SOME TOUGHNESS RESULTS IN INDEPENDENT DOMINATION CRITICAL GRAPHS

Nawarat Ananchuen ${ }^{1}$
Department of Mathematics, Faculty of Science
Silpakorn University
Nakorn Pathom 73000, Thailand
Centre of Excellence in Mathematics
CHE, Si Ayutthaya Rd.
Bangkok 10400, Thailand
e-mail: ananchuen_n@su.ac.th

AND

Watcharaphong Ananchuen ${ }^{2}$
School of Liberal Arts
Sukhothai Thammathirat Open University
Pakkred, Nonthaburi 11120, Thailand
e-mail: watcharaphong.ana@stou.ac.th

Abstract

A subset S of $V(G)$ is an independent dominating set of G if S is independent and each vertex of G is either in S or adjacent to some vertex of S. Let $i(G)$ denote the minimum cardinality of an independent dominating set of G. A graph G is k - i-critical if $i(G)=k$, but $i(G+u v)<k$ for any pair of non-adjacent vertices u and v of G. In this paper, we establish that if G is a connected 3 - i-critical graph and S is a vertex cutset of G with $|S| \geq 3$, then $\omega(G-S) \leq \frac{1+\sqrt{8|S|+1}}{2}$, improving a result proved by Ao [3], where $\omega(G-S)$ denotes the number of components of $G-S$. We also provide a characterization of the connected $3-i$-critical graphs G attaining the maximum number of $\omega(G-S)$ when S is a minimum cutset of size 2 or 3 .

Keywords: domination critical, toughness.
2010 Mathematics Subject Classification: 05C69.

[^0]
1. Introduction

Let G denote a finite simple undirected graph with vertex set $V(G)$ and edge set $E(G)$. The complete graph of order n is denoted by K_{n}. A star is a complete bipartite graph $K_{1, n}$. For $S \subseteq V(G)$, the subgraph of G induced by S is denoted by $G[S] . S$ is a clique if $G[S]$ is complete and S is independent if no two vertices of S are adjacent. G is a split graph if $V(G)$ is partitioned into a clique and an independent set. The number of components of G is denoted by $\omega(G)$. A vertex subset S of $V(G)$ is a cutset of G if $\omega(G-S)>\omega(G)$. For a vertex $v \in V(G)$, the neighborhood of v in G, denoted by $N_{G}(v)$, is the set of all vertices of $V(G)$ which are adjacent to v. For $S \subseteq V(G), N_{G}(v) \cap S$ and $S \cup \bigcup_{x \in S} N_{G}(x)$ are denoted by $N_{S}(v)$ and $N_{G}[S]$, respectively.

For subsets S and T of $V(G)$, we say that S dominates T, denoted by $S \succ T$, if $T \subseteq N_{G}[S]$. If $S \succ T$ where $S=\{s\}$, then we write $s \succ T$ instead of $\{s\} \succ T$. Further, if $T=V(H)$ where H is a subgraph of G, then we write $S \succ H$ instead of $S \succ V(H)$ and we say that S is a dominating set of H. Thus S is a dominating set of G if each vertex of $V(G)$ is either in S or adjacent to some vertex of S. The minimum cardinality of a dominating set of G is called the domination number of G and denoted by $\gamma(G)$.

For a subgraph H of G, if $S \succ H$ and S is independent, then we say that S is an independent dominating set of H and denoted by $S \succ_{i} H$. Thus S is an independent dominating set of G if $S \succ_{i} G$. The minimum cardinality of an independent dominating set of G is called the independent domination number of G and denoted by $i(G)$. Observe that for any graph $G, \gamma(G) \leq i(G)$ and if $\gamma(G)=1$, then $i(G)=1$.

The concept of domination critical was first introduced by Sumner and Blitch [6] in 1983. A graph G is k - γ-critical if $\gamma(G)=k$, but $\gamma(G+u v)<k$ for any pair of non-adjacent vertices u and v of G. Sumner and Blitch [6] also provided a characterization of $2-\gamma$-critical graphs and some crucial results which have been become useful tools in investigating this topic. Since then k - γ-critical graphs have gained considerable attention. They have been investigated with some other graph parameters such as toughness, matching and Hamiltonicity. Most of these results concern $3-\gamma$-critical graphs. The reader is directed to excellent books by Dehmer [4] and by Haynes et al. [5] for more details and for references therein.

In 1994, Ao [3] introduced the concept of "independent domination critical". A graph G is k-i-critical if $i(G)=k$, but $i(G+u v)<k$ for any pair of nonadjacent vertices u and v of G. In [3], Ao established some properties of $3-i$ critical graphs including diameter and a sufficient condition for such graphs to be Hamiltonian. She also showed that if G is a connected 3 - i-critical graph and S is a vertex cutset of G, then $\omega(G-S) \leq|S|+1$. We found that the upper bound of this result can be improved if $|S| \geq 3$. In fact, in this paper, we shall
prove the following main theorem in Section 2.
Theorem 1. Let G be a connected 3 - i-critical graph and S a vertex cutset of G. If $|S| \geq 3$, then $\omega(G-S) \leq \frac{1+\sqrt{8|S|+1}}{2}$. Further, the bound is sharp.

In studying the concept of critical graphs, we always seek for a characterization. This also applies to connected k - i-critical graphs. It is easy to see that K_{n}, where n is a positive integer, is the only $1-i$-critical graph. Ao [3] showed that G is 2 - i-critical if and only if the complement of G is a union of stars. A problem that arises is that of characterizing connected k - i-critical graphs for $k \geq 3$. However, this seems to be a difficult task. So, to investigate a characterization of such graphs, we sometime add some addition hypothesis. In [1], the authors proved that if G is a connected $k-i$-critical graph, for $k \geq 3$, with a cutvertex u, then $\omega(G-u) \leq k-1$. Further, a characterization of such graphs G with $\omega(G-u)=k-1$ was given. So the characterization of connected 3 - i-critical graphs with a cutvertex is known. According to Theorem 1 and Ao's result in the previous paragraph, if G is a connected $3-i$-critical graph with a cutset S of size at most five, then $\omega(G-S)$ is at most three. A problem that arises is that of characterizing such graphs. In Section 3, we establish that if G is a connected 3 - i-critical graph with a minimum cutset S of size 2 or 3 and $\omega(G-S)=3$, then G must be in one of six classes. In [2], a characterization of the connected 3-i-critical graphs G with a minimum cutset S of size 2 and $\omega(G-S)=2$ is given. We then conclude this section by posing the following remaining cases.

1. Characterize the connected 3 - i-critical graphs G with a minimum cutset S of size 3 and $\omega(G-S)=2$.
2. Characterize the connected $3-i$-critical graphs G with a minimum cutset S of size 4 or 5 and $\omega(G-S)=k$ where $k \in\{2,3\}$.

Note that the solution of Problem 1 together with our results in Section 3 provides a complete characterization of the $3-i$-critical graphs with a minimum cutset of size 3 .

2. The Proof of Theorem 1

We begin this section with some terminology and preliminary results that we will need when establishing our main results. For a pair of non-adjacent vertices u and v of $G, I_{u v}$ denotes a minimum independent dominating set of $G+u v$. Our first two results follow immediately from the definition of k - i-critical graphs.
Lemma 2. Let G be a connected k - i-critical graph and let u and v be two nonadjacent vertices of G. Then $\left|I_{u v}\right|=k-1$ and $\left|I_{u v} \cap\{u, v\}\right|=1$.
Lemma 3. Let G be a connected 3 -i-critical graph and let u and v be two nonadjacent vertices of G. Then
(1) $I_{u v}=\{u, w\}$ or $I_{u v}=\{v, w\}$ for some $w \in V(G)-\{u, v\}$.
(2) If $\{w\}=I_{u v}-\{u, v\}$, then $\{u, v, w\}$ is independent.

Our next result is a useful tool for establishing our main results.
Lemma 4. Let G be a connected 3-i-critical graph and let u and v be two nonadjacent vertices of G. If $I_{u v}=\{u, w\}$ for some $w \in V(G)-\{u, v\}$, then $I_{u w}-$ $\{u, w\}=\{v\}$, i.e., $I_{u w}=\{u, v\}$ or $I_{u w}=\{w, v\}$.

Proof. By Lemma $3(2),\{u, v, w\}$ is independent. Let $x \in V(G)-\{u, v, w\}$. Then $x u \in E(G)$ or $x w \in E(G)$ since $I_{u v}=\{u, w\}$. Then $x \notin I_{u w}$ by Lemma $3(2)$. Thus $I_{u w}-\{u, w\}=\{v\}$ as required. This proves our lemma.

We are now ready to prove Theorem 1.
Proof of Theorem 1. Put $t=\omega(G-S)$. If $t \leq 3$, then we are done. So suppose that $t \geq 4$. Let $C_{1}, C_{2}, \ldots, C_{t}$ be the components of $G-S$ and $v_{i} \in V\left(C_{i}\right)$ for $1 \leq i \leq t$. Consider $G+v_{i} v_{j}$ for $1 \leq i<j \leq t$. Let $\left\{z_{i j}\right\}=I_{v_{i} v_{j}}-\left\{v_{i}, v_{j}\right\}$. Since $t \geq 4$ and $z_{i j} \succ \bigcup_{k=1}^{t} V\left(C_{k}\right)-\left(V\left(C_{i}\right) \cup V\left(C_{j}\right)\right)$, it follows that $z_{i j} \in S$. Since by Lemma 3(2), $\left\{v_{i}, v_{j}, z_{i j}\right\}$ is independent, we have $\left|\left\{z_{i j}: 1 \leq i<j \leq t\right\}\right|=\binom{t}{2}$. Hence, $|S| \geq \frac{t(t-1)}{2}$, implying that $t \leq \frac{1+\sqrt{8|S|+1}}{2}$ as required.

We next show that our bound is sharp. Let H be a spilt graph consisting of one independent set $U=\left\{u_{1}, u_{2}, \ldots, u_{t}\right\}$ of size t and one clique $\bar{U}=\left\{\bar{u}_{i j}\right.$: $\{i, j\} \subseteq\{1,2, \ldots, t\}\}$ of size $\binom{t}{2}$ such that each vertex $u_{i j} \in \bar{U}$ is adjacent to all vertices in U with exception of the pair u_{i} and u_{j}. Clearly, $i(H)=3$ and $\left\{u_{j}, \bar{u}_{i j}\right\} \succ_{i} H+u_{i} u_{j}$. Hence, H is a 3 - i-critical graph satisfying the bound of our result.

3. A Characterization of the Connected 3-i-Critical Graphs G Having a Minimum Cutset S of Size 2 or 3 and $\omega(G-S)=3$

In this section, we establish a characterization of the connected 3 - i-critical graphs G having a minimum cutset S of size 2 or 3 and $\omega(G-S)=3$. We begin our section by providing six classes of connected $3-i$-critical graphs having a minimum cutset of size 2 and 3 . The last two theorems in this section show that if G is a connected 3 - i-critical graph having a minimum cutset of size 2 or 3 and $\omega(G-S)=3$, then G must belong to one of these six classes.

I. The class \mathscr{H}_{1}

For positive integers m and $n \geq 2$, define a graph $G \in \mathscr{H}_{1}$ of order $n+m+4$ as follows. Set $V(G)=\{a, b, u, v\} \cup X \cup Y$ where $|X|=n$ and $|Y|=m$. The edges of G are defined as follows. $G[X]=K_{n}$ and $G[Y]=K_{m}$. Further, join
u and v to every vertex of $\{a, b\} \cup X$. Finally, join each vertex of X to every vertex of Y. This defines the class \mathscr{H}_{1}. Figure 1 illustrates our construction. It is not difficult to show that a graph $G \in \mathscr{H}_{1}$ is 3 - i-critical containing $\{u, v\}$ as a minimum cutset. Note that in our diagram a "double line" denotes the join.

II. The class \mathscr{H}_{2}

For positive integer $n \geq 3$, define a graph $G \in \mathscr{H}_{2}$ of order $n+6$ as follows. Set $V(G)=\left\{a, b, u_{1}, u_{2}, u_{3}, v\right\} \cup X$ where $|X|=n$. The edges of G are defined as follows. $G[X]=K_{n}$; join each vertex of $\left\{u_{1}, u_{2}, u_{3}\right\}$ to every vertex of $\{a, b\} \cup X$. Further, join v to every vertex of X. Finally, add the edge $u_{1} u_{2}$. This defines the class \mathscr{H}_{2}. Figure 2 illustrates our construction. It is not difficult to show that a graph $G \in \mathscr{H}_{2}$ is 3-i-critical containing $\left\{u_{1}, u_{2}, u_{3}\right\}$ as a minimum cutset.

Figure 1. The structure of a graph in the class \mathscr{H}_{1}.

Figure 2. The structure of a graph in the class \mathscr{H}_{2}.

III. The class \mathscr{H}_{3}

For positive integers n, m_{1} and m_{2}, define a graph $G \in \mathscr{H}_{3}$ of order $n+$ $m_{1}+m_{2}+5$ as follows. Set $V(G)=\left\{a, b, u_{1}, u_{2}, u_{3}\right\} \cup X \cup Y_{1} \cup Y_{2}$ where $|X|=n,\left|Y_{1}\right|=m_{1}$ and $\left|Y_{2}\right|=m_{2}$. The edges of G are defined as follows. $G\left[X \cup Y_{1} \cup Y_{2}\right]=K_{n+m_{1}+m_{2}}$; join each vertex of $\left\{u_{1}, u_{2}, u_{3}\right\}$ to every vertex of $\{a, b\} \cup X$. Further, for $1 \leq i \leq 2$, join u_{i} to every vertex of Y_{i}. Finally, add the edge $u_{1} u_{2}$. This defines the class \mathscr{H}_{3}. Figure 3 illustrates our construction. It is not difficult to show that a graph $G \in \mathscr{H}_{3}$ is 3-i-critical containing $\left\{u_{1}, u_{2}, u_{3}\right\}$ as a minimum cutset.

IV. The class \mathscr{H}_{4}

For a positive integer n, define a graph $G \in \mathscr{H}_{4}$ of order $n+5$ as follows. Set $V(G)=\left\{a, b, u_{1}, u_{2}, u_{3}\right\} \cup X$ where $|X|=n$. The edges of G are defined as follows. $G[X]=K_{n}$ and join each vertex of $\left\{u_{1}, u_{2}, u_{3}\right\}$ to every vertex of $\{a, b\} \cup X$. This defines the class \mathscr{H}_{4}. Figure 4 illustrates our construction. It is easy to see that a graph $G \in \mathscr{H}_{4}$ is 3 - i-critical containing $\left\{u_{1}, u_{2}, u_{3}\right\}$ as a minimum cutset.

V. The class \mathscr{H}_{5}

Figure 3. The structure of a graph in the class \mathscr{H}_{3}.

Figure 4. The structure of a graph in the class \mathscr{H}_{4}.

For positive integers $n \geq 2$ and m, define a graph $G \in \mathscr{H}_{5}$ of order $n+m+5$ as follows. Set $V(G)=\left\{a, b, u_{1}, u_{2}, u_{3}\right\} \cup X \cup Y$ where $|X|=n$ and $|Y|=m$. The edges of G are defined as follows. $G[X \cup Y]=K_{n+m}$; join each vertex of $\left\{u_{1}, u_{2}, u_{3}\right\}$ to every vertex of $\{a, b\} \cup X$. Finally, join u_{1} to every vertex of Y. This defines the class \mathscr{H}_{5}. Figure 5 illustrates our construction. It is not difficult to see that a graph $G \in \mathscr{H}_{5}$ is 3 - i-critical containing $\left\{u_{1}, u_{2}, u_{3}\right\}$ as a minimum cutset.

VI. The class \mathscr{H}_{6}

For non-negative integer n and positive integers m_{1}, m_{2} and m_{3}, define a graph $G \in \mathscr{H}_{6}$ of order $n+m_{1}+m_{2}+m_{3}+5$ as follows. Set $V(G)=$ $\left\{a, b, u_{1}, u_{2}, u_{3}\right\} \cup X \cup Y_{1} \cup Y_{2} \cup Y_{3}$ where $|X|=n$ and $\left|Y_{i}\right|=m_{i}$ for $1 \leq i \leq 3$. The edges of G are defined as follows. $G\left[X \cup Y_{1} \cup Y_{2} \cup Y_{3}\right]=K_{n+m_{1}+m_{2}+m_{3}}$, join each vertex of $\left\{u_{1}, u_{2}, u_{3}\right\}$ to every vertex of $\{a, b\} \cup X$. Finally, for $1 \leq i \leq 3$; join u_{i} to every vertex of Y_{i}. This defines the class \mathscr{H}_{6}. Figure 6 illustrates our construction. It is easy to see that a graph $G \in \mathscr{H}_{6}$ is $3-i$-critical containing $\left\{u_{1}, u_{2}, u_{3}\right\}$ as a minimum cutset.

Figure 5. The structure of a graph in the class \mathscr{H}_{5}.

Figure 6. The structure of a graph in the class \mathscr{H}_{6}.

Before establishing our main results in this section, we need the following lemma.

Lemma 5. Let G be a connected 3 - i-critical graph and S a minimum cutset where $2 \leq|S| \leq 5$. Suppose $\omega(G-S)=3$. Then
(1) There is a vertex of $G-S$, say x, such that $x \succ S$.
(2) At least two components of $G-S$ are singleton.
(3) Each component of $G-S$ is complete.

Proof. Let C_{1}, C_{2} and C_{3} be the components of $G-S$.
(1) Suppose to the contrary that no vertex of $G-S$ dominates S. Then, since S is a minimum cutset, $\left|V\left(C_{i}\right)\right| \geq 2$ for $1 \leq i \leq 3$. For $1 \leq i \leq 3$, let u_{i} and v_{i} be two distinct vertices of $V\left(C_{i}\right)$. Put $T=\left\{\{x, y\}: x \in\left\{u_{i}, v_{i}\right\}, y \in\left\{u_{j}, v_{j}\right\}\right.$ for $1 \leq i<j \leq 3\}$. It is easy to see that $|T|=12$. We now consider $G+x y$ for $\{x, y\} \in T$. For each $\{x, y\} \in T$, let $\left\{z_{x y}\right\}=I_{x y}-\{x, y\}$. Since $\omega(G-S)=3$ and $\left|V\left(C_{i}\right)\right| \geq 2$ for $1 \leq i \leq 3$, it follows that $z_{x y} \in S$. Consequently, there are at least 3 distinct elements of T, say $\left\{x_{1}, y_{1}\right\},\left\{x_{2}, y_{2}\right\},\left\{x_{3}, y_{3}\right\}$ such that $z_{x_{1} y_{1}}=z_{x_{2} y_{2}}=z_{x_{3} y_{3}}$ because $|S| \leq 5$ and $|T|=12$.

We may now assume without loss of generality that $\left\{x_{1}, y_{1}\right\}=\left\{u_{1}, u_{2}\right\}$ and that $I_{x_{1} y_{1}}=I_{u_{1} u_{2}}=\left\{u_{1}, z_{u_{1} u_{2}}\right\}$. Then $z_{u_{1} u_{2}} \succ\left(V\left(C_{2}\right) \cup V\left(C_{3}\right)\right)-\left\{u_{2}\right\}$. By Lemma 3(2), $\left\{x_{2}, y_{2}, x_{3}, y_{3}\right\} \cap\left\{v_{2}, u_{3}, v_{3}\right\}=\emptyset$. Thus $\left\{x_{2}, y_{2}, x_{3}, y_{3}\right\} \subseteq\left\{u_{1}, v_{1}, u_{2}\right\}$. But this contradicts the fact that $\left\{x_{i}, y_{i}\right\} \neq\left\{x_{j}, y_{j}\right\}$ for $1 \leq i \neq j \leq 3$. This proves (1).
(2) Let $x \in V(G-S)$ such that $x \succ S$. Without loss of generality, we may assume that $x \in V\left(C_{1}\right)$. Choose $y \in V\left(C_{2}\right)$. Consider $G+x y$. Let $\{z\}=$ $I_{x y}-\{x, y\}$. By Lemma $3(2), z \notin S$. Then $z \in V\left(C_{3}\right)$. We first suppose that $I_{x y}=\{x, z\}$. Then $V\left(C_{2}\right)=\{y\}$. Now consider $G+x z$. Then, by Lemma 4, $I_{x z}=\{x, y\}$ or $I_{x z}=\{z, y\}$. If $I_{x z}=\{x, y\}$, then $\left|V\left(C_{3}\right)\right|=1$. If $I_{x z}=\{z, y\}$, then $\left|V\left(C_{1}\right)\right|=1$. Hence, G contains at least two singleton components as required.

We now suppose that $I_{x y}=\{y, z\}$. By similar arguments, G contains at least two singleton components. This proves (2).
(3) By (2), we may assume without loss of generality that $\left|V\left(C_{1}\right)\right|=\left|V\left(C_{2}\right)\right|=$ 1. Put $\{x\}=V\left(C_{1}\right)$ and $\{y\}=V\left(C_{2}\right)$. Since S is a minimum cutset, $x \succ S$ and $y \succ S$. Suppose to the contrary that C_{3} is not complete. Then there exist $a, b \in V\left(C_{3}\right)$ where $a b \notin E(G)$. Consider $G+x a$. Let $\{z\}=I_{x a}-\{x, a\}$. Because no vertex of $\{x, a\}$ is adjacent to a vertex of $\{y, b\}, z \succ\{y, b\}$. Then $z \in S$ since $y \in V\left(C_{2}\right)$ and $b \in V\left(C_{3}\right)$. But this contradicts Lemma $3(2)$ since $x \succ S$. This proves (3) and completes the proof of our lemma.

Theorem 6. Let G be a connected 3-i-critical graph and S a minimum cutset of size 2 . If $G-S$ contains exactly three components, then $G \in \mathscr{H}_{1}$.

Proof. Let C_{1}, C_{2} and C_{3} be the components of $G-S$. By Lemma 5(2) we may assume that $\left|V\left(C_{1}\right)\right|=\left|V\left(C_{2}\right)\right|=1$. Put $\{a\}=V\left(C_{1}\right),\{b\}=V\left(C_{2}\right)$ and $S=\{u, v\}$. Since S is a minimum cutset, $N_{G}(a)=N_{G}(b)=\{u, v\}$. Further, if $\left|V\left(C_{3}\right)\right|=1$, then it is easy to see that $i(G) \leq 2$, a contradiction. Hence, $\left|V\left(C_{3}\right)\right| \geq 2$. By Lemma 5(3), C_{3} is complete. Note that $N_{V\left(C_{3}\right)}(u) \neq \emptyset$ and $N_{V\left(C_{3}\right)}(v) \neq \emptyset$ since S is a minimum cutset. If there is a vertex $y \in N_{V\left(C_{3}\right)}(u)-$ $N_{V\left(C_{3}\right)}(v)$, then $\{y, v\} \succ_{i} G$, a contradiction. Similarly, if there is a vertex $y \in N_{V\left(C_{3}\right)}(v)-N_{V\left(C_{3}\right)}(u)$, then $\{y, u\} \succ_{i} G$, again a contradiction. Note that $u v \notin E(G)$. Hence, $N_{V\left(C_{3}\right)}(u) \cup N_{V\left(C_{3}\right)}(v)=N_{V\left(C_{3}\right)}(u) \cap N_{V\left(C_{3}\right)}(v)$. It is easy to see that $\left|N_{V\left(C_{3}\right)}(u) \cup N_{V\left(C_{3}\right)}(v)\right|=\left|N_{V\left(C_{3}\right)}(u) \cap N_{V\left(C_{3}\right)}(v)\right| \geq 2$ since S is a minimum cutset of size 2. Because $i(G)=3,\left|V\left(C_{3}\right)-\left(N_{V\left(C_{3}\right)}(u) \cup N_{V\left(C_{3}\right)}(v)\right)\right| \geq$ 1. Therefore, $G \in \mathscr{H}_{1}$ as required. This completes the proof of our theorem.

Theorem 7. Let G be a connected 3 -i-critical graph and S a minimum cutset of size 3 . If $G-S$ contains exactly three components, then $G \in \mathscr{H}_{i}$ for $2 \leq i \leq 6$.

Proof. Let C_{1}, C_{2} and C_{3} be the components of $G-S$. By Lemma $5(2)$ we may assume that $\left|V\left(C_{1}\right)\right|=\left|V\left(C_{2}\right)\right|=1$. Put $\{a\}=V\left(C_{1}\right),\{b\}=V\left(C_{2}\right)$ and $S=\left\{u_{1}, u_{2}, u_{3}\right\}$. Since S is a minimum cutset, $N_{G}(a)=N_{G}(b)=\left\{u_{1}, u_{2}, u_{3}\right\}$. Further, if $\left|V\left(C_{3}\right)\right|=1$, then S must be independent since $i(G)=3$ and thus $G \in \mathscr{H}_{4}$. So we may suppose that $\left|V\left(C_{3}\right)\right| \geq 2$. Note that C_{3} is complete by Lemma $5(3)$. Further, $N_{V\left(C_{3}\right)}\left(u_{i}\right) \neq \emptyset$ for $1 \leq i \leq 3$ since S is a minimum cutset.

Claim 1. $G[S]$ contains at most one edge.
Proof. Assume, without loss of generality, that $u_{1} u_{2}, u_{2} u_{3} \in E(G)$. Then $u_{2} \succ$ $S \cup\{a, b\}$. It is easy to see that $i(G) \leq 2$ since C_{3} is complete. But this contradicts the fact that $i(G)=3$. This settles our claim.

We now distinguish two cases according to the number of edges in $G[S]$.
Case 1: $G[S]$ contains exactly one edge, say $u_{1} u_{2}$.
Claim 2. $N_{V\left(C_{3}\right)}\left(u_{3}\right)=N_{V\left(C_{3}\right)}\left(u_{1}\right) \cap N_{V\left(C_{3}\right)}\left(u_{2}\right)$.
Proof. It is easy to see that if there exists $x \in N_{V\left(C_{3}\right)}\left(u_{3}\right)$ but $x \notin N_{V\left(C_{3}\right)}\left(u_{1}\right) \cap$ $N_{V\left(C_{3}\right)}\left(u_{2}\right)$, then $\left\{x, u_{1}\right\} \succ_{i} G$ or $\left\{x, u_{2}\right\} \succ_{i} G$, a contradiction. Hence, $N_{V\left(C_{3}\right)}\left(u_{3}\right)$ $\subseteq N_{V\left(C_{3}\right)}\left(u_{1}\right) \cap N_{V\left(C_{3}\right)}\left(u_{2}\right)$. On the other hand, if $x \in N_{V\left(C_{3}\right)}\left(u_{1}\right) \cap N_{V\left(C_{3}\right)}\left(u_{2}\right)$ but $x \notin N_{V\left(C_{3}\right)}\left(u_{3}\right)$, then $\left\{x, u_{3}\right\} \succ_{i} G$, again a contradiction. Hence, $N_{V\left(C_{3}\right)}\left(u_{1}\right) \cap$ $N_{V\left(C_{3}\right)}\left(u_{2}\right) \subseteq N_{V\left(C_{3}\right)}\left(u_{3}\right)$. This settles our claim.

Now put $Y=V\left(C_{3}\right)-N_{V\left(C_{3}\right)}\left(u_{3}\right)$. It is easy to see that $Y \neq \emptyset$ since $i(G)=3$.
Claim 3. Each vertex of Y is adjacent to at most one vertex of $\left\{u_{1}, u_{2}\right\}$.

Proof. Clearly, if there exists $y \in Y$ such that $y u_{1} \in E(G)$ and $y u_{2} \in E(G)$, then $\left\{y, u_{3}\right\} \succ_{i} G$, a contradiction. This settles our claim.

Subcase 1.1: $|Y|=1$. Put $\{v\}=Y$. If $v u_{j} \in E(G)$ for some $1 \leq j \leq 2$, then $\left\{u_{j}, u_{3}\right\} \succ_{i} G$, a contradiction. Hence, $v u_{j} \notin E(G)$ for $1 \leq j \leq 2$. Consequently, $N_{G}(v)=V\left(C_{3}\right)-\{v\}$. Because S is a minimum cutset, $\left|V\left(C_{3}\right)-\{v\}\right| \geq 3$. Therefore, $G \in \mathscr{H}_{2}$.

Subcase 1.2: $|Y| \geq 2$.
Claim 4. Each vertex of Y is adjacent to exactly one vertex of $\left\{u_{1}, u_{2}\right\}$. Further, $\left|N_{Y}\left(u_{1}\right)\right| \geq 1$ and $\left|N_{Y}\left(u_{2}\right)\right| \geq 1$.

Proof. We first suppose to the contrary that there is a vertex $y \in Y$ such that $y u_{1} \notin E(G)$ and $y u_{2} \notin E(G)$. Thus $N_{S}(y)=\emptyset$. Since $|Y| \geq 2$, there is $y_{1} \in$ $Y-\{y\}$. Consider $G+u_{3} y_{1}$. Let $\left\{z_{1}\right\}=I_{u_{3} y_{1}}-\left\{u_{3}, y_{1}\right\}$. By Lemma 3(2), $z_{1} \notin V\left(C_{3}\right) \cup\{a, b\}$ since C_{3} is complete and $\{a, b\} \subseteq N_{G}\left(u_{3}\right)$. Then $z_{1} \in\left\{u_{1}, u_{2}\right\}$. If $I_{u_{3} y_{1}}=\left\{u_{3}, z_{1}\right\}$, then no vertex of $I_{u_{3} y_{1}}$ is adjacent to y, a contradiction. Hence, $I_{u_{3} y_{1}}=\left\{y_{1}, z_{1}\right\}$. We may assume that $z_{1}=u_{1}$. Then $u_{1} y_{1} \notin E(G)$. Now consider $G+u_{1} y$. Let $\left\{z_{2}\right\}=I_{u_{1} y}-\left\{u_{1}, y\right\}$. By Lemma 3(2), $z_{2} \notin V\left(C_{3}\right) \cup\left\{a, b, u_{2}\right\}$ since C_{3} is complete and $\left\{a, b, u_{2}\right\} \subseteq N_{G}\left(u_{1}\right)$. Thus $z_{2}=u_{3}$. If $I_{u_{1} y}=\left\{u_{1}, u_{3}\right\}$, then no vertex of $I_{u_{1} y}$ is adjacent to y_{1}, a contradiction. Hence, $I_{u_{1} y}=\left\{y, u_{3}\right\}$. But then no vertex of $I_{u_{1} y}$ is adjacent to u_{2}, again a contradiction. This proves that each vertex of Y is adjacent to at least one vertex of $\left\{u_{1}, u_{2}\right\}$. It then follows by Claim 3 that each vertex of Y is adjacent to exactly one vertex of $\left\{u_{1}, u_{2}\right\}$.

We next show that $N_{Y}\left(u_{1}\right) \neq \emptyset$. Suppose this is not the case. Then u_{1} is not adjacent to any vertex of Y. Then each vertex of Y is adjacent to u_{2} by the above argument. Consequently, $\left\{u_{2}, u_{3}\right\} \succ_{i} G$, a contradiction. Hence, $N_{Y}\left(u_{1}\right) \neq \emptyset$. Similarly, $N_{Y}\left(u_{2}\right) \neq \emptyset$. This settles our claim.

Put $Y_{1}=N_{Y}\left(u_{1}\right)$ and $Y_{2}=N_{Y}\left(u_{2}\right)$. It follows by Claim 4 that $Y_{1} \cap Y_{2}=\emptyset$ and hence $G \in \mathscr{H}_{3}$.

Case 2: $G[S]$ is independent.
Claim 5. For each $x \in V\left(C_{3}\right)$, either x is adjacent to every vertex of $\left\{u_{1}, u_{2}, u_{3}\right\}$ or x is adjacent to exactly one vertex of $\left\{u_{1}, u_{2}, u_{3}\right\}$.

Proof. We first suppose to the contrary that there is a vertex $x_{1} \in V\left(C_{3}\right)$ such that x_{1} is not adjacent to any vertex of $\left\{u_{1}, u_{2}, u_{3}\right\}$. Consider $G+x_{1} u_{1}$. Let $\{z\}=I_{x_{1} u_{1}}-\left\{x_{1}, u_{1}\right\}$. By Lemma 3(2) and the fact that C_{3} is complete and $\{a, b\} \subseteq N_{G}\left(u_{1}\right)$, it follows that $z \in\left\{u_{2}, u_{3}\right\}$. Consequently, $u_{2} u_{3} \in E(G)$, a contradiction. Hence, each vertex of $V\left(C_{3}\right)$ is adjacent to at least one vertex of $\left\{u_{1}, u_{2}, u_{3}\right\}$.

We now suppose that there is a vertex $x_{2} \in V\left(C_{3}\right)$ such that x_{2} is adjacent to, say, u_{1} and u_{2} but not to u_{3}. Then $\left\{x_{2}, u_{3}\right\} \succ_{i} G$, a contradiction. This settles our claim.

For $1 \leq i \leq 3$, let Y_{i} be the set of vertices in C_{3} which are adjacent only to u_{i} in S and let $Y=Y_{1} \cup Y_{2} \cup Y_{3}$ and $X=V\left(C_{3}\right)-Y$. Then, by Claim 5, $x \succ S$ for $x \in X$.

Claim 6. If $Y \neq \emptyset$, then either $Y_{i} \neq \emptyset$ for all $i \in\{1,2,3\}$ or $Y=Y_{i}$ for exactly one $i \in\{1,2,3\}$.

Proof. Assume that one $Y_{i}=\emptyset$ and the other two are not empty, say $Y_{1}, Y_{2} \neq \emptyset$ and $Y_{3}=\emptyset$. Then $V\left(C_{3}\right)=Y_{1} \cup Y_{2} \cup X$. Consider $G+u_{1} u_{2}$. Let $\{z\}=I_{u_{1} u_{2}}-$ $\left\{u_{1}, u_{2}\right\}$. By Lemma $3(2), z \notin V\left(C_{3}\right) \cup\{a, b\}$. Then $z=u_{3}$. If $I_{u_{1} u_{2}}=\left\{u_{1}, u_{3}\right\}$, then no vertex of $I_{u_{1} u_{2}}$ is adjacent to a vertex of Y_{2}, a contradiction. Hence, $I_{u_{1} u_{2}}=\left\{u_{2}, u_{3}\right\}$. But then no vertex of $I_{u_{1} u_{2}}$ is adjacent to a vertex of Y_{1}, again a contradiction. This settles our claim.

We now distinguish two subcases.
Subcase 2.1: $Y=\emptyset$. It is easy to see that $V\left(C_{3}\right)=X$ and thus $G \in \mathscr{H}_{4}$.
Subcase 2.2: $Y \neq \emptyset$. Suppose first that two $Y_{i}^{\prime} s$ are empty, say $Y_{1} \neq \emptyset$ and $Y_{2}=Y_{3}=\emptyset$. If $X=\emptyset$, then u_{1} becomes a cutvertex of G, contradicting the fact that $S=\left\{u_{1}, u_{2}, u_{3}\right\}$ is a minimum cutset. Hence, $X \neq \emptyset$. Note that $\left\{u_{1}\right\} \cup X$ is a vertex cutset of G. Since the minimum cardinality of a vertex cutset in G is 3 , $|X| \geq 2$. It is easy to see that $G \in \mathscr{H}_{5}$.

We now suppose that all $Y_{i}^{\prime} s$ are not empty. Then $G \in \mathscr{H}_{6}$. This completes the proof of our theorem.

Our last result follows immediately from Theorems 6 and 7.
Corollary 8. Let G be a connected 3 -i-critical graph and S a minimum cutset where $2 \leq|S| \leq 3$. If $\omega(G-S)=3$, then the minimum degree of G is $|S|$.

Acknowledgements

The authors would like to express their gratitude to the referees for valuable comments and suggestions.

References

[1] N. Ananchuen and W. Ananchuen, A characterization of independent domination critical graphs with a cutvertex, J. Combin. Math. Combin. Comput. (to appear).
[2] N. Ananchuen, W. Ananchuen and L. Caccetta, A characterization of connected 3-i-critical graphs of connectivity two, (2014) submitted.
[3] S. Ao, Independent Domination Critical Graphs, Master Thesis (University of Victoria, 1994).
[4] M. Dehmer, (Ed.), Structural Analysis of Complex Networks (Birkhauser, Breingsville, 2011).
[5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater (Eds), Domination in Graphs: Advanced Topics (Marcel Dekker, New York, 1998).
[6] D.P. Sumner and P. Blitch, Domination critical graphs, J. Combin. Theory Ser. B 34 (1983) 65-76.
doi:10.1016/0095-8956(83)90007-2
Received 15 October 2013
Revised 23 February 2015
Accepted 23 February 2015

[^0]: ${ }^{1}$ Work supported by the Thailand Research Fund grant \#BRG5480014.
 ${ }^{2}$ Corresponding author.

