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Abstract

Let G be a graph with vertex set V (G), and let f : V (G) −→ {−1, 1} be
a two-valued function. If k ≥ 1 is an integer and

∑

x∈N(v) f(x) ≥ k for each

v ∈ V (G), where N(v) is the neighborhood of v, then f is a signed total
k-dominating function on G. A set {f1, f2, . . . , fd} of distinct signed total

k-dominating functions on G with the property that
∑

d

i=1 fi(x) ≤ k for each
x ∈ V (G), is called a signed total (k, k)-dominating family (of functions) on
G. The maximum number of functions in a signed total (k, k)-dominating
family on G is the signed total (k, k)-domatic number of G.

In this article we mainly present upper bounds on the signed total (k, k)-
domatic number, in particular for regular graphs.
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1. Terminology and Introduction

Various numerical invariants of graphs concerning domination were introduced
by means of dominating functions and their variants (see, for example the mono-
graphs by Haynes, Hedetniemi and Slater [1, 2]). In this paper we continue the
investigations of the signed total (k, k)-domatic number, introduced by Sheik-
holeslami and Volkmann [5] in 2010.

We consider finite, undirected and simple graphs G with vertex set V (G).
The order n = n(G) of a graph G is the number of its vertices. If v is a vertex
of the graph G, then N(v) = NG(v) is the open neighborhood of v, i.e., the set
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of all vertices adjacent to v. The number dG(v) = d(v) = |N(v)| is the degree of
the vertex v ∈ V (G), and δ(G) and ∆(G) are the minimum degree and maximum

degree of G, respectively. A graph G is regular of degree r if δ(G) = ∆(G) = r.
Such graphs are called r-regular. The complete graph of order n is denoted by
Kn. If A ⊆ V (G) and f is a mapping from V (G) into some set of numbers, then
f(A) =

∑

x∈A f(x).
If k ≥ 1 is an integer, then the signed total k-dominating function was de-

fined by Wang [6] as a two-valued function f : V (G) −→ {−1, 1} such that
∑

x∈N(v) f(x) ≥ k for each v ∈ V (G). The sum f(V (G)) is called the weight w(f)
of f . The minimum of weights w(f), taken over all signed total k-dominating
functions f on G, is called the signed total k-domination number of G, denoted
by γkst(G). The special case k = 1 was defined and investigated by Zelinka [7] in
2001. Further information on this parameter can be found in the article [3] by
Henning.

A set {f1, f2, . . . , fd} of distinct signed total k-dominating functions on G
with the property that

∑d
i=1 fi(x) ≤ k for each vertex x ∈ V (G), is called in [5]

a signed total (k, k)-dominating family on G. The maximum number of functions
in a signed total (k, k)-dominating family on G is the signed total (k, k)-domatic

number of G, denoted by dkst(G). As the assumption δ(G) ≥ k is necessary, we
always assume that when we discuss γkst(G) or dkst(G), all graphs involved satisfy
δ(G) ≥ k. The special case k = 1 of the signed total (k, k)-domatic number was
defined and investigated by Henning [4] in 2006.

In this paper we continue the studies of the signed total (k, k)-domatic num-
ber, which is an extension of the classical signed total domatic number. First
we present upper bounds on dkst(G) for regular graphs in terms of order. As an
application of some of these upper bounds and some known results, we prove that
dkst(G) ≤ n− 3 for each graph G of order n ≥ 4. For the complete graph Kn we
show that dn−3

st (Kn) = n− 3, and therefore this bound is sharp.

2. Regular Graphs

Throughout this section, if f is a signed total k-dominating function on a graph
G, then we let P and M denote the sets of those vertices in G which are assigned
under f the values 1 and −1, respectively. Thus |P |+ |M | = n(G).

Theorem 2.1. If k ≥ 2 is an even integer, and G is a 2r-regular graph of odd

order n = 2q + 1 ≥ 3, then

dkst(G) ≤
⌊

kn
k+1

⌋

.

In addition, if 2r < (nk)/(k + 1), then

dkst(G) ≤
⌊

kn
k+3

⌋

.
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Proof. If f is an arbitrary signed total k-dominating function on G, then we
show that

|P | ≥ q +
k + 2

2
(1)

and

|P | ≥ q +
k + 4

2
(2)

when 2r < (nk)/(k + 1). The condition
∑

x∈N(y) f(x) ≥ k for each vertex y ∈
V (G) implies that each vertex u ∈ P is adjacent to at most (2r − k)/2 vertices
in M and each vertex v ∈ M is adjacent to at least (2r + k)/2 vertices in P .
Therefore we obtain

|P | ·
2r − k

2
≥ (2q + 1− |P |)

2r + k

2

and thus

|P | ≥
(2r + k)(2q + 1)

4r
.(3)

If we suppose that |P | ≤ q + k
2 , then the last inequality leads to

q +
k

2
≥ |P | ≥

(2r + k)(2q + 1)

4r
.

It follows that r > q. This is a contradiction to the hypothesis r ≤ q, and thus
(1) is proved. If we suppose in the case 2r < (nk)/(k + 1) that |P | ≤ q + k+2

2 ,
then (3) leads to the contradiction 2r(k + 1) ≥ k(2q + 1) = kn. Hence (2) is
proved too.

Now let {f1, f2, . . . , fd} be a signed total (k, k)-dominating family on G such
that d = dkst(G). Since

∑d
i=1 fi(u) ≤ k for every u ∈ V (G), each of these sums

contains at least ⌈(d−k)/2⌉ summands of value −1. Applying this and inequality
(1), we see that the sum

∑

x∈V (G)

∑d

i=1
fi(x) =

∑d

i=1

∑

x∈V (G)
fi(x)(4)

contains at least (2q + 1)⌈(d − k)/2⌉ summands of value −1 and at least d(q +
(k + 2)/2) summands of value 1. As the sum (4) consists of exactly d(2q + 1)
summands, it follows that

(2q+1)
d− k

2
+ d

(

q +
k + 2

2

)

≤ (2q+1)

⌈

d− k

2

⌉

+ d

(

q +
k + 2

2

)

≤ d(2q+1).

We deduce that

(2q + 1)(d− k) + d(2q + k + 2) ≤ 2d(2q + 1)

and thus d(k+1) ≤ k(2q+1). This yields to the first bound immediately. Using
(2) and (4) instead of (1) and (4), we obtain the second bound analogously.
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Example 3.10 will demonstrate that the first bound in Theorem 2.1 is sharp.
If k is odd in Theorem 2.1, then we can improve the upper bound on the signed
total (k, k)-domatic number.

Theorem 2.2. If k ≥ 1 is an odd integer, and G is a 2r-regular graph of odd

order n = 2q + 1 ≥ 3, then

dkst(G) ≤
⌊

kn
k+2

⌋

.

In addition, if 2r < (n(k + 1))/(k + 2), then

dkst(G) ≤
⌊

kn
k+4

⌋

.

Proof. If f is an arbitrary signed total k-dominating function on G, then we
show that

|P | ≥ q +
k + 3

2
(5)

and

|P | ≥ q +
k + 5

2
(6)

when 2r < (n(k + 1))/(k + 2). As G is 2r-regular and k is odd, the condition
∑

x∈N(y) f(x) ≥ k leads to
∑

x∈N(y) f(x) ≥ k+ 1 for each vertex y ∈ V (G). This
implies that each vertex u ∈ P is adjacent to at most (2r − 1 − k)/2 vertices in
M and each vertex v ∈ M is adjacent to at least (2r + k + 1)/2 vertices in P .
Therefore we obtain

|P | ·
2r − 1− k

2
≥ (2q + 1− |P |)

2r + 1 + k

2

and thus

|P | ≥
(2r + k + 1)(2q + 1)

4r
.(7)

If we suppose that |P | ≤ q + k+1
2 , then the last inequality leads to

q +
k + 1

2
≥ |P | ≥

(2r + k + 1)(2q + 1)

4r
.

It follows that r > q. This is a contradiction to the hypothesis r ≤ q, and thus (5)
is proved. If we suppose in the case 2r < (n(k + 1))/(k + 2) that |P | ≤ q + k+3

2 ,
then (7) leads to the contradiction 2r(k+2) ≥ (k+1)(2q+1) = n(k+1). Hence
(6) is proved too.

If {f1, f2, . . . , fd} is a signed total (k, k)-dominating family on G such that
d = dkst(G), then the proof of the desired bounds is similar to that of the proof
of Theorem 2.1.

The proofs of the next upper bounds for regular graphs are analogous to that
of Theorems 2.1 and 2.2.
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Theorem 2.3. If k ≥ 2 is an even integer, and G is a 2r-regular graph of even

order n, then

dkst(G) ≤
⌊

kn
k+2

⌋

.

Theorem 2.4. If k ≥ 1 is an odd integer, and G is a (2r + 1)-regular graph of

even order n, then

dkst(G) ≤
⌊

kn
k+1

⌋

.

Theorem 2.5. If k ≥ 1 is an odd integer, and G is a 2r-regular graph of even

order n, then

dkst(G) ≤
⌊

kn
k+3

⌋

.

Theorem 2.6. If k ≥ 2 is an even integer, and G is a (2r + 1)-regular graph of

even order n, then

dkst(G) ≤
⌊

kn
k+2

⌋

.

3. A General Upper Bound

As an application of the following known results and Theorems 2.1, 2.3 and 2.4,
we derive a sharp upper bound on the signed total (k, k)-domatic number.

Proposition 3.1 [5]. If G is a graph of order n ≥ 3 and k = n− 1 or k = n− 2,
then γkst(G) = n and thus dkst(G) = 1.

Proposition 3.2 [5]. If G is a graph with minimum degree δ(G) ≥ k, then

dkst(G) ≤ δ(G).

Proposition 3.3 [5]. If v is a vertex of a graph G such that d(v) is odd and k
is even or d(v) is even and k is odd, then

dkst(G) ≤ k
k+1 · d(v).

Proposition 3.4 [5]. If G is graph such that such that δ(G) is odd and k is even

or δ(G) is even and k is odd, then

dkst(G) ≤ k
k+1 · δ(G).

Proposition 3.5 [5]. If G is graph such that k is odd and dkst(G) is even or k is

even and dkst(G) is odd, then

dkst(G) ≤ k−1
k

· δ(G).

Proposition 3.6 [5]. If G is graph of minimum degree δ(G) ≥ k + 2, then

dkst(G) ≥ k.

Theorem 3.7. If G is a graph of order n ≥ 4 and minimum degree δ ≥ k, then
dkst(G) ≤ n− 3.
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Proof. If δ ≤ n−3, then Proposition 3.2 implies the desired bound immediately.

Case 1. Assume that δ = n− 2 ≥ k.

Subcase 1.1. Assume that n− 2 = δ < ∆(G) = ∆ = n− 1. If δ is odd and k
is even, then it follows from Proposition 3.4 that dkst(G) ≤ (kδ)/(k + 1) < n − 2
and thus dkst(G) ≤ n− 3. If δ and k are even, then ∆ = δ + 1 = n− 1 is odd. If
d(v) = ∆, then we deduce from Proposition 3.3 that

dkst(G) ≤
k

k + 1
· d(v) =

k

k + 1
(n− 1) < n− 2

when k < n−2 and so dkst(G) ≤ n−3 in that case. If k = n−2, then Proposition
3.1 leads to dkst(G) = 1 ≤ n− 3. If δ is even and k is odd, then again Proposition
3.4 yields to dkst(G) ≤ n − 3. If δ and k are odd, then ∆ is even. The desired
bound follows as in the case that δ and k are even.

Subcase 1.2. Assume that δ = ∆ = n − 2. The handshaking lemma implies
that n is even, and so δ is even too. If k is odd, then Proposition 3.4 shows that
dkst(G) ≤ (kδ)/(k + 1) < n − 2 and thus dkst(G) ≤ n − 3. If k is even, then we
conclude from Theorem 2.3 that

dkst(G) ≤
kn

k + 2
< n− 2

when k < n−2 and so dkst(G) ≤ n−3 in that case. If k = n−2, then Proposition
3.1 leads to dkst(G) = 1 ≤ n− 3.

Case 2. Assume that δ = n− 1 ≥ k.

Subcase 2.1. Assume that n is even. Then δ = n− 1 is odd.

If k is even, then Proposition 3.4 shows that

dkst(G) ≤
k

k + 1
· δ =

k

k + 1
(n− 1) < n− 2

when k < n− 2 and so dkst(G) ≤ n− 3 in that case. If k = n− 2, then dkst(G) =
1 ≤ n− 3 by Proposition 3.1. As k is even, k = n− 1 is not possible.

If k is odd, then it follows from Theorem 2.4 that

dkst(G) ≤
k

k + 1
· n < n− 1

when k < n−1 and so dkst(G) ≤ n−2 when k < n−1. However, if dkst(G) = n−2,
then Proposition 3.5 leads to the contradiction

n− 2 = dkst(G) ≤
k − 1

k
· δ =

k − 1

k
(n− 1) < n− 2
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when k < n − 1. Consequently, dkst(G) ≤ n − 3 when k < n − 1. In the case
k = n− 1, Proposition 3.1 yields to the desired bound.

Subcase 2.2. Assume that n is odd. Then δ = n− 1 is even.

If k is odd, then it follows from Proposition 3.4 that

dkst(G) ≤
k

k + 1
· δ =

k

k + 1
(n− 1) < n− 2

when k < n− 2 and so dkst(G) ≤ n− 3 in that case. If k = n− 2, then dkst(G) =
1 ≤ n− 3, according to Proposition 3.1. As k is odd, k = n− 1 is not possible.

If k is even, then we obtain by Theorem 2.1 that

dkst(G) ≤
k

k + 1
· n < n− 1

when k < n−1 and so dkst(G) ≤ n−2 when k < n−1. However, if dkst(G) = n−2,
then Proposition 3.5 leads to the contradiction

n− 2 = dkst(G) ≤
k − 1

k
· δ =

k − 1

k
(n− 1) < n− 2

when k < n−1. Therefore dkst(G) ≤ n−3 when k < n−1. In the case k = n−1,
again Proposition 3.1 yields to the desired bound.

Example 3.8. Let n ≥ 4 be an integer. On the one hand it follows from Propo-
sition 3.6 that dn−3

st (Kn) ≥ n− 3. On the other hand, Theorem 3.7 implies that
dn−3
st (Kn) ≤ n− 3, and therefore we have dn−3

st (Kn) = n− 3.

This example demonstrates that Theorem 3.7 is sharp. Next we present some
further examples with equality in the bound of Theorem 3.7.

Example 3.9. 1. Let {x1, x2, . . . , x6} be the vertex set of the complete graph
K6, and let fi : V (K6) −→ {−1, 1} such that
f1(x1) = f1(x2) = −1 and f1(x) = 1 otherwise,
f2(x3) = f2(x4) = −1 and f2(x) = 1 otherwise, and
f3(x5) = f3(x6) = −1 and f3(x) = 1 otherwise.

It follows that
∑

x∈N(y) fi(x) ≥ 1 for each vertex y ∈ V (K6) and i = 1, 2, 3

and f1(x) + f2(x) + f3(x) = 1 for each vertex x ∈ V (K6). Therefore d1st(K6) ≥ 3
and Theorem 3.7 yields to d1st(K6) = 3 = n− 3.

2. Let {x1, x2, . . . , x9} be the vertex set of the complete graph K9, and let
fi : V (K9) −→ {−1, 1} such that
f1(x1) = f1(x2) = f1(x3) = −1 and f1(x) = 1 otherwise,
f2(x4) = f2(x5) = f2(x6) = −1 and f2(x) = 1 otherwise,
f3(x7) = f3(x8) = f3(x9) = −1 and f3(x) = 1 otherwise,
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f4(x2) = f4(x3) = f4(x4) = −1 and f4(x) = 1 otherwise,
f5(x5) = f5(x6) = f5(x7) = −1 and f5(x) = 1 otherwise, and
f6(x8) = f6(x9) = f6(x1) = −1 and f6(x) = 1 otherwise.

Then
∑

x∈N(y) fi(x) ≥ 2 for each vertex y ∈ V (K9) and i = 1, 2, . . . , 6 and
∑6

i=1 fi(x) = 2 for each vertex x ∈ V (K9). Therefore d2st(K9) ≥ 6 and Theorem
3.7 implies that d2st(K9) = 6 = n− 3.

3. Let {x1, x2, . . . , x12} be the vertex set of the complete graph K12, and let
fi : V (K12) −→ {−1, 1} such that
f1(x1) = f1(x2) = f1(x3) = f1(x4) = −1 and f1(x) = 1 otherwise,
f2(x5) = f2(x6) = f2(x7) = f2(x8) = −1 and f2(x) = 1 otherwise,
f3(x9) = f3(x10) = f3(x11) = f3(x12) = −1 and f3(x) = 1 otherwise,
f4(x2) = f4(x3) = f4(x4) = f4(x5) = −1 and f4(x) = 1 otherwise,
f5(x6) = f5(x7) = f5(x8) = f5(x9) = −1 and f5(x) = 1 otherwise,
f6(x10) = f6(x11) = f6(x12) = f6(x1) = −1 and f6(x) = 1 otherwise,
f7(x3) = f7(x4) = f7(x5) = f7(x6) = −1 and f7(x) = 1 otherwise,
f8(x7) = f8(x8) = f8(x9) = f8(x10) = −1 and f8(x) = 1 otherwise, and
f9(x11) = f9(x12) = f9(x1) = f9(x2) = −1 and f9(x) = 1 otherwise.

So
∑

x∈N(y) fi(x) ≥ 3 for each vertex y ∈ V (K12) and i = 1, 2, . . . , 9 and
∑9

i=1 fi(x) = 3 for each vertex x ∈ V (K12). Therefore d
3
st(K12) ≥ 9 and Theorem

3.7 leads to d3st(K12) = 9 = n− 3.

Example 3.9 leads us to a more general result.

Example 3.10. If k ≥ 1 is an integer and n = 3(k + 1), then dkst(Kn) = n− 3.

Proof. Let {x1, x2, . . . , xn} be the vertex set of the complete graph Kn, and let
fi : V (Kn) −→ {−1, 1} such that
f1(x1) = f1(x2) = · · · = f1(xk+1) = −1 and f1(x) = 1 otherwise,
f2(xk+2) = f2(xk+3) = · · · = f2(x2k+2) = −1 and f2(x) = 1 otherwise,
f3(x2k+3) = f3(x2k+4) = · · · = f3(x3k+3) = −1 and f3(x) = 1 otherwise,
f4(x2) = f4(x3) = · · · = f4(xk+2) = −1 and f4(x) = 1 otherwise,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
f3k−2(xk) = f3k−2(xk+1) = · · · = f3k−2(x2k) = −1 and f3k−2(x) = 1 otherwise,
f3k−1(x2k+1) = f3k−1(x2k+2) = · · · = f3k−1(x3k+1) = −1 and f3k−1(x) = 1
otherwise,
f3k(x3k+2) = f3k(x3k+3) = f3k(x1) = · · · = f3k(xk−1) = −1 and f3k(x) = 1
otherwise.

It is straightforward to verify that
∑

x∈N(y) fi(x) ≥ k for each vertex y ∈

V (Kn) and i = 1, 2, . . . , 3k and
∑3k

i=1 fi(x) = k for each vertex x ∈ V (Kn).
Therefore dkst(Kn) ≥ 3k and thus it follows from Theorem 3.7 that dkst(Kn) =
3k = n− 3.
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Notice that Example 3.10 also demonstrates that Theorems 2.1 and 2.4 are
sharp. Finally, we give some examples of non-complete graphs with equality in
the inequality of Theorem 3.7.

Example 3.11. Let u, v and w be three distinct vertices of the complete graph
Kn.

1. Let G5 = K5 − uv, and let fi : V (G5) −→ {−1, 1} such that
f1(u) = −1 and f1(x) = 1 for x 6= u and f2(x) = 1 for each x ∈ V (G5).

Then it is easy to see that
∑

x∈N(y) fi(x) ≥ 2 for each vertex y ∈ V (G5) and

i = 1, 2 and f1(x) + f2(x) ≤ 2 for each vertex x ∈ V (G5). Therefore d2st(G5) ≥ 2
and Theorem 3.7 shows that d2st(G5) = 2 = n− 3.

2. Let G6 = K6 − uv, and let fi : V (G6) −→ {−1, 1} such that
f1(u) = −1 and f1(x) = 1 for x 6= u,
f2(v) = −1 and f2(x) = 1 for x 6= v
and f3(x) = 1 for each x ∈ V (G6).

Then
∑

x∈N(y) fi(x) ≥ 3 for each vertex y ∈ V (G6) and i = 1, 2, 3 and

f1(x) + f2(x) + f3(x) ≤ 3 for each vertex x ∈ V (G6). Therefore d3st(G6) ≥ 3 and
Theorem 3.7 leads to d3st(G6) = 3 = n− 3.

3. Let G7 = K7 − {uv, uw, vw}, and let fi : V (G7) −→ {−1, 1} such that
f1(u) = −1 and f1(x) = 1 for x 6= u,
f2(v) = −1 and f2(x) = 1 for x 6= v,
f3(w) = −1 and f3(x) = 1 for x 6= w
and f4(x) = 1 for each x ∈ V (G7).

Then
∑

x∈N(y) fi(x) ≥ 4 for each vertex y ∈ V (G7) and i = 1, 2, 3, 4 and

f1(x)+f2(x)+f3(x)+f4(x) ≤ 4 for each vertex x ∈ V (G7). Therefore d
4
st(G7) ≥ 4

and Theorem 3.7 shows that d4st(G7) = 4 = n− 3.
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