (a, d)-edge-antimagic total labeling of extended w-trees, Util. Math. 87 (2012) 293–303.
- [14] M. Javaid, A.A. Bhatti, M. Hussain and K. Ali, Super edge-magic total labeling on forest of extended w-trees, Util. Math. 91 (2013) 155–162.
- [15] M. Javaid, M. Hussain, K. Ali and H. Shaker, On super edge-magic total labeling on subdivision of trees, Util. Math. 89 (2012) 169–177.
- [16] M. Javaid and A.A. Bhatti, On super (a, d)-edge-antimagic total labeling of subdivided stars, Ars Combin. 105 (2012) 503–512.
- M. Javaid, On super edge-antimagic total labeling of subdivided stars, Discuss. Math. Graph Theory 34 (2014) 691–705. doi:10.7151/dmgt.1764
- [18] M. Javaid and A.A. Bhatti, Super (a, d)-edge-antimagic total labeling of subdivided stars and w-trees, Util. Math., to appear.
- [19] A. Kotzig and A. Rosa, *Magic valuations of finite graphs*, Canad. Math. Bull. 13 (1970) 451–461.
 doi:10.4153/CMB-1970-084-1
- [20] A. Kotzig and A. Rosa, *Magic valuation of complete graphs*, Centre de Recherches Mathematiques, Universite de Montreal (1972) CRM-175.
- [21] S.M. Lee and Q.X. Shah, All trees with at most 17 vertices are super edge-magic, 16th MCCCC Conference, Carbondale (Southern Illinois University, November 2002).
- [22] S.M. Lee and M.C. Kong, On super edge-magic n stars, J. Combin. Math. Combin. Comput. 42 (2002) 81–96.

- [23] Y.-J. Lu, A proof of three-path trees P(m, n, t) being edge-magic, College Math. **17(2)** (2001) 41–44.
- [24] Y.-J. Lu, A proof of three-path trees P(m, n, t) being edge-magic (II), College Math. **20(3)** (2004) 51–53.
- [25] A.A.G. Ngurah, R. Simanjuntak and E.T. Baskoro, On (super) edge-magic total labeling of subdivision of $K_{1,3}$, SUT J. Math. **43** (2007) 127–136.
- [26] A.N.M. Salman, A.A.G. Ngurah and N. Izzati, On super edge-magic total labeling of a subdivision of a star S_n , Util. Math. **81** (2010) 275–284.
- [27] R. Simanjuntak, F. Bertault and M. Miller, Two new (a, d)-antimagic graph labelings, in: Proc. of Eleventh Australasian Workshop on Combinatorial Algorithms 11 (2000) 179–189.
- [28] Slamin, M. Bača, Y. Lin, M. Miller and R. Simanjuntak, Edge-magic total labelings of wheel, fans and friendship graphs, Bull. Inst. Combin. Appl. 35 (2002) 89–98.
- [29] K.A. Sugeng, M. Miller, Slamin and M. Bača, (a, d)-edge-antimagic total labelings of caterpillars, Lect. Notes Comput. Sci. 3330 (2005) 169–180.
- [30] D.B. West, An Introduction to Graph Theory (Prentice-Hall, 1996).

Received 22 February 2014 Revised 12 February 2015 Accepted 12 February 2015