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Abstract

The line graph of a graph with signed edges carries vertex signs. A
vertex-signed graph is consistent if every circle (cycle, circuit) has positive
vertex-sign product. Acharya, Acharya, and Sinha recently characterized
line-consistent signed graphs, i.e., edge-signed graphs whose line graphs,
with the naturally induced vertex signature, are consistent. Their proof ap-
plies Hoede’s relatively difficult characterization of consistent vertex-signed
graphs. We give a simple proof that does not depend on Hoede’s theorem
as well as a structural description of line-consistent signed graphs.
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In the first article on signed graphs—graphs whose edges are labelled positive
or negative—Harary [8] gave a simple characterization of those in which the
product of signs around every circle (i.e., circuit, cycle) is positive. (Such graphs
are called balanced.) Later, Beineke and Harary [7] introduced signed vertices
and asked the analogous question of characterizing the vertex-signed graphs (also
called marked graphs) in which the product of vertex signs around every circle
is positive. (These vertex-signed graphs are called consistent.) This was more
difficult. After preliminary results by Acharya [1, 2] and Rao [11], Hoede found
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a definitive answer [9], which was developed more deeply in [12]. (An even more
definitive answer was found subsequently; see [10].)

An obvious question was never answered until recently. If a signed graph Σ
has underlying graph Γ and edge signature σ, then the line graph L(Γ) has σ

as a vertex signature. Under what conditions is this vertex signature consistent?
We call such a graph line consistent, as the defining property is consistency of
the line graph. Acharya, Acharya, and Sinha [4] found a simple necessary and
sufficient condition for line consistency. The necessity of their condition is easy
to determine. Sufficiency is not so easy; it depends on Hoede’s relatively complex
consistency criterion. Here we give an elementary, short proof of sufficiency as
well as a direct structural description of the signed graphs whose line graphs are
consistent. (The related paper [14] gives constructions for line-consistent signed
graphs that illuminate more about their structure.)

A graph may have multiple edges but not loops. A simple graph has neither
loops nor multiple edges. The degree d(v) of a vertex is the number of edges
incident with v (and also the number of neighbors of v if the graph is simple). The
length of a path P is denoted by l(P ); if it is zero the path is trivial. Suppressing
a divalent vertex means replacing it and its two incident edges by a single edge.
Two graphs are homeomorphic if they are isomorphic or they can both be changed
into the same (unlabelled) graph by suppressing divalent vertices in one or both
of them. When e, e′ are parallel edges in Γ, the line graph L(Γ) has a double edge
between its vertices e and e′.

In a signed graph Σ = (Γ, σ), the sign of a circle C, written σ(C), is the
product of its edge signs. Similarly, the sign σ(W ) of a walk W = e1e2 · · · el is
σ(W ) := σ(e1)σ(e2) · · ·σ(el). A vertex is totally positive (or, totally negative) if
all incident edges are positive (or, negative). The negative subgraph of Σ is the
spanning subgraph Σ− whose edges are the negative edges of Σ.

The line graph of a signed graph Σ, written Lσ(Σ), is defined as the vertex-
signed graph (L(Γ), σ) whose underlying graph is L(Γ), the line graph of Γ, and
whose vertices are marked by the sign function σ of Σ. (Other notions of line
graph of a signed graph exist, in which edges are signed instead of vertices, but
they are not related to this work.)

Definition. A signed graph Σ is called line consistent if Lσ(Σ) is consistent.
(This is the same as “S-consistency” in [4], where Σ is called S.)

The main result of [4], Theorem 2.1 (when corrected by revising the first
line of part (2) to read “for every vertex vi . . . in S such that d(vi) ≥ 3,” as the
authors obviously intended), applies to simple graphs with edge signs. It states:

Theorem 1 [4]. A signed simple graph Σ is line consistent if and only if it is
balanced, every vertex of degree d(v) > 3 is totally positive, and each vertex of
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degree d(v) = 3 is either totally positive or has two negative edges which belong
to all circles through the vertex.

We reformulate Theorem 1 in a simpler way that leads to a short proof,
we add a second and third criterion for line consistency, and we generalize by
allowing the underlying graph to have multiple edges. An isthmus (called by some
a “bridge”) is an edge whose deletion raises the number of connected components;
equivalently, it is an edge that does not belong to any circle.

Theorem 2. Each of the following conditions on a signed graph Σ without loops
is necessary and sufficient for it to be line consistent:
(i) Σ is balanced, each vertex of degree d(v) > 3 is totally positive, and each

vertex of degree d(v) = 3 is totally positive or has exactly one positive edge,
which is an isthmus.

(ii) Σ is balanced, its negative subgraph is a vertex-disjoint union of paths and
circles, and each endpoint v of a negative edge is incident with at most one
positive edge, which is an isthmus if dΣ−(v) = 2.

(iii) Each vertex v of degree d(v) > 3 is totally positive, each vertex of degree
d(v) = 3 is totally positive or has exactly one positive edge, and after deleting
all positive isthmi, the signed graph is balanced and the endpoints of every
negative edge have degree at most 2.

Proof. The equivalence of (i) and (ii) is obvious, so we give short proofs of the
necessity and sufficiency of (i) and the equivalence of (ii) and (iii).

To prove necessity of (i), consider the possibilities. If a vertex v has either
three negative edges, or two positive edges and one negative edge, these edges
form a negative triangle in the line graph. This implies most of (i). We have to
prove that, if v is incident with negative edges e and e′ and a positive edge f

(and no other edges), then f is an isthmus.
If not, there is a circle C on f which must contain e or e′; let us say e. In

the line graph C generates a circle L(C), which is positive because its vertex sign
product equals the edge sign product of C. However, in the line graph there is
another circle that interposes e′ between e and f . This circle is negative. Hence,
f must be an isthmus. Thus, (i) is necessary for line consistency.

Now we prove sufficiency. A digon is a circle of length 2. A vertex triangle is
a circle of length 3 in L(Γ) whose vertices are three edges that are incident with
a single vertex in Γ.

A circle C in Lσ(Σ) has the form ele1 · · · el−1el where l ≥ 2. A digon or
vertex triangle in Lσ(Σ) is obviously positive. Any other triangle comes from a
triangle in Σ, so is also positive. Thus, we may assume l ≥ 4 and that any shorter
circle is positive.

Note that an isthmus e = uv of Γ that is not a pendant edge is a cutpoint
of L(Γ), separating the other edges incident with u from those incident with v.
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The only way it can belong to a circle in L(Γ) is for the preceding and following
edges of the circle to be incident with the same endpoint of e.

Suppose consecutive edges ei−1eiei+1 are incident with v. If ei is positive, C
can be shortened by omitting it without changing the sign of the circle. If ei is
negative, since d(v) = 3 one of the edges is a positive isthmus, say ei+1. Because
ei+1 is an isthmus, ei+2 must be incident with v as well, which is impossible
because d(v) = 3 and (since l ≥ 4) ei+2 6= ei−1. Therefore, we may assume no
three consecutive edges in C are incident with the same vertex. That means
C = L(W ) for a closed walk W in Σ. But every closed walk is positive because
of balance. Thus, C is positive.

That (ii) implies (iii) is obvious. Assume (iii); we deduce (ii). Σ is balanced
because isthmi do not affect balance. Also, Σ− has maximum degree at most 2,
so it is a disjoint union of paths and circles. Let Σ′ be Σ without its positive
isthmi. If dΣ(v) = 3 and v has one positive edge f and two negative edges e1, e2,
then dΣ′(v) ≤ 2 so f must be an isthmus.

It is interesting to see what the theorems say about relatively well connected
graphs.

Corollary 3. Let Σ of order at least 4 be 3-connected, or just edge 2-connected
without divalent vertices. Then Σ is line consistent if and only if it is all positive.

Although (ii) and (iii) in the theorem are simple restatements of (i), their
different points of view are suggestive. Parts (ii) and (iii) suggest constructions
for line-consistent signed graphs, for which see [14].

Part (ii) can be interpreted as a structural description of a line-consistent
signed graph Σ. (Recall that we forbid loops.) A block is a graph that is connected
and has no cutpoint. A block is nontrivial if it contains a circle; thus, the trivial
blocks are the isthmi and isolated vertices. A block of Γ is a maximal block
subgraph of Γ; equivalently, it is a maximal connected subgraph that is not
separated by any cutpoint of Γ. We apply the same terminology to Σ as to its
underlying graph.

Theorem 4. A signed graph Σ is line consistent if and only if it is balanced and
has the following form:

(1) Each component of Σ− is a circle, a nontrivial path, or a single vertex.

(2) A circle component of Σ− is a block of Σ and each of its vertices is incident
with at most one other edge, which must be a positive isthmus.

(3) A nontrivial path component P of Σ− either is an induced subgraph of Σ, or
is all but one edge of a circle that is a block of Σ whose remaining edge is
positive. The endpoints of P are at most divalent. Each internal vertex of
P is incident with at most one other edge, which must be a positive isthmus.
Furthermore, P either
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(a) is part of a nontrivial block of Σ (then its endpoints are necessarily
divalent), or

(b) is composed entirely of isthmi and its endpoints are not incident with
any nontrivial block of Σ (then the second edge, if any, incident with an
endpoint is necessarily a positive isthmus).

Proof. The form is stronger than the characterization in (ii), so it implies line
consistency. We verify the converse in stages.

The characterization of an all-negative circle follows directly from (ii).

Consider a nontrivial path component P of the negative subgraph.

If P is contained in a nontrivial block B, each endpoint must be incident with
a second edge, which is positive. Suppose the second edge at both endpoints is
the same edge e; then P ∪ {e} is a circle. No other edge can be incident with the
endpoints of P , but an internal vertex can be incident with one more edge, which
can only be an isthmus. If the positive edges at the endpoints are distinct, then
P is induced because, again, any third edge at an internal vertex is an isthmus,
therefore has its other endpoint off P .

If P is not contained in a nontrivial block, it is composed entirely of isthmi.
Suppose it were not; then it would have a vertex v that is in a nontrivial block B

and is incident with an edge of P that is not inB. The degree of v inB is at least 2;
therefore, d(v) = 3 and by (ii) the third edge at v is a positive isthmus. However,
that leaves only one edge at v that can be in B, an impossibility. Therefore, if P
is not entirely within a nontrivial block, its every edge is an isthmus. By similar
reasoning a second edge at an endpoint of P must be an isthmus.

Acharya, Acharya, and Sinha [3] examined a similar problem, where the line
graph has edge as well as vertex signs derived from Σ. The question is whether the
product of edge signs and vertex signs on each circle is the same—this property
is called harmony. In [3] the edge signs are those of the Behzad–Chartrand line
graph [6]. Other definitions of a signed line graph (such as that in [13, Sect.
5.2]) could be considered, though if the edge signature is balanced (as in the
×-line signed graph of Acharya [5]) the answer is the same as in Theorem 1 since
switching (defined in, e.g., [13]) the line graph’s edge signature does not alter the
characterization of harmony.
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