ON THE SIGNED (TOTAL) k-INDEPENDENCE NUMBER IN GRAPHS

Abdollah Khodkar
Department of Mathematics University of West Georgia Carrollton, GA 30118, USA
e-mail: akhodkar@westga.edu
Babak Samadi
Department of Mathematics
Arak University
Arak, Iran
e-mail: b-samadi@araku.ac.ir
AND
Lutz Volkmann
Lehrstuhl II für Mathematik
RWTH Aachen University
52056 Aachen, Germany
e-mail: volkm@math2.rwth-aachen.de

Abstract

Let G be a graph. A function $f: V(G) \rightarrow\{-1,1\}$ is a signed k independence function if the sum of its function values over any closed neighborhood is at most $k-1$, where $k \geq 2$. The signed k-independence number of G is the maximum weight of a signed k-independence function of G. Similarly, the signed total k-independence number of G is the maximum weight of a signed total k-independence function of G. In this paper, we present new bounds on these two parameters which improve some existing bounds. Keywords: domination in graphs, signed k-independence, limited packing, tuple domination.

2010 Mathematics Subject Classification: 05C69.

1. Introduction

Throughout this paper, let G be a finite connected graph with vertex set $V=$ $V(G)$, edge set $E=E(G)$, minimum degree $\delta=\delta(G)$ and maximum degree $\Delta=\Delta(G)$. We use [12] for terminology and notation which are not defined here. For any vertex $v \in V, N(v)=\{u \in G \mid u v \in E(G)\}$ denotes the open neighborhood of v in G, and $N[v]=N(v) \cup\{v\}$ denotes its closed neighborhood. A set $S \subseteq V$ is a dominating set (total dominating set) in G if each vertex in $V \backslash S$ (in V) is adjacent to at least one vertex in S. The domination number $\gamma(G)$ (total domination number $\gamma_{t}(G)$) is the minimum cardinality of a dominating set (total dominating set) in G. A subset $B \subseteq V(G)$ is a packing set (an open packing set) in G if for every distinct vertices $u, v \in B, N[u] \cap N[v]=\emptyset(N(u) \cap N(v)=\emptyset)$. The packing number (open packing number) $\rho(G)\left(\rho_{o}(G)\right)$ is the maximum cardinality of a packing set (an open packing set) in G.

Harary and Haynes [4] introduced the concept of tuple domination as a generalization of domination in graphs. Let $1 \leq k \leq \delta(G)+1$. A set $D \subseteq V$ is a k-tuple dominating set in G if $|N[v] \cap D| \geq k$, for all $v \in V(G)$. The k-tuple domination number, denoted by $\gamma_{\times k}(G)$, is the minimum cardinality of a k-tuple dominating set. In fact, the authors of [4] showed that every graph G with $\delta \geq k-1$ has a k-tuple dominating set and hence a k-tuple domination number. It is easy to see that $\gamma_{\times 1}(G)=\gamma(G)$. This concept has been studied by several authors including $[1,2,6]$. A generalization of total domination titled k-tuple total domination (or k-total domination) was introduced by Kulli [5] as a subset $S \subseteq V(G)$ such that $|N(v) \cap S| \geq k$, for all $v \in V(G)$, where $1 \leq k \leq \delta(G)$. The k-tuple total domination number, denoted by $\gamma_{\times k, t}(G)$, is the minimum cardinality of a k-tuple total dominating set. We note that $\gamma_{\times 1, t}(G)=\gamma_{t}(G)$. For more information on various dominations the reader can consult [1].

Gallant et al. [2] introduced the concept of limited packing in graphs and exhibited some real-world applications in network security, market saturation and codes. A set of vertices $B \subseteq V$ is called a k-limited packing set in G if $|N[v] \cap B| \leq k$ for all $v \in V$, where $k \geq 1$. The k-limited packing number, $L_{k}(G)$, is the maximum number of vertices in a k-limited packing set. Replacing $N[v]$ by $N(v)$ in the definition of k-limited packing, one can define the k-total limited packing set. The k-total limited packing number, $L_{k, t}(G)$, is the maximum number of vertices in a k-total limited packing in G (see [7]). When $k=1$ we have $L_{1}(G)=\rho(G)$ and $L_{1, t}(G)=\rho_{o}(G)$.

Volkmann [8] introduced the concept of signed k-independence number in graphs. Let $k \geq 2$ be an integer. A function $f: V(G) \rightarrow\{-1,1\}$ is a signed k-independence function (SkIF) if the sum of its function values over any closed neighborhood is at most $k-1$. That is, $f(N[v]) \leq k-1$ for all $v \in V(G)$. The weight of a SkIF f is $w(f)=f(V(G))=\sum_{v \in V(G)} f(v)$. The signed k -
independence number (SkIN) of G, denoted $\alpha_{s}^{k}(G)$, is the maximum weight of a SkIF of G. If we replace $N[v]$ with $N(v)$ in the definition of SkIF, we will have a signed total k-independence function (STkIF). The signed total k-independence number (STkIN) of G, denoted $\alpha_{s t}^{k}(G)$, is the maximum weight of a STkIF of G. This concept was introduced and studied in [9].

Throughout this paper, for a graph G of order n we assume that $n \geq k$ $(n \geq k+1)$, otherwise $\alpha_{s}^{k}(G)=n\left(\alpha_{s t}^{k}(G)=n\right)$. Volkmann [8] showed that for every graph G of order $n, \alpha_{s}^{k}(G)=n$ if and only if $\Delta(G) \leq k-2$. It is easy to see that $\alpha_{s t}^{k}(G)=n$ if and only if $\Delta(G) \leq k-1$ (see [9]). Hence, throughout this paper, we also assume that $\Delta \geq k-1(\Delta \geq k)$ when we deal with the $\mathrm{S} k \mathrm{DN}$ (STkDN) of a graph G.

In this paper, we present some sharp upper and lower bounds for the parameters $\alpha_{s}^{k}(G)$ and $\alpha_{s t}^{k}(G)$, which improve and generalize some well-known bounds presented in $[3,8,9,10,11]$.

2. Upper Bounds

In this section, we present some sharp upper bounds on $\alpha_{s}^{k}(G)$ and $\alpha_{s t}^{k}(G)$. First, we introduce some notation. Let G be a graph and $f: V(G) \longrightarrow\{-1,1\}$ be a SkIF (STkIF) of G. We define

$$
\begin{aligned}
& V^{+}=\{v \in V \mid f(v)=1\}, n_{+}=\left|V^{+}\right|, \\
& V^{-}=\{v \in V \mid f(v)=-1\}, n_{-}=\left|V^{-}\right|, \\
& V^{o}=\{v \in V \mid \operatorname{deg}(v)-k \equiv 1(\bmod 2)\}, \\
& V^{e}=\{v \in V \mid \operatorname{deg}(v)-k \equiv 0(\bmod 2)\}, \\
& G^{+}=G\left[V^{+}\right] \text {and } G^{-}=G\left[V^{-}\right] .
\end{aligned}
$$

Note that $G[A]$ is the subgraph of G induced by A, for every $A \subseteq V(G)$. For convenience, let $\left[V^{+}, V^{-}\right.$] be the set of edges having one end point in V^{+}and the other in V^{-}. Finally, $\operatorname{deg}_{G^{+}}(v)=\left|N(v) \cap V^{+}\right|$and $\operatorname{deg}_{G^{-}}(v)=\left|N(v) \cap V^{-}\right|$. We make use of the following observation to show that our bounds are sharp.

Observation 1. Let $k \geq 2$ be an integer. Then
(i) $\alpha_{s}^{k}\left(K_{n}\right)=\left\{\begin{array}{ll}k-2 & n \equiv k(\bmod 2), \\ k-1 & \text { otherwise },\end{array} \quad\right.$ (see $\left.[8]\right)$.
(ii) $\alpha_{s t}^{k}\left(K_{n}\right)= \begin{cases}k-2 & n \equiv k(\bmod 2), \\ k-3 & \text { otherwise. }\end{cases}$
(iii) $\alpha_{s t}^{k}\left(K_{p, p}\right)=\left\{\begin{array}{ll}2 k-4 & p \equiv k(\bmod 2), \\ 2 k-2 & \text { otherwise, }\end{array} \quad\right.$ (see [9]).

Our next aim is to obtain upper bounds on $\alpha_{s}^{k}(G)$ and $\alpha_{s t}^{k}(G)$ in terms of the order, k, minimum and maximum degrees of the graph.

Theorem 2. Let $k \geq 2$ be an integer and let G be a graph of order n.
(i) If $\delta \geq k-1$, then $\alpha_{s}^{k}(G) \leq \frac{\left(\left\lfloor\frac{\Delta+k}{2}\right\rfloor-\left\lceil\frac{\delta-k}{2}\right\rceil-1\right) n}{\left\lfloor\frac{\Delta+k}{2}\right\rfloor+\left\lceil\frac{\delta-k}{2}\right\rceil+1}$.
(ii) If $\delta \geq k$, then $\alpha_{s t}^{k}(G) \leq \frac{\left(\left\lfloor\frac{\Delta+k-1}{2}\right\rfloor-\left\lceil\frac{\delta-k+1}{2}\right\rceil\right) n}{\left\lfloor\frac{\Delta+k-1}{2}\right\rfloor+\left\lceil\frac{\delta-k+1}{2}\right\rceil}$.

In addition, these bounds are sharp.
Proof. We only prove (i), as (ii) can be proved similarly. Let f be a SkIF of G and $v \in V^{+}$. Since $f(N[v]) \leq k-1$, the vertex v has at least $\left\lceil\frac{\delta-k}{2}\right\rceil+1$ neighbours in V^{-}. Therefore $\left|\left[V^{+}, V^{-}\right]\right| \geq\left(\left\lceil\frac{\delta-k}{2}\right\rceil+1\right)\left|V^{+}\right|$. Now let $v \in V^{-}$. Since f is a SkIF, it follows that the vertex v has at most $\left\lfloor\frac{\Delta+k}{2}\right\rfloor$ neighbours in V^{+}. This implies that $\left|\left[V^{+}, V^{-}\right]\right| \leq\left\lfloor\frac{\Delta+k}{2}\right\rfloor\left|V^{-}\right|$. Hence,

$$
\left(\left\lceil\frac{\delta-k}{2}\right\rceil+1\right)\left|V^{+}\right| \leq\left\lfloor\frac{\Delta+k}{2}\right\rfloor\left|V^{-}\right|
$$

Using $\left|V^{+}\right|=\frac{n+w(f)}{2}$ and $\left|V^{-}\right|=\frac{n-w(f)}{2}$, we obtain the desired bound. The equality in part (i) holds for K_{n} and the equality in part (ii) holds for $K_{n, n}$ by Observation 1.

Wang et al. [11] proved that if G is a graph of order n with no isolated vertices, then $\alpha_{s t}^{2}(G) \leq\left(\frac{\Delta-2\left\lfloor\frac{\delta}{2}\right\rfloor}{\Delta}\right) n$. Moreover, Volkmann in [9] generalized this result to $\alpha_{s t}^{k}(G) \leq \frac{n}{\Delta}\left(\Delta-2\left\lceil\frac{\delta+1-k}{2}\right\rceil\right)$, when $\delta \geq k-1$.

Since

$$
\left\lfloor\frac{\Delta+k-1}{2}\right\rfloor+\left\lceil\frac{\delta-k+1}{2}\right\rceil \leq \Delta
$$

we deduce from Theorem 2 part (ii) that

$$
\alpha_{s t}^{k}(G) \leq \frac{\left(\left\lfloor\frac{\Delta+k-1}{2}\right\rfloor-\left\lceil\frac{\delta-k+1}{2}\right\rceil\right) n}{\left\lfloor\frac{\Delta+k-1}{2}\right\rfloor+\left\lceil\frac{\delta-k+1}{2}\right\rceil} \leq \frac{n}{\Delta}\left(\Delta-2\left\lceil\frac{\delta+1-k}{2}\right\rceil\right)
$$

Therefore the upper bound in Theorem 2 part (ii) is an improvement of its corresponding result in [9] (in [11] when $k=2$).

Corollary 3. Let $k \geq 2$ be an integer and let G be an r-regular graph of order n. Then
(i) $\alpha_{s}^{k}(G) \leq \begin{cases}(k-1) n /(r+1) & k \equiv r(\bmod 2), \\ (k-2) n /(r+1) & \text { otherwise. }\end{cases}$
(ii) $\alpha_{s t}^{k}(G) \leq \begin{cases}(k-2) n / r & k \equiv r(\bmod 2), \\ (k-1) n / r & \text { otherwise. }\end{cases}$

Note that the upper bound given in part (i) of Corollary 3 can also be found in [8].

A relationship between the signed k-independence number and the domination number of a graph G was also established in [8] as follows.

Theorem 4. If $k \geq 2$ is an integer and G is a graph of order n with minimum degree $\delta \geq k-1$, then $\alpha_{s}^{k}(G)+2 \gamma(G) \leq n$.

This result can be improved by considering the concept of tuple domination. Moreover, in a similar fashion, we establish a relationship between the signed total k-independence number and the total domination number of a graph as follows.

Theorem 5. If $k \geq 2$ is an integer and G is a graph of order n with minimum degree δ, then
(i) if $\delta \geq k-1$, then $\alpha_{s}^{k}(G)+2 \gamma(G) \leq n-2\left\lceil\frac{\delta-k}{2}\right\rceil$,
(ii) if $\delta \geq k$, then $\alpha_{s t}^{k}(G)+2 \gamma_{t}(G) \leq n-2\left\lceil\frac{\delta-k-1}{2}\right\rceil$,
and these bounds are sharp.
Proof. We only prove (i), as (ii) can be proved similarly. Let f be a SkIF of G and $v \in V^{+}$. Since $f(N[v]) \leq k-1$, the vertex v has at least $\left\lceil\frac{\delta-k}{2}\right\rceil+1$ neighbours in V^{-}. Hence, $\left|N[v] \cap V^{-}\right|=\operatorname{deg}_{G^{-}}(v) \geq\left\lceil\frac{\delta-k}{2}\right\rceil+1$. Now let $v \in V^{-}$. Since $f(N[v]) \leq k-1$, we deduce that $\operatorname{deg}_{G^{-}}(v) \geq\left\lceil\frac{\delta-k}{2}\right\rceil$. Thus $\left|N[v] \cap V^{-}\right| \geq\left\lceil\frac{\delta-k}{2}\right\rceil+1$. This shows that V^{-}is a $\left(\left\lceil\frac{\delta-k}{2}\right\rceil+1\right)$-tuple dominating set in G and hence $\gamma_{\times\left(\left\lceil\frac{\delta-k}{2}\right\rceil+1\right)}(G) \leq\left|V^{-}\right|$. Since $\left|V^{-}\right|=\frac{n-w(f)}{2}$, it follows that

$$
\begin{equation*}
w(f)+2 \gamma_{\times\left(\left\lceil\frac{\delta-k}{2}\right\rceil+1\right)}(G) \leq n \tag{1}
\end{equation*}
$$

Now let D be a minimum $\left(\left\lceil\frac{\delta-k}{2}\right\rceil+1\right)$-tuple dominating set in G and let $u \in D$. It is easy to see that $|N[v] \cap D \backslash\{u\}| \geq\left\lceil\frac{\delta-k}{2}\right\rceil$, for all $v \in V(G)$. Therefore $D \backslash\{u\}$ is a $\left\lceil\frac{\delta-k}{2}\right\rceil$-tuple dominating set. Hence, $\gamma_{\times\left(\left\lceil\frac{\delta-k}{2}\right\rceil+1\right)}(G)-1=$ $|D \backslash\{u\}| \geq \gamma_{\times\left\lceil\frac{\delta-k}{2}\right\rceil}(G)$. Repeating these inequalities, we obtain

$$
\begin{align*}
\gamma_{\times\left(\left\lceil\frac{\delta-k}{2}\right\rceil+1\right)}(G) & \geq \gamma_{\times\left\lceil\frac{\delta-k}{2}\right\rceil}(G)+1 \geq \cdots \\
& \geq \gamma_{\times 1}(G)+\left\lceil\frac{\delta-k}{2}\right\rceil=\gamma(G)+\left\lceil\frac{\delta-k}{2}\right\rceil \tag{2}
\end{align*}
$$

The result now follows by (1) and (2). The upper bounds are both sharp for the complete graph K_{n}.

Lemma 6. The following statements hold.
(i) If f is a SkIF of G, then $2\left|E\left(G\left[V^{-}\right]\right)\right| \geq 2\left|E\left(G\left[V^{+}\right]\right)\right|+2\left|V^{+}\right|-k n+n_{o}$,
(ii) If f is a STkIF of G, then $2\left|E\left(G\left[V^{-}\right]\right)\right| \geq 2\left|E\left(G\left[V^{+}\right]\right)\right|-(k-1) n+n_{e}$, where $n_{o}=\left|V^{o}\right|$ and $n_{e}=\left|V^{e}\right|$.

Proof. We only prove (ii). Let $v \in V^{-}$. Since $f(N(v)) \leq k-1$, we observe that $\operatorname{deg}_{G^{-}}(v) \geq \operatorname{deg}_{G^{+}}(v)-k+1$ and $\operatorname{deg}_{G^{-}}(v) \geq \operatorname{deg}_{G^{+}}(v)-k+2$ when $v \in V^{-} \cap V^{e}$. We infer that

$$
\begin{aligned}
2\left|E\left(G\left[V^{-}\right]\right)\right| & =\sum_{v \in V^{-}} \operatorname{deg}_{G^{-}}(v) \\
& =\sum_{v \in V^{-} \cap V^{o}} \operatorname{deg}_{G^{-}}(v)+\sum_{v \in V^{-} \cap V^{e}} \operatorname{deg}_{G^{-}}(v) \\
& \geq \sum_{v \in V^{-} \cap V^{o}}\left(\operatorname{deg}_{G^{+}}(v)-k+1\right) \\
& +\sum_{v \in V^{-} \cap V^{e}}\left(\operatorname{deg}_{G^{+}}(v)-k+2\right) \\
& =\left|\left[V^{+}, V^{-}\right]\right|-(k-1)\left|V^{-}\right|+\left|V^{-} \cap V^{e}\right| .
\end{aligned}
$$

This implies

$$
\begin{equation*}
\left|\left[V^{+}, V^{-}\right]\right| \leq 2\left|E\left(G\left[V^{-}\right]\right)\right|+(k-1)\left|V^{-}\right|-\left|V^{-} \cap V^{e}\right| . \tag{3}
\end{equation*}
$$

Now let $v \in V^{+}$. Since $f(N(v)) \leq k-1$, we have $\operatorname{deg}_{G^{+}}(v) \leq \operatorname{deg}_{G^{-}}(v)+k-1$
and $\operatorname{deg}_{G^{+}}(v) \leq \operatorname{deg}_{G^{-}}(v)+k-2$ when $v \in V^{+} \cap V^{e}$. It follows that

$$
\begin{aligned}
2\left|E\left(G\left[V^{+}\right]\right)\right| & =\sum_{v \in V^{+}} \operatorname{deg}_{G^{+}}(v) \\
& =\sum_{v \in V^{+} \cap V^{o}} \operatorname{deg}_{G^{+}}(v)+\sum_{v \in V^{+} \cap V^{e}} \operatorname{deg}_{G^{+}}(v) \\
& \leq \sum_{v \in V^{+} \cap V^{o}}\left(\operatorname{deg}_{G^{-}}(v)+k-1\right) \\
& +\sum_{v \in V^{+} \cap V^{e}}\left(\operatorname{deg}_{G^{-}}(v)+k-2\right) \\
& =\left|\left[V^{+}, V^{-}\right]\right|+(k-1)\left|V^{+}\right|-\left|V^{+} \cap V^{e}\right|
\end{aligned}
$$

The implies

$$
\begin{equation*}
\left|\left[V^{+}, V^{-}\right]\right| \geq 2\left|E\left(G\left[V^{+}\right]\right)\right|-(k-1)\left|V^{+}\right|+\left|V^{+} \cap V^{e}\right| \tag{4}
\end{equation*}
$$

Combining (3) and (4), we obtain (ii).
Theorem 7. Let $k \geq 2$ be an integer, and let G be a graph of order n and minimum degree δ. Then
(i) $\alpha_{s}^{k}(G) \leq n-\left\lceil\frac{1}{2}\left(-\delta-k+\sqrt{(\delta+k)^{2}+8 n(\delta-k+2)}+8 n_{o}\right)\right\rceil$,
(ii) $\alpha_{s t}^{k}(G) \leq n-\left\lceil\frac{1}{2}\left(3-\delta-k+\sqrt{(\delta+k-3)^{2}+8 n(\delta-k+1)+8 n_{e}}\right)\right\rceil$.

Proof. We only proof (ii). Let $v \in V^{-}$. Then $2 \operatorname{deg}_{G^{-}}(v) \geq \operatorname{deg}(v)-k+1$. Since $\operatorname{deg}_{G^{-}}(v) \leq\left|V^{-}\right|-1$, it follows that

$$
\begin{equation*}
\sum_{v \in V^{-}}(\operatorname{deg}(v)-k+1) \leq 2 \sum_{v \in V^{-}} \operatorname{deg}_{G^{-}}(v) \leq 2\left|V^{-}\right|\left(\left|V^{-}\right|-1\right) \tag{5}
\end{equation*}
$$

Furthermore, we have

$$
\begin{aligned}
2\left|E\left(G\left[V^{+}\right]\right)\right|-2\left|E\left(G\left[V^{-}\right]\right)\right| & =\sum_{v \in V^{+}} \operatorname{deg}_{G^{+}}(v)-\sum_{v \in V^{-}} \operatorname{deg}_{G^{-}}(v) \\
& =\sum_{v \in V^{+}}\left(\operatorname{deg}(v)-\operatorname{deg}_{G^{-}}(v)\right) \\
& -\sum_{v \in V^{-}}\left(\operatorname{deg}(v)-\operatorname{deg}_{G^{+}}(v)\right) \\
& =\sum_{v \in V^{+}} \operatorname{deg}(v)-\left|\left[V^{+}, V^{-}\right]\right|
\end{aligned}
$$

$$
\begin{aligned}
& -\sum_{v \in V^{-}} \operatorname{deg}(v)+\left|\left[V^{+}, V^{-}\right]\right| \\
& =\sum_{v \in V^{+}} \operatorname{deg}(v)-\sum_{v \in V^{-}} \operatorname{deg}(v) .
\end{aligned}
$$

Applying part (ii) of Lemma 6, we deduce that

$$
\begin{equation*}
\sum_{v \in V^{+}} \operatorname{deg}(v)-(k-1) n+n_{e} \leq \sum_{v \in V^{-}} \operatorname{deg}(v) . \tag{6}
\end{equation*}
$$

Combining (5) and (6), we obtain

$$
\begin{aligned}
2\left|V^{-}\right|^{2}-2\left|V^{-}\right| & \geq \sum_{v \in V^{+}} \operatorname{deg}(v)+(1-k) n+n_{e}+(1-k)\left|V^{-}\right| \\
& \geq \delta\left|V^{+}\right|+(1-k) n+n_{e}+(1-k)\left|V^{-}\right| .
\end{aligned}
$$

Using $\left|V^{+}\right|=n-\left|V^{-}\right|$, we infer that

$$
2\left|V^{-}\right|^{2}+(\delta+k-3)\left|V^{-}\right|-(\delta-k+1) n-n_{e} \geq 0
$$

Solving the above inequality for $\left|V^{-}\right|$we obtain

$$
\left|V^{-}\right| \geq \frac{-(\delta+k-3)+\sqrt{(\delta+k-3)^{2}+8 n(\delta-k+1)+8 n_{e}}}{4}
$$

Using $\left|V^{-}\right|=\left(n-\alpha_{s t}^{k}(G)\right) / 2$, we arrive at the desired bound.
The special case $k=2$ of parts (i) and (ii) of Theorem 7 can be found in [3] and [10], respectively.
Theorem 8. Let $k \geq 2$ be an integer, and let G be a graph of order n, size m, maximum degree Δ and minimum degree δ. Then

$$
\begin{align*}
& \alpha_{s t}^{k}(G) \leq\left\lfloor\frac{\left(3 \Delta+2\left\lfloor\frac{\Delta+k-1}{2}\right\rfloor+3 k-3\right) n-8 m-2 n_{e}}{3 \Delta+2\left\lfloor\frac{\Delta+k-1}{2}\right\rfloor-k+1}\right\rfloor, \tag{7}\\
& \alpha_{s t}^{k}(G) \leq\left\lfloor\frac{\left(2\left\lfloor\frac{\Delta+k-1}{2}\right\rfloor-3 \delta+3 k-3\right) n+4 m-2 n_{e}}{3 \delta+2\left\lfloor\frac{\Delta+k-1}{2}\right\rfloor-k+1}\right\rfloor
\end{align*}
$$

Proof. (i) It follows from (4) and Lemma 6 (ii) that

$$
\begin{aligned}
2\left|E\left(G\left[V^{-}\right]\right)\right|+\left|\left[V^{+}, V^{-}\right]\right| & \geq 4\left|E\left(G\left[V^{+}\right]\right)\right|-(k-1) n_{+} \\
& -(k-1) n+n_{e} \\
& =4 m-4\left|E\left(G\left[V^{-}\right]\right)\right|-4\left|\left[V^{+}, V^{-}\right]\right| \\
& -(k-1) n_{+}-(k-1) n+n_{e}
\end{aligned}
$$

and thus

$$
6\left|E\left(G\left[V^{-}\right]\right)\right|+5\left|\left[V^{+}, V^{-}\right]\right| \geq 4 m-(k-1) n_{+}-(k-1) n+n_{e} .
$$

Using this inequality and the bound

$$
2\left|E\left(G\left[V^{-}\right]\right)\right|=\sum_{v \in V^{-}}\left(\operatorname{deg}(v)-\left|N(v) \cap V^{+}\right|\right) \leq \Delta n_{-}-\left|\left[V^{+}, V^{-}\right]\right|,
$$

we arrive at

$$
\begin{equation*}
3 \Delta n_{-}+2\left|\left[V^{+}, V^{-}\right]\right| \geq 4 m-(k-1) n_{+}-(k-1) n+n_{e} \tag{9}
\end{equation*}
$$

If $v \in V^{-}$, then $f(N(v)) \leq k-1$ implies that $2\left|N(v) \cap V^{+}\right| \leq \operatorname{deg}(v)+k-1 \leq$ $\Delta+k-1$ and therefore $\left|N(v) \cap V^{+}\right| \leq\left\lfloor\frac{\Delta+k-1}{2}\right\rfloor$. This yields

$$
\begin{equation*}
\left|\left[V^{+}, V^{-}\right]\right| \leq\left\lfloor\frac{\Delta+k-1}{2}\right\rfloor n_{-}=\left\lfloor\frac{\Delta+k-1}{2}\right\rfloor\left(n-n_{+}\right) . \tag{10}
\end{equation*}
$$

We deduce from (9) and (10) that

$$
\left(3 \Delta+2\left\lfloor\frac{\Delta+k-1}{2}\right\rfloor\right) n_{-} \geq 4 m-(k-1)\left(n-n_{-}\right)-(k-1) n+n_{e}
$$

and so

$$
n_{-} \geq \frac{4 m-2(k-1) n+n_{e}}{3 \Delta+2\left\lfloor\frac{\Delta+k-1}{2}\right\rfloor-k+1} .
$$

This yields to

$$
\begin{aligned}
\alpha_{s t}^{k}(G) & =n-2 n_{-} \\
& \leq \frac{\left(3 \Delta+2\left\lfloor\frac{\Delta+k-1}{2}\right\rfloor-k+1+4(k-1)\right) n-2 n_{e}-8 m}{3 \Delta+2\left\lfloor\frac{\Delta+k-1}{2}\right\rfloor-k+1} \\
& =\frac{\left(3 \Delta+2\left\lfloor\frac{\Delta+k-1}{2}\right\rfloor+3 k-3\right) n-2 n_{e}-8 m}{3 \Delta+2\left\lfloor\frac{\Delta+k-1}{2}\right\rfloor-k+1},
\end{aligned}
$$

and (7) is proved.
(ii) It follows from (4) and Lemma 6 (ii) that

$$
\begin{aligned}
2 m-2\left|E\left(G\left[V^{+}\right]\right)\right|-\left|\left[V^{+}, V^{-}\right]\right| & =2\left|E\left(G\left[V^{-}\right]\right)\right|+\left|\left[V^{+}, V^{-}\right]\right| \\
& \geq 4\left|E\left(G\left[V^{+}\right]\right)\right|-(k-1) n_{+} \\
& -(k-1) n+n_{e}
\end{aligned}
$$

and thus

$$
2 m \geq 6\left|E\left(G\left[V^{+}\right]\right)\right|+\left|\left[V^{+}, V^{-}\right]\right|-(k-1) n_{+}-(k-1) n+n_{e} .
$$

Using this inequality and the bound

$$
2\left|E\left(G\left[V^{+}\right]\right)\right|=\sum_{v \in V^{+}}\left(\operatorname{deg}(v)-\left|N(v) \cap V^{-}\right|\right) \geq \delta n_{+}-\left|\left[V^{+}, V^{-}\right]\right|,
$$

we arrive at

$$
2 m \geq 3 \delta n_{+}-2\left|\left[V^{+}, V^{-}\right]\right|-(k-1) n_{+}-(k-1) n+n_{e} .
$$

Applying (10), we conclude that

$$
2 m \geq\left(3 \delta+2\left\lfloor\frac{\Delta+k-1}{2}\right\rfloor-k+1\right) n_{+}-2\left\lfloor\frac{\Delta+k-1}{2}\right\rfloor n-(k-1) n+n_{e}
$$

Using this inequality and $n_{+}=\frac{n+\alpha_{s t}^{k}(G)}{2}$, we obtain the bound (8), and the proof is complete.

If $K_{p, p}$ is the complete bipartite graph, then Observation 1 (iii) demonstrates that the inequalities (7) and (8) are sharp, when $k \leq p+1$.

Using Lemma 6 (i) instead of Lemma 6 (ii), we obtain analogously to the proof of Theorem 8 the following two upper bounds on the signed k-independence number.

Theorem 9. Let $k \geq 2$ be an integer, and let G be a graph of order n, size m, maximum degree Δ and minimum degree δ. Then

$$
\begin{align*}
& \alpha_{s}^{k}(G) \leq\left\lfloor\frac{\left(3 \Delta+2\left\lfloor\frac{\Delta+k}{2}\right\rfloor+3 k-4\right) n-8 m-2 n_{o}}{3 \Delta+2\left\lfloor\frac{\Delta+k}{2}\right\rfloor-k+4}\right\rfloor, \tag{11}\\
& \alpha_{s}^{k}(G) \leq\left\lfloor\frac{\left(2\left\lfloor\frac{\Delta+k}{2}\right\rfloor-3 \delta+3 k-4\right) n+4 m-2 n_{o}}{3 \delta+2\left\lfloor\frac{\Delta+k}{2}\right\rfloor-k+4}\right\rfloor . \tag{12}
\end{align*}
$$

The complete graph K_{n}, when $n+1 \geq k$, shows that the inequalities (11) and (12) are sharp.

3. Lower Bounds

As an application of the concepts of (total) limited packing we establish some lower bounds on the parameters $\alpha_{s}^{k}(G)$ and $\alpha_{s t}^{k}(G)$ of a graph G.

Theorem 10. Let G be graph of order n and $2 \leq k \leq \Delta(G)$. Then
(i) $\alpha_{s}^{k}(G) \geq-n+2\left\lfloor\frac{\delta+2 \rho(G)+k-2}{2}\right\rfloor$,
(ii) $\alpha_{s t}^{k}(G) \geq-n+2\left\lfloor\frac{\delta+2 \rho_{0}(G)+k-3}{2}\right\rfloor$,
and these bounds are sharp.
Proof. We only prove part (i), and part (ii) can be proved in a similar fashion. Let B be a $\left\lfloor\frac{\delta+k}{2}\right\rfloor$-limited packing set in G. We define $f: V(G) \rightarrow\{-1,1\}$ by

$$
f(v)= \begin{cases}+1 & v \in B \\ -1 & v \in V \backslash B\end{cases}
$$

For all vertices v in $V(G)$,

$$
\begin{aligned}
f(N[v]) & =2|N[v] \cap B|-|N[v]| \\
& \leq 2\left\lfloor\frac{\delta+k}{2}\right\rfloor-\delta-1 \leq k-1
\end{aligned}
$$

Hence, f is a signed k-independence function of G and therefore

$$
\begin{equation*}
\alpha_{s}^{k}(G) \geq f(V(G))=2|B|-n=2 L_{\left\lfloor\frac{\delta+k}{2}\right\rfloor}(G)-n \tag{13}
\end{equation*}
$$

Assume that B^{\prime} is a maximum $\left\lfloor\frac{\delta+k}{2}\right\rfloor$-limited packing set in G. Suppose to the contrary that $V=B^{\prime}$. If v is a vertex in $V(G)$ with maximum degree, then $\left\lfloor\frac{\delta+k}{2}\right\rfloor>\left|N[v] \cap B^{\prime}\right|=\Delta+1$, a contradiction. Now let $u \in V \backslash B^{\prime}$. It is easy to check that $B^{\prime} \cup\{u\}$ is a $\left(\left\lfloor\frac{\delta+k}{2}\right\rfloor+1\right)$-limited packing in G. Thus

$$
L_{\left\lfloor\frac{\delta+k}{2}\right\rfloor}(G)+1=\left|B^{\prime} \cup\{u\}\right| \leq L_{\left\lfloor\frac{\delta+k}{2}\right\rfloor+1}(G)
$$

Indeed, we have

$$
\begin{aligned}
L_{\left\lfloor\frac{\delta+k}{2}\right\rfloor}(G) & \geq L_{\left\lfloor\frac{\delta+k}{2}\right\rfloor-1}(G)+1 \geq \cdots \\
& \geq L_{1}(G)+\left\lfloor\frac{\delta+k}{2}\right\rfloor-1=\rho(G)+\left\lfloor\frac{\delta+k}{2}\right\rfloor-1
\end{aligned}
$$

By (13), we deduce that $\alpha_{s}^{k}(G) \geq-n+2 \rho(G)+2\left\lfloor\frac{\delta+k-2}{2}\right\rfloor$, as desired. The equalities hold for the graph K_{n}.

References

[1] M. Chellali, O. Favaron, A. Hansberg and L. Volkmann, k-domination and k independence in graphs: A survey, Graphs Combin. 28 (2012) 1-55. doi:10.1007/s00373-011-1040-3
[2] R. Gallant, G. Gunther, B.L. Hartnell and D.F. Rall, Limited packing in graphs, Discrete Appl. Math. 158 (2010) 1357-1364. doi:10.1016/j.dam.2009.04.014
[3] A.N. Ghameshlou, A. Khodkar and S.M. Sheikholeslami, On the signed bad numbers of graphs, Bulletin of the ICA 67 (2013) 81-93.
[4] F. Harary and T.W. Haynes, Double domination in graphs, Ars Combin. 55 (2000) 201-213.
[5] V. Kulli, On n-total domination number in graphs, in: Graph Theory, Combinatorics, Algorithms and Applications, SIAM (Philadelphia, 1991) 319-324.
[6] D.A. Mojdeh, B. Samadi and S.M. Hosseini Moghaddam, Limited packing vs tuple domination in graphs, Ars Combin., to appear.
[7] D.A. Mojdeh, B. Samadi and S.M. Hosseini Moghaddam, Total limited packing in graphs, submitted.
[8] L. Volkmann, Signed k-independence in graphs, Cent. Eur. J. Math. 12 (2014) 517528. doi:10.2478/s11533-013-0357-y
[9] L. Volkmann, Signed total k-independence number in graphs, Util. Math., to appear.
[10] H.C. Wang and E.F. Shan, Signed total 2-independence in graphs, Util. Math. 74 (2007) 199-206.
[11] H.C. Wang, J. Tong and L. Volkmann, A note on signed total 2-independence in graphs, Util. Math. 85 (2011) 213-223.
[12] D.B. West, Introduction to Graph Theory (Second Edition) (Prentice Hall, USA, 2001).

