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Abstract

A subset S of V (G) is an independent dominating set of G if S is inde-
pendent and each vertex of G is either in S or adjacent to some vertex of S.
Let i(G) denote the minimum cardinality of an independent dominating set
of G. A graph G is k-i-critical if i(G) = k, but i(G+uv) < k for any pair of
non-adjacent vertices u and v of G. In this paper, we establish that if G is a
connected 3-i-critical graph and S is a vertex cutset of G with |S| ≥ 3, then

ω(G−S) ≤ 1+
√

8|S|+1

2
, improving a result proved by Ao [3], where ω(G−S)

denotes the number of components of G−S. We also provide a characteriza-
tion of the connected 3-i-critical graphs G attaining the maximum number
of ω(G− S) when S is a minimum cutset of size 2 or 3.
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1. Introduction

Let G denote a finite simple undirected graph with vertex set V (G) and edge set
E(G). The complete graph of order n is denoted by Kn. A star is a complete
bipartite graph K1,n. For S ⊆ V (G), the subgraph of G induced by S is denoted
by G[S]. S is a clique if G[S] is complete and S is independent if no two vertices
of S are adjacent. G is a split graph if V (G) is partitioned into a clique and an
independent set. The number of components of G is denoted by ω(G). A vertex
subset S of V (G) is a cutset of G if ω(G − S) > ω(G). For a vertex v ∈ V (G),
the neighborhood of v in G, denoted by NG(v), is the set of all vertices of V (G)
which are adjacent to v. For S ⊆ V (G), NG(v) ∩ S and S ∪ ⋃

x∈S NG(x) are
denoted by NS(v) and NG[S], respectively.

For subsets S and T of V (G), we say that S dominates T , denoted by S ≻ T ,
if T ⊆ NG[S]. If S ≻ T where S = {s}, then we write s ≻ T instead of {s} ≻ T .
Further, if T = V (H) where H is a subgraph of G, then we write S ≻ H instead
of S ≻ V (H) and we say that S is a dominating set of H. Thus S is a dominating
set of G if each vertex of V (G) is either in S or adjacent to some vertex of S. The
minimum cardinality of a dominating set of G is called the domination number

of G and denoted by γ(G).

For a subgraph H of G, if S ≻ H and S is independent, then we say that
S is an independent dominating set of H and denoted by S ≻i H. Thus S is
an independent dominating set of G if S ≻i G. The minimum cardinality of an
independent dominating set of G is called the independent domination number

of G and denoted by i(G). Observe that for any graph G, γ(G) ≤ i(G) and if
γ(G) = 1, then i(G) = 1.

The concept of domination critical was first introduced by Sumner and Blitch
[6] in 1983. A graph G is k-γ-critical if γ(G) = k, but γ(G + uv) < k for any
pair of non-adjacent vertices u and v of G. Sumner and Blitch [6] also provided a
characterization of 2-γ-critical graphs and some crucial results which have been
become useful tools in investigating this topic. Since then k-γ-critical graphs
have gained considerable attention. They have been investigated with some other
graph parameters such as toughness, matching and Hamiltonicity. Most of these
results concern 3-γ-critical graphs. The reader is directed to excellent books by
Dehmer [4] and by Haynes et al. [5] for more details and for references therein.

In 1994, Ao [3] introduced the concept of “independent domination critical”.
A graph G is k-i-critical if i(G) = k, but i(G + uv) < k for any pair of non-
adjacent vertices u and v of G. In [3], Ao established some properties of 3-i-
critical graphs including diameter and a sufficient condition for such graphs to
be Hamiltonian. She also showed that if G is a connected 3-i-critical graph and
S is a vertex cutset of G, then ω(G − S) ≤ |S| + 1. We found that the upper
bound of this result can be improved if |S| ≥ 3. In fact, in this paper, we shall
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prove the following main theorem in Section 2.

Theorem 1. Let G be a connected 3-i-critical graph and S a vertex cutset of G.

If |S| ≥ 3, then ω(G− S) ≤ 1+
√

8|S|+1

2 . Further, the bound is sharp.

In studying the concept of critical graphs, we always seek for a characteriza-
tion. This also applies to connected k-i-critical graphs. It is easy to see that Kn,
where n is a positive integer, is the only 1-i-critical graph. Ao [3] showed that
G is 2-i-critical if and only if the complement of G is a union of stars. A prob-
lem that arises is that of characterizing connected k-i-critical graphs for k ≥ 3.
However, this seems to be a difficult task. So, to investigate a characterization
of such graphs, we sometime add some addition hypothesis. In [1], the authors
proved that if G is a connected k-i-critical graph, for k ≥ 3, with a cutvertex
u, then ω(G − u) ≤ k − 1. Further, a characterization of such graphs G with
ω(G − u) = k − 1 was given. So the characterization of connected 3-i-critical
graphs with a cutvertex is known. According to Theorem 1 and Ao’s result in
the previous paragraph, if G is a connected 3-i-critical graph with a cutset S of
size at most five, then ω(G − S) is at most three. A problem that arises is that
of characterizing such graphs. In Section 3, we establish that if G is a connected
3-i-critical graph with a minimum cutset S of size 2 or 3 and ω(G − S) = 3,
then G must be in one of six classes. In [2], a characterization of the connected
3-i-critical graphs G with a minimum cutset S of size 2 and ω(G − S) = 2 is
given. We then conclude this section by posing the following remaining cases.

1. Characterize the connected 3-i-critical graphs G with a minimum cutset
S of size 3 and ω(G− S) = 2.

2. Characterize the connected 3-i-critical graphs G with a minimum cutset
S of size 4 or 5 and ω(G− S) = k where k ∈ {2, 3}.

Note that the solution of Problem 1 together with our results in Section 3
provides a complete characterization of the 3-i-critical graphs with a minimum
cutset of size 3.

2. The Proof of Theorem 1

We begin this section with some terminology and preliminary results that we will
need when establishing our main results. For a pair of non-adjacent vertices u
and v of G, Iuv denotes a minimum independent dominating set of G+ uv. Our
first two results follow immediately from the definition of k-i-critical graphs.

Lemma 2. Let G be a connected k-i-critical graph and let u and v be two non-

adjacent vertices of G. Then |Iuv| = k − 1 and |Iuv ∩ {u, v}| = 1.

Lemma 3. Let G be a connected 3-i-critical graph and let u and v be two non-

adjacent vertices of G. Then
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(1) Iuv = {u,w} or Iuv = {v, w} for some w ∈ V (G)− {u, v}.
(2) If {w} = Iuv − {u, v}, then {u, v, w} is independent.

Our next result is a useful tool for establishing our main results.

Lemma 4. Let G be a connected 3-i-critical graph and let u and v be two non-

adjacent vertices of G. If Iuv = {u,w} for some w ∈ V (G)− {u, v}, then Iuw −
{u,w} = {v}, i.e., Iuw = {u, v} or Iuw = {w, v}.

Proof. By Lemma 3(2), {u, v, w} is independent. Let x ∈ V (G) − {u, v, w}.
Then xu ∈ E(G) or xw ∈ E(G) since Iuv = {u,w}. Then x /∈ Iuw by Lemma
3(2). Thus Iuw − {u,w} = {v} as required. This proves our lemma.

We are now ready to prove Theorem 1.

Proof of Theorem 1. Put t = ω(G−S). If t ≤ 3, then we are done. So suppose
that t ≥ 4. Let C1, C2, . . . , Ct be the components of G − S and vi ∈ V (Ci) for
1 ≤ i ≤ t. Consider G+ vivj for 1 ≤ i < j ≤ t. Let {zij} = Ivivj − {vi, vj}. Since
t ≥ 4 and zij ≻

⋃t
k=1 V (Ck)− (V (Ci) ∪ V (Cj)), it follows that zij ∈ S. Since by

Lemma 3(2), {vi, vj , zij} is independent, we have |{zij : 1 ≤ i < j ≤ t}| =
(

t
2

)

.

Hence, |S| ≥ t(t−1)
2 , implying that t ≤ 1+

√
8|S|+1

2 as required.

We next show that our bound is sharp. Let H be a spilt graph consisting
of one independent set U = {u1, u2, . . . , ut} of size t and one clique U = {uij :
{i, j} ⊆ {1, 2, . . . , t}} of size

(

t
2

)

such that each vertex uij ∈ U is adjacent to
all vertices in U with exception of the pair ui and uj . Clearly, i(H) = 3 and
{uj , uij} ≻i H + uiuj . Hence, H is a 3-i-critical graph satisfying the bound of
our result.

3. A Characterization of the Connected 3-i-Critical Graphs G
Having a Minimum Cutset S of Size 2 or 3 and ω(G− S) = 3

In this section, we establish a characterization of the connected 3-i-critical graphs
G having a minimum cutset S of size 2 or 3 and ω(G − S) = 3. We begin our
section by providing six classes of connected 3-i-critical graphs having a minimum
cutset of size 2 and 3. The last two theorems in this section show that if G
is a connected 3-i-critical graph having a minimum cutset of size 2 or 3 and
ω(G− S) = 3, then G must belong to one of these six classes.

I. The class H1

For positive integers m and n ≥ 2, define a graph G ∈ H1 of order n+m+4
as follows. Set V (G) = {a, b, u, v} ∪ X ∪ Y where |X| = n and |Y | = m. The
edges of G are defined as follows. G[X] = Kn and G[Y ] = Km. Further, join
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u and v to every vertex of {a, b} ∪ X. Finally, join each vertex of X to every
vertex of Y . This defines the class H1. Figure 1 illustrates our construction. It
is not difficult to show that a graph G ∈ H1 is 3-i-critical containing {u, v} as a
minimum cutset. Note that in our diagram a “double line” denotes the join.

II. The class H2

For positive integer n ≥ 3, define a graph G ∈ H2 of order n+ 6 as follows.
Set V (G) = {a, b, u1, u2, u3, v}∪X where |X| = n. The edges of G are defined as
follows. G[X] = Kn; join each vertex of {u1, u2, u3} to every vertex of {a, b}∪X.
Further, join v to every vertex of X. Finally, add the edge u1u2. This defines the
class H2. Figure 2 illustrates our construction. It is not difficult to show that a
graph G ∈ H2 is 3-i-critical containing {u1, u2, u3} as a minimum cutset.

Figure 1. The structure of a graph in the
class H1.

Figure 2. The structure of a graph in the
class H2.

III. The class H3

For positive integers n, m1 and m2, define a graph G ∈ H3 of order n +
m1 + m2 + 5 as follows. Set V (G) = {a, b, u1, u2, u3} ∪ X ∪ Y1 ∪ Y2 where
|X| = n, |Y1| = m1 and |Y2| = m2. The edges of G are defined as follows.
G[X ∪ Y1 ∪ Y2] = Kn+m1+m2

; join each vertex of {u1, u2, u3} to every vertex of
{a, b} ∪X. Further, for 1 ≤ i ≤ 2, join ui to every vertex of Yi. Finally, add the
edge u1u2. This defines the class H3. Figure 3 illustrates our construction. It is
not difficult to show that a graph G ∈ H3 is 3-i-critical containing {u1, u2, u3}
as a minimum cutset.

IV. The class H4

For a positive integer n, define a graph G ∈ H4 of order n + 5 as follows.
Set V (G) = {a, b, u1, u2, u3} ∪ X where |X| = n. The edges of G are defined
as follows. G[X] = Kn and join each vertex of {u1, u2, u3} to every vertex of
{a, b} ∪ X. This defines the class H4. Figure 4 illustrates our construction. It
is easy to see that a graph G ∈ H4 is 3-i-critical containing {u1, u2, u3} as a
minimum cutset.

V. The class H5
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Figure 3. The structure of a graph in the
class H3.

Figure 4. The structure of a graph in the
class H4.

For positive integers n ≥ 2 and m, define a graph G ∈ H5 of order n+m+5
as follows. Set V (G) = {a, b, u1, u2, u3} ∪ X ∪ Y where |X| = n and |Y | = m.
The edges of G are defined as follows. G[X ∪ Y ] = Kn+m; join each vertex of
{u1, u2, u3} to every vertex of {a, b} ∪ X. Finally, join u1 to every vertex of Y .
This defines the class H5. Figure 5 illustrates our construction. It is not difficult
to see that a graph G ∈ H5 is 3-i-critical containing {u1, u2, u3} as a minimum
cutset.

VI. The class H6

For non-negative integer n and positive integers m1, m2 and m3, define
a graph G ∈ H6 of order n + m1 + m2 + m3 + 5 as follows. Set V (G) =
{a, b, u1, u2, u3} ∪X ∪ Y1 ∪ Y2 ∪ Y3 where |X| = n and |Yi| = mi for 1 ≤ i ≤ 3.
The edges of G are defined as follows. G[X ∪Y1 ∪Y2 ∪Y3] = Kn+m1+m2+m3

, join
each vertex of {u1, u2, u3} to every vertex of {a, b} ∪ X. Finally, for 1 ≤ i ≤ 3;
join ui to every vertex of Yi. This defines the class H6. Figure 6 illustrates our
construction. It is easy to see that a graph G ∈ H6 is 3-i-critical containing
{u1, u2, u3} as a minimum cutset.

Figure 5. The structure of a graph in the
class H5.

Figure 6. The structure of a graph in the
class H6.
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Before establishing our main results in this section, we need the following
lemma.

Lemma 5. Let G be a connected 3-i-critical graph and S a minimum cutset

where 2 ≤ |S| ≤ 5. Suppose ω(G− S) = 3. Then

(1) There is a vertex of G− S, say x, such that x ≻ S.

(2) At least two components of G− S are singleton.

(3) Each component of G− S is complete.

Proof. Let C1, C2 and C3 be the components of G− S.
(1) Suppose to the contrary that no vertex of G − S dominates S. Then,

since S is a minimum cutset, |V (Ci)| ≥ 2 for 1 ≤ i ≤ 3. For 1 ≤ i ≤ 3, let ui and
vi be two distinct vertices of V (Ci). Put T = {{x, y} : x ∈ {ui, vi}, y ∈ {uj , vj}
for 1 ≤ i < j ≤ 3}. It is easy to see that |T | = 12. We now consider G + xy for
{x, y} ∈ T . For each {x, y} ∈ T , let {zxy} = Ixy − {x, y}. Since ω(G − S) = 3
and |V (Ci)| ≥ 2 for 1 ≤ i ≤ 3, it follows that zxy ∈ S. Consequently, there
are at least 3 distinct elements of T , say {x1, y1}, {x2, y2}, {x3, y3} such that
zx1y1 = zx2y2 = zx3y3 because |S| ≤ 5 and |T | = 12.

We may now assume without loss of generality that {x1, y1} = {u1, u2} and
that Ix1y1 = Iu1u2

= {u1, zu1u2
}. Then zu1u2

≻ (V (C2) ∪ V (C3)) − {u2}. By
Lemma 3(2), {x2, y2, x3, y3}∩{v2, u3, v3} = ∅. Thus {x2, y2, x3, y3} ⊆ {u1, v1, u2}.
But this contradicts the fact that {xi, yi} 6= {xj , yj} for 1 ≤ i 6= j ≤ 3. This
proves (1).

(2) Let x ∈ V (G − S) such that x ≻ S. Without loss of generality, we may
assume that x ∈ V (C1). Choose y ∈ V (C2). Consider G + xy. Let {z} =
Ixy − {x, y}. By Lemma 3(2), z /∈ S. Then z ∈ V (C3). We first suppose that
Ixy = {x, z}. Then V (C2) = {y}. Now consider G + xz. Then, by Lemma 4,
Ixz = {x, y} or Ixz = {z, y}. If Ixz = {x, y}, then |V (C3)| = 1. If Ixz = {z, y},
then |V (C1)| = 1. Hence, G contains at least two singleton components as
required.

We now suppose that Ixy = {y, z}. By similar arguments, G contains at least
two singleton components. This proves (2).

(3) By (2), we may assume without loss of generality that |V (C1)| = |V (C2)| =
1. Put {x} = V (C1) and {y} = V (C2). Since S is a minimum cutset, x ≻ S
and y ≻ S. Suppose to the contrary that C3 is not complete. Then there exist
a, b ∈ V (C3) where ab /∈ E(G). Consider G+xa. Let {z} = Ixa−{x, a}. Because
no vertex of {x, a} is adjacent to a vertex of {y, b}, z ≻ {y, b}. Then z ∈ S since
y ∈ V (C2) and b ∈ V (C3). But this contradicts Lemma 3(2) since x ≻ S. This
proves (3) and completes the proof of our lemma.

Theorem 6. Let G be a connected 3-i-critical graph and S a minimum cutset of

size 2. If G− S contains exactly three components, then G ∈ H1.
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Proof. Let C1, C2 and C3 be the components of G − S. By Lemma 5(2) we
may assume that |V (C1)| = |V (C2)| = 1. Put {a} = V (C1), {b} = V (C2) and
S = {u, v}. Since S is a minimum cutset, NG(a) = NG(b) = {u, v}. Further,
if |V (C3)| = 1, then it is easy to see that i(G) ≤ 2, a contradiction. Hence,
|V (C3)| ≥ 2. By Lemma 5(3), C3 is complete. Note that NV (C3)(u) 6= ∅ and
NV (C3)(v) 6= ∅ since S is a minimum cutset. If there is a vertex y ∈ NV (C3)(u)−
NV (C3)(v), then {y, v} ≻i G, a contradiction. Similarly, if there is a vertex
y ∈ NV (C3)(v) − NV (C3)(u), then {y, u} ≻i G, again a contradiction. Note that
uv /∈ E(G). Hence, NV (C3)(u) ∪ NV (C3)(v) = NV (C3)(u) ∩ NV (C3)(v). It is easy
to see that |NV (C3)(u) ∪ NV (C3)(v)| = |NV (C3)(u) ∩ NV (C3)(v)| ≥ 2 since S is a
minimum cutset of size 2. Because i(G) = 3, |V (C3)−(NV (C3)(u)∪NV (C3)(v))| ≥
1. Therefore, G ∈ H1 as required. This completes the proof of our theorem.

Theorem 7. Let G be a connected 3-i-critical graph and S a minimum cutset of

size 3. If G− S contains exactly three components, then G ∈ Hi for 2 ≤ i ≤ 6.

Proof. Let C1, C2 and C3 be the components of G − S. By Lemma 5(2) we
may assume that |V (C1)| = |V (C2)| = 1. Put {a} = V (C1), {b} = V (C2) and
S = {u1, u2, u3}. Since S is a minimum cutset, NG(a) = NG(b) = {u1, u2, u3}.
Further, if |V (C3)| = 1, then S must be independent since i(G) = 3 and thus
G ∈ H4. So we may suppose that |V (C3)| ≥ 2. Note that C3 is complete by
Lemma 5(3). Further, NV (C3)(ui) 6= ∅ for 1 ≤ i ≤ 3 since S is a minimum cutset.

Claim 1. G[S] contains at most one edge.

Proof. Assume, without loss of generality, that u1u2, u2u3 ∈ E(G). Then u2 ≻
S∪{a, b}. It is easy to see that i(G) ≤ 2 since C3 is complete. But this contradicts
the fact that i(G) = 3. This settles our claim.

We now distinguish two cases according to the number of edges in G[S].

Case 1: G[S] contains exactly one edge, say u1u2.

Claim 2. NV (C3)(u3) = NV (C3)(u1) ∩NV (C3)(u2).

Proof. It is easy to see that if there exists x ∈ NV (C3)(u3) but x /∈ NV (C3)(u1)∩
NV (C3)(u2), then {x, u1} ≻i G or {x, u2} ≻i G, a contradiction. Hence, NV (C3)(u3)
⊆ NV (C3)(u1)∩NV (C3)(u2). On the other hand, if x ∈ NV (C3)(u1)∩NV (C3)(u2) but
x /∈ NV (C3)(u3), then {x, u3} ≻i G, again a contradiction. Hence, NV (C3)(u1) ∩
NV (C3)(u2) ⊆ NV (C3)(u3). This settles our claim.

Now put Y = V (C3)−NV (C3)(u3). It is easy to see that Y 6= ∅ since i(G) = 3.

Claim 3. Each vertex of Y is adjacent to at most one vertex of {u1, u2}.
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Proof. Clearly, if there exists y ∈ Y such that yu1 ∈ E(G) and yu2 ∈ E(G),
then {y, u3} ≻i G, a contradiction. This settles our claim.

Subcase 1.1: |Y | = 1. Put {v} = Y . If vuj ∈ E(G) for some 1 ≤ j ≤ 2, then
{uj , u3} ≻i G, a contradiction. Hence, vuj /∈ E(G) for 1 ≤ j ≤ 2. Consequently,
NG(v) = V (C3) − {v}. Because S is a minimum cutset, |V (C3) − {v}| ≥ 3.
Therefore, G ∈ H2.

Subcase 1.2: |Y | ≥ 2.

Claim 4. Each vertex of Y is adjacent to exactly one vertex of {u1, u2}. Further,
|NY (u1)| ≥ 1 and |NY (u2)| ≥ 1.

Proof. We first suppose to the contrary that there is a vertex y ∈ Y such that
yu1 /∈ E(G) and yu2 /∈ E(G). Thus NS(y) = ∅. Since |Y | ≥ 2, there is y1 ∈
Y − {y}. Consider G + u3y1. Let {z1} = Iu3y1 − {u3, y1}. By Lemma 3(2),
z1 /∈ V (C3)∪{a, b} since C3 is complete and {a, b} ⊆ NG(u3). Then z1 ∈ {u1, u2}.
If Iu3y1 = {u3, z1}, then no vertex of Iu3y1 is adjacent to y, a contradiction. Hence,
Iu3y1 = {y1, z1}. We may assume that z1 = u1. Then u1y1 /∈ E(G). Now consider
G+u1y. Let {z2} = Iu1y −{u1, y}. By Lemma 3(2), z2 /∈ V (C3)∪{a, b, u2} since
C3 is complete and {a, b, u2} ⊆ NG(u1). Thus z2 = u3. If Iu1y = {u1, u3}, then
no vertex of Iu1y is adjacent to y1, a contradiction. Hence, Iu1y = {y, u3}. But
then no vertex of Iu1y is adjacent to u2, again a contradiction. This proves that
each vertex of Y is adjacent to at least one vertex of {u1, u2}. It then follows by
Claim 3 that each vertex of Y is adjacent to exactly one vertex of {u1, u2}.

We next show that NY (u1) 6= ∅. Suppose this is not the case. Then u1 is not
adjacent to any vertex of Y . Then each vertex of Y is adjacent to u2 by the above
argument. Consequently, {u2, u3} ≻i G, a contradiction. Hence, NY (u1) 6= ∅.
Similarly, NY (u2) 6= ∅. This settles our claim.

Put Y1 = NY (u1) and Y2 = NY (u2). It follows by Claim 4 that Y1 ∩ Y2 = ∅
and hence G ∈ H3.

Case 2: G[S] is independent.

Claim 5. For each x ∈ V (C3), either x is adjacent to every vertex of {u1, u2, u3}
or x is adjacent to exactly one vertex of {u1, u2, u3}.

Proof. We first suppose to the contrary that there is a vertex x1 ∈ V (C3) such
that x1 is not adjacent to any vertex of {u1, u2, u3}. Consider G + x1u1. Let
{z} = Ix1u1

− {x1, u1}. By Lemma 3(2) and the fact that C3 is complete and
{a, b} ⊆ NG(u1), it follows that z ∈ {u2, u3}. Consequently, u2u3 ∈ E(G), a
contradiction. Hence, each vertex of V (C3) is adjacent to at least one vertex of
{u1, u2, u3}.
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We now suppose that there is a vertex x2 ∈ V (C3) such that x2 is adjacent
to, say, u1 and u2 but not to u3. Then {x2, u3} ≻i G, a contradiction. This
settles our claim.

For 1 ≤ i ≤ 3, let Yi be the set of vertices in C3 which are adjacent only to
ui in S and let Y = Y1 ∪ Y2 ∪ Y3 and X = V (C3)− Y . Then, by Claim 5, x ≻ S
for x ∈ X.

Claim 6. If Y 6= ∅, then either Yi 6= ∅ for all i ∈ {1, 2, 3} or Y = Yi for exactly
one i ∈ {1, 2, 3}.

Proof. Assume that one Yi = ∅ and the other two are not empty, say Y1, Y2 6= ∅
and Y3 = ∅. Then V (C3) = Y1 ∪ Y2 ∪X. Consider G+ u1u2. Let {z} = Iu1u2

−
{u1, u2}. By Lemma 3(2), z /∈ V (C3) ∪ {a, b}. Then z = u3. If Iu1u2

= {u1, u3},
then no vertex of Iu1u2

is adjacent to a vertex of Y2, a contradiction. Hence,
Iu1u2

= {u2, u3}. But then no vertex of Iu1u2
is adjacent to a vertex of Y1, again

a contradiction. This settles our claim.

We now distinguish two subcases.

Subcase 2.1: Y = ∅. It is easy to see that V (C3) = X and thus G ∈ H4.

Subcase 2.2: Y 6= ∅. Suppose first that two Y ′
i s are empty, say Y1 6= ∅ and

Y2 = Y3 = ∅. If X = ∅, then u1 becomes a cutvertex of G, contradicting the fact
that S = {u1, u2, u3} is a minimum cutset. Hence, X 6= ∅. Note that {u1} ∪X is
a vertex cutset of G. Since the minimum cardinality of a vertex cutset in G is 3,
|X| ≥ 2. It is easy to see that G ∈ H5.

We now suppose that all Y ′
i s are not empty. Then G ∈ H6. This completes

the proof of our theorem.

Our last result follows immediately from Theorems 6 and 7.

Corollary 8. Let G be a connected 3-i-critical graph and S a minimum cutset

where 2 ≤ |S| ≤ 3. If ω(G− S) = 3, then the minimum degree of G is |S|.
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