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Abstract

Unique minimum vertex dominating sets in the Cartesian product of a
graph with a complete graph are considered. We first give properties of
such sets when they exist. We then show that when the first factor of the
product is a tree, consideration of the tree alone is sufficient to determine if
the product has a unique minimum dominating set.

Keywords: vertex domination, graph products, trees.

2010 Mathematics Subject Classification: 05C69, 05C76, 05C05.

1. Introduction

In this paper, we show that if T is a nontrivial tree, then T�Kn has a unique
minimum dominating set if and only if T has a minimum dominating set D such
that each vertex in D has at least n+1 external private neighbors with respect to
D. The study of unique minimum vertex dominating sets began with Gunther,
Hartnell, Markus and Rall in [12] where the authors established a method for
recognizing unique γ-sets in trees, and provided a characterization of those trees
which have a unique γ-set. Their work was later expanded upon by Fischermann
in [3] where block graphs were considered, and by Fischermann and Volkmann
in [8] where cactus graphs were considered. The maximum number of edges con-
tained in graphs with unique γ-sets was studied in [5] and [11], and complexity
results concerning unique γ-sets can be found in [6]. Uniqueness of other types of
dominating sets has also been studied. For example, edge domination was stud-
ied in [17] and [7]. Distance k domination was analyzed in [7]. Total domination
was first studied in [14] and later in [4]. Mixed domination was considered in
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[8], and paired domination was studied in [1]. Connections between unique min-
imum dominating sets and unique irredundant and independent dominating sets
was studied in [10], while connections between maximum independent sets and
unique upper dominating sets can be found in [9]. Finally, properties of unique
domination were used in [16] and [15] to study properties of Roman dominating
sets.

In the work to follow, we consider unique minimum dominating sets in graphs
G�Kn where G is a connected, fnite, simple, nontrivial graph and Kn is the
complete graph on n vertices. A characterization of the unique γ-sets in such
graphs is considered in Section 3. Using this characterization, we then generalize
a main result of [12] in Section 4, giving a method for recognizing a γ-set as
unique when the first factor G is a tree. In Section 5, we consider the ways two
such graphs, each having a unique minimum dominating set, can be combined
while preserving a unique γ-set. Finally, in Section 6, we present the proof of our
main result and characterize those trees whose Cartesian product with a complete
graph has a unique γ-set.

2. Notation and Definitions

Let G be a finite, simple graph with vertex set V (G) and edge set E(G). For any
vertex u in G, the open neighborhood of u is the set N(u) defined by N(u) = {v :
uv ∈ E(G)}, and the closed neighborhood of u, denotedN [u], is the setN(u)∪{u}.
If S is a subset of V (G), then the open neighborhood of S is

⋃

v∈S N(v) and the
closed neighborhood of S is S ∪ N(S); these are denoted by N(S) and N [S],
respectively. Any subset D of V (G) with the property that N [D] = V (G) is
called a dominating set of G. A dominating set of G of minimum cardinality is
called a minimum dominating set or a γ-set of G, and its cardinality is denoted
by γ(G). If D is a dominating set of G and x ∈ D, then a private neighbor of x
with respect to D (or just a private neighbor if the dominating set is clear from
the context) is any vertex u that belongs to N [x]−N [D−{x}]. If u 6= x, then u is
also called an external private neighbor of x with respect to D. We let epn(x,D)
denote the set of external private neighbors of x with respect to D. A vertex
in a dominating set need not have a private neighbor, but if the dominating set
is minimal with respect to set inclusion, then each of its vertices has a private
neighbor.

The Cartesian product of two graphs G1 and G2 is the graph G1�G2 whose
vertex set is the Cartesian product of the sets V (G1) and V (G2) with two vertices.
Two vertices (a1, a2) and (b1, b2) in G1�G2 adjacent if either a1 = b1 and a2b2 ∈
E(G2), or a2 = b2 and a1b1 ∈ E(G1). For i = 1, 2 we define the projections πGi

:
G1�G2 → Gi by πGi

((u1, u2)) = ui. Additionally, for (u1, u2) ∈ V (G1�G2), we
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define the Gi-layer through (u1, u2) to be the induced subgraph

G
(u1,u2)
i =

〈

{(v1, v2) : πG3−i
((v1, v2)) = πG3−i

((u1, u2))}
〉

.

We note that if A is a dominating set of G1�G2, then πGi
(A) dominates Gi for

i = 1 and i = 2. For other graph product terminology, we follow [13].
We consider graphs G�Kn where G is a connected, finite, simple graph. We

assume that the vertex set of Kn is {1, 2, . . . , n} which we will denote by [n].
For u ∈ V (G) and for k ∈ [n], we denote the G-layer through (u, k) as Gk for
notational convenience. We let U denote the class of all finite simple graphs that
have a unique minimum dominating set. If G ∈ U , then we let UD(G) denote
the unique γ-set for G.

Our main theorem, proven in Section 6, is as follows.

Theorem 1. Let n be a positive integer and let T be a nontrivial tree. The

graph T �Kn ∈ U if and only if T has a minimum dominating set D such that

for all v ∈ D, |epn(v,D)| ≥ n+ 1.

3. Basic Structure

Suppose that G�Kn ∈ U . What can we say about UD(G�Kn)? We begin with
the following observation.

Lemma 2. If G�Kn ∈ U , then there exists S ⊆ V (G) such that UD(G�Kn) =
S × [n].

Proof. Denote UD(G�Kn) by D. Without loss of generality, suppose that
(v, 1) ∈ D but (v, 2) /∈ D. Let

D′ = {(x, 1) : (x, 2) ∈ D}∪ {(y, 2) : (y, 1) ∈ D}∪ {(w, j) : (w, j) ∈ D, 3 ≤ j ≤ n}.

We claim that D′ is also a γ-set for G�Kn.

• If x ∈ πG(D), then by the definition of D′, it follows that the Kn-layer
through (x, 1) is contained in N [D′].

• If x 6∈ πG(D), then for 1 ≤ j ≤ n, each (x, j) is dominated by some (vj , j) in
D. Thus, (x, 1) is dominated by (v2, 1) in D′, (x, 2) is dominated by (v1, 2)
in D′, and (x, j) is dominated by (vj , j) in D′ for 3 ≤ j ≤ n. Hence, every
vertex in the Kn-layer through (x, 1) is contained in N [D′].

Thus, we see that D′ is a γ-set of G�Kn distinct from D, proving our result.

Corollary 3. If G�Kn ∈ U , then γ(G�Kn) is a multiple of n.
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Any subset A of V (G�Kn) such that A = S× [n] for some subset S of V (G)
is said to have the stacked property. Before proceeding to our next result, we
recall the following lemma from [12].

Lemma 4 [12]. Let G be a graph with a unique γ-set D. Let [u, v] be any edge

in G other than an edge connecting a vertex in D to one of its private neighbors.

Let G− be the graph obtained from G by deleting the edge [u, v]. Then G− has D
as the unique γ-set.

We now consider the following consequence of Lemma 2.

Proposition 5. If G�Kn ∈ U , then G ∈ U . Moreover, G�Km ∈ U for

1 ≤ m ≤ n.

Proof. Denote UD(G�Kn) by D. By Lemma 2, there exists S ⊆ V (G) such
that D = S × [n]. Thus, for any (x, i) ∈ D, the external private neighbors of
(x, i) with respect to D all belong to Gi. Define H to be the graph

G�Kn − {(v, n)(v, j) : v ∈ V (G), 1 ≤ j ≤ n− 1}.

We see that H is isomorphic to (G�Kn−1) ∪ G. By Lemma 4, D is still the
unique γ-set for H. The proposition follows by induction.

Suppose that A ⊆ V (G�Kn) has the stacked property and that {v} ×
[n] ⊆ A. If (u, j) ∈ epn((v, j), A) for some j, then (u, i) ∈ epn((v, i), A) for
1 ≤ i ≤ n. Bearing this in mind, suppose that D is a γ-set of G�Kn with
the stacked property. Additionally, suppose that (v, 1) ∈ D has epn((v, 1), D) =
{(u1, 1), (u2, 1), . . . , (uj , 1)} for some j ≤ n. This implies that epn((v, i), D) =
{(u1, i), (u2, i), . . . , (uj , i)} for 2 ≤ i ≤ n. The set D′ defined by

D′ = (D − {(v, 1), (v, 2), . . . , (v, j)}) ∪ {(u1, 1), (u2, 2), . . . , (uj , j)}

is a γ-set of G�Kn distinct from D. Thus, we have the following.

Lemma 6. If G is a connected, nontrivial graph such that G�Kn ∈ U , then for

each element v ∈ UD(G�Kn),

|epn(v, UD(G�Kn))| ≥ n+ 1.

The graph K1,n+1�Kn demonstrates that this “bound” is sharp. The family
of graphs Km�Kn, m ≥ n, demonstrates that no condition on the number of
external private neighbors for vertices in a minimum dominating set is, by itself,
sufficient to force the product with Kn to have a unique γ-set. For use in the
proof of Theorem 13 to follow, we note here the following.
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Observation 7. If v ∈ V (G) has at least n+ 1 leaf neighbors, then {v} × [n] is
contained in every γ-set of G�Kn.

In [12], the authors prove the following lemma.

Lemma 8 [12]. Let D be a γ-set of a graph G. If for every x ∈ D, γ(G− x) >
γ(G), then D is the unique γ-set of G.

The following statement is a generalization of this result to our setting.

If G�Kn has a γ-set D satisfying the stacked property such that for every

v ∈ πG(D), γ(G�Kn − ({v} × [n])) > γ(G�Kn), then D is the unique γ-set of
G�Kn.

This statement, however, does not hold for a general product G�Kn. The
graph G illustrated in Figure 1 provides a counterexample. Define H to be the
graph G�K2. The set D defined by D = {1, 2, 3, 4, 5, 6}×{1, 2} is a γ-set satisfy-
ing the stacked property such that for every v ∈ πG(D), γ(H −{(v, 1), (v, 2)}) >
γ(H). However, D is not a unique γ-set since the set {(1, 1), (1, 2), (2, 1), (2, 2),
(3, 1), (3, 2), (4, 1), (5, 1), (6, 1), (10, 2), (14, 2), (18, 2)} is also a γ-set of H.

4 5 6

19
20

21
22

23

24
25

26

27

10
14

18

1 2 3
7
8
9

11 12 13

15
16
17

Figure 1

In the next section, we will show that if G is a tree, then the conditions above
do imply that G�Kn ∈ U . The following lemma will be used in the proof.

Lemma 9. If G�Kn has a γ-set D satisfying the stacked property such that

for every v ∈ πG(D), γ(G�Kn − ({v} × [n])) > γ(G�Kn), then for all y ∈ D,

|epn(y,D)| ≥ n+ 1.

Proof. Let v ∈ πG(D). Suppose for some j ≤ n that

epn((v, 1), D) = {(u1, 1), (u2, 1), . . . , (uj , 1)}.
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Since D satisfies the stacked property,

epn((v, i), D) = {(u1, i), (u2, i), . . . , (uj , i)}

for 1 ≤ i ≤ n. The set

(D − ({v} × [n])) ∪ {(u1, 1), (u2, 2), . . . (uj , j), (uj , j + 1), . . . , (uj , n)}

is a dominating set of G�Kn − ({v} × [n]) of cardinality equal to |D|, a contra-
diction. Thus, our result follows.

Before we proceed to our first theorem, we need the following two lemmas,
which are generalizations of Lemmas 3 and 4 from [12].

Lemma 10. Let G�Kn ∈ U and let v 6∈ πG(UD(G�Kn)). For any subset B
of {v} × [n], γ(G�Kn −B) = γ(G�Kn).

Proof. Suppose that γ(G�Kn−B) < γ(G�Kn). This implies that G�Kn−B
is dominated by a set D′ with |D′| < |UD(G�Kn)|. However, for any (v, i) ∈ B,
D′∪{(v, i)} is a dominating set of G�Kn distinct from UD(G�Kn) of cardinal-
ity less than or equal to |UD(G�Kn)|, a contradiction. Thus, γ(G�Kn−B) ≥
γ(G�Kn). Since UD(G�Kn) dominates G�Kn −B, we see that γ(G�Kn −
B) = γ(G�Kn).

Lemma 11. Let G be a connected, nontrivial graph, let G�Kn ∈ U , and let v ∈
πG(UD(G�Kn)). For any subset B of {v} × [n], γ(G�Kn −B) ≥ γ(G�Kn).

Proof. For the sake of contradiction, suppose that γ(G�Kn −B) < γ(G�Kn)
for some B ⊆ {v}× [n]. If D′ is a γ-set of G�Kn−B, then |D′| < |UD(G�Kn)|
and D′ dominates all of the external private neighbors of the vertices in B with
respect to UD(G�Kn). However, for any (v, i) ∈ B, D′ ∪ {(v, i)} is a γ-set of
G�Kn and UD(G�Kn) 6= D′ ∪ {(v, i)}, a contradiction.

4. Trees

In this section, we restrict our attention to graphs T �Kn where T is a nontrivial
tree. We prove a set of equivalences which can be used to determine whether
a γ-set in T �Kn is unique. This result, formulated as Theorem 13 below, is a
generalization of the following theorem from [12], and as such, the notation and
proof structure are similar.

Theorem 12 [12]. Let T be a tree of order at least 3. The following conditions

are equivalent.

(1) T has a unique γ-set D.
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(2) T has a γ-set D for which every vertex x ∈ D has at least two private

neighbors other than itself.

(3) T has a γ-set D for which every vertex x ∈ D has the property that γ(T−x) >
γ(T ).

Theorem 13. Let T be a nontrivial tree. The following conditions are equiva-

lent.

(1) T �Kn ∈ U .

(2) T �Kn has a stacked γ-set D such that for all v ∈ D, |epn(v,D)| ≥ n+ 1.

(3) T �Kn has a stacked γ-set A such that for every v ∈ πG(A), γ(T �Kn −
({v} × [n])) > γ(T �Kn).

Proof. By Lemmas 2 and 6, we see that statement (1) implies statement (2).
We first show that statement (2) implies statement (1). We proceed by induction
on |V (T )|.

The base case is given by T = K1,n+1 where the result holds. We note
that for any other tree T on n + 2 vertices, statement (2) does not hold for
T �Kn. Suppose then that the result has been shown whenever |V (T )| < r. Let
T be a tree on r vertices for which there exists a subset S ⊆ V (T ) such that
S × [n] is a γ-set for T �Kn and such that every element v ∈ S × [n] satisfies
|epn(v, S×[n])| ≥ n+1. To simplify notation, we letD = S×[n] andH = T �Kn.
Suppose that H − D contains two vertices (u, 1), (v, 1) which are connected by
the edge (u, 1)(v, 1). Let H(u) be the component of (T − uv)�Kn containing
(u, 1), and let H(v) be the component containing (v, 1). Let D(u) = D∩V (H(u))
and D(v) = D∩V (H(v)). We first claim that D(u) and D(v) are γ-sets for H(u)
and H(v) respectively. To see this, note that D(u) and D(v) dominate H(u) and
H(v). Additionally, if H(u), for example, had a γ-set A of cardinality smaller
than |D(u)|, then A ∪ D(v) would be a dominating set of T �Kn smaller than
D, a contradiction. Since all private neighbors with respect to D are preserved
in the individual components, our induction hypothesis implies that D(u) and
D(v) are the unique γ-sets for H(u) and H(v) respectively.

Assume now that D′ is a γ-set of H distinct from D. If D′∩({u, v}× [n]) = ∅
then D′ ∩ V (H(u)) = D(u) and D′ ∩ V (H(v)) = D(v), a contradiction. Thus,
D′ ∩ ({u, v} × [n]) 6= ∅.

If D′ ∩ ({u} × [n]) 6= ∅, then D′ ∩ V (H(u)) dominates H(u) in which case
|D′∩V (H(u))| > |D(u)|. Similarly, if D′∩ ({v}× [n]) 6= ∅, then |D′∩V (H(v))| >
|D(v)|.

If D′ ∩ ({u}× [n]) = ∅ but D′ ∩ ({v}× [n]) 6= ∅, then certainly D′ ∩ V (H(u))
dominatesH(u)−({u}×[n]) in which case by Lemma 10, |D′∩V (H(u))| ≥ |D(u)|.
Similarly, if D′ ∩ ({v}× [n]) = ∅ but D′ ∩ ({u}× [n]) 6= ∅, then |D′ ∩ V (H(v))| ≥
|D(v)|.
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Thus, since D′ ∩ ({u, v}× [n]) 6= ∅, we see that |D′| = |D′ ∩V (H(u))|+ |D′ ∩
V (H(v))| > |D(u)|+ |D(v)| = |D|, a contradiction. Hence, in this case, D is the
unique γ-set for H.

Our last case assumes there are no edges in H of the form (u, 1)(v, 1) with
(u, 1), (v, 1) ∈ V (H)−D. In this case, let (x, i) ∈ D. If (y, i) is an external private
neighbor of (x, i) with respect to D, then y is a leaf of T . Hence, x ∈ V (T ) has
at least n + 1 leaf neighbors. As observed above, this implies that {x} × [n] is
contained in every γ-set of H. Since (x, i) ∈ D was arbitrary, we see that D is the
unique γ-set of H. Hence, we have now shown that (1) and (2) are equivalent.

Assume now that statement (3) holds. By Lemma 9, statement (2) holds.
Our work above then implies that statement (1) also holds. Thus, we next prove
that statement (1) implies statement (3).

Let T �Kn ∈ U . Let D = UD(T �Kn) and let H = T �Kn. By Lemma 2,
there exists S ⊆ V (T ) such that D = S × [n]. Suppose that {v} × [n] ⊆ D.
Partition N((v, 1)) ∩ V (G1) as epn((v, 1), D) ∪Q((v, 1)). Let

epn((v, 1), D) = {(p1, 1), (p2, 1), . . . , (pm, 1)}

and
Q((v, 1)) = {(q1, 1), (q2, 1), . . . , (qk, 1)}.

We know that m ≥ n + 1 and that k ≥ 0. Let H(pi), respectively H(qj), be
the component of H − ({v} × [n]) containing (pi, 1), respectively (qj , 1). For
1 ≤ i ≤ m, let D(pi) = D ∩ V (H(pi)) and define D(qj) similarly. Since T is a
tree, we see that

γ(H) = |D| = n+
∑m

i=1
|D(pi)|+

∑k

j=1
|D(qj)|.

Since H − ({v} × [n]) is the disjoint union
[

⋃m

i=1
H(pi)

]

∪

[

⋃k

j=1
H(qj)

]

,

we can calculate γ(H−({v}× [n])) by calculating γ(H(pi)) and γ(H(qj)) for each
i and j and summing the results.

First, we consider H(pi). If V (H(pi)) = {pi} × [n], then D(pi) = ∅. In this
case, it is easy to see that γ(H(pi)) = 1 = |D(pi)|+ 1.

If V (H(pi)) 6= {pi} × [n], then D(pi) 6= ∅. Moreover, for each j such that
1 ≤ j ≤ n, no neighbor of (pi, j) in the graph H(pi) is in D(pi), since (pi, j) ∈
epn((v, j), D). Thus, D(pi) is not a γ-set for H(pi) since it does not dominate
(pi, 1). Nevertheless, suppose that γ(H(pi)) = |D(pi)|, and let B be a γ-set of
H(pi). It follows that (D − D(pi)) ∪ B is a dominating set of H of cardinality
equal to |D|, contradicting the uniqueness ofD. Hence, γ(H(pi)) > |D(pi)|. Since
D(pi)∪{(pi, 1)} dominates H(pi), we see, once again, that γ(H(pi)) = |D(pi)|+1.
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Next, we consider H(qj). Since (qj , i) 6∈ epn((v, i), D) for 1 ≤ i ≤ n, we see
that D(qj) is a γ-set of H(qj). Moreover, for each v ∈ D(qj), |epn(v,D(qj))| ≥
n+1. Thus, D(qj) is the unique γ-set ofH(qj), giving us that γ(H(qj)) = |D(qj)|.

Thus, we can now compute γ(H − ({v} × [n])):

γ(H − ({v} × [n])) =
∑m

i=1
γ(H(pi)) +

∑k

j=1
γ(H(qj))

=
∑m

i=1
(|D(pi)|+ 1) +

∑k

j=1
|D(qj)|

= γ(H) +m− n

≥ γ(H) + (n+ 1)− n

= γ(H) + 1 > γ(H).

Thus, we see that statement (1) implies statement (3), and our proof is complete.

In Section 6 to follow, we will use this result to show that finding a γ-set in
T �Kn is not required to determine whether T �Kn ∈ U . We will show that
analysis of a γ-set of T will suffice.

5. Combining Graphs with Unique γ-Sets

Suppose that G1�Kn and G2�Kn have unique minimum dominating sets. In
this section, we consider the ways in which these two graphs can be combined
to produce a new graph having a unique minimum dominating set. We discuss
four operations. Throughout this section, G1�Kn and G2�Kn, denoted H1

and H2 respectively, are nontrivial graphs in U . Let D1 and D2 denote the sets
UD(G1�Kn) and UD(G2�Kn) respectively.

Operation 1. If x 6∈ πG1
(D1) and y 6∈ πG2

(D2), then ((G1∪G2)+xy)�Kn ∈ U
and UD(((G1 ∪G2) + xy)�Kn) = D1 ∪D2.

Proof. Let H denote the graph ((G1∪G2)+xy)�Kn. First, we see that D1∪D2

dominates all of H. Let D be a γ-set for H. It follows that

|D| ≤ |D1 ∪D2| = |D1|+ |D2|.

Without loss of generality, suppose that |D ∩ V (H1)| ≤ |D1|. Since the only
vertices of H1 that could be dominated from outside of H1 are elements of {x}×
[n], we see that either D ∩ V (H1) dominates all of H1, or D ∩ V (H1) fails to
dominate a subset B of {x} × [n].

First, suppose that D ∩ V (H1) dominates all of H1. Since H1 has a unique
γ-set, and since we are assuming |D∩V (H1)| ≤ |D1|, we have that D∩V (H1) =
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D1. However, if D ∩ V (H1) = D1, then we also have D ∩ V (H2) = D2 since
x 6∈ πG1

(D1). Thus, in this case, we have that D = D1 ∪D2.
Now suppose that D ∩ V (H1) fails to dominate a subset B of {x} × [n]. By

Lemma 10, we have that |D ∩ V (H1)| ≥ |D1|. Since |D| ≤ |D1| + |D2|, we have
that |D ∩ V (H2)| ≤ |D2|. Note, however, that D ∩ V (H2) intersects {y} × [n], in
which case we have a set of cardinality at most |D2| that is distinct from D2 and
dominates H2. This contradicts the uniqueness of D2. Our result now follows.

Operation 2. Let x ∈ πG1
(D1) and y ∈ πG2

(D2). If u is a new vertex in
neither G1 nor G2, then ((G1 ∪G2) + {ux, uy})�Kn ∈ U and UD(((G1 ∪G2) +
{ux, uy})�Kn) = D1 ∪D2.

Proof. Let H denote the graph ((G1 ∪ G2) + {ux, uy})�Kn. First, note that
D1 ∪ D2 dominates H. If D is a γ-set of H with |D| < |D1| + |D2|, then
D ∩ ({u} × [n]) 6= ∅. Suppose that {(u, i1), (u, i2), . . . , (u, ik)} ⊆ D. Then
{(x, i1), (x, i2), . . . , (x, ik)} and {(y, i1), (y, i2), . . . , (y, ik)} need not be dominated
from H1 and H2 respectively. However, by Lemma 11, we know that |D ∩
V (H1)| ≥ |D1| and that |D ∩ V (H2)| ≥ |D2|. Thus, |D| ≥ |D1| + |D2| + k >
|D1 ∪ D2|. Thus, no γ-set of H intersects {u} × [n]. Hence, any γ-set of H
intersects each of V (H1) and V (H2) in a γ-set, in which case D = D1 ∪D2.

Before we discuss the next operation, we need the following lemma.

Lemma 14. Let T be a tree, and let T �Kn ∈ U . If (v, i) 6∈ UD(T �Kn) is

adjacent to at least two elements of UD(T �Kn), then (T − v)�Kn ∈ U and

UD((T − v)�Kn) = UD(T�Kn).

Proof. LetH ′ denote the graph (T−v)�Kn and letD denote the set UD(T�Kn).
By Lemma 10, we know that γ(H ′) = γ(T �Kn). Thus, D is a γ-set for
H ′. We must show that D is the only γ-set for H ′. Note that the removal
of (v, 1), (v, 2), . . . , (v, n) from T �Kn breaks T �Kn into k ≥ 2 components;
call them H1, H2, . . . , Hk.

We claim that for i = 1, 2, . . . k, Di = D ∩ V (Hi) is the unique γ-set for Hi.
Without loss of generality, consider D1. Clearly D1 is a dominating set for H1.
If D′

1 were a smaller dominating set of H1, then D′

1 ∪D2 ∪ · · · ∪Dk would be a
smaller γ-set for T �Kn. Thus, D1 will be a γ-set of H1. By the same logic, D1

is the unique γ-set for H1.
Thus, each Hi has Di as its unique minimum dominating set, in which case

H ′ has D = D1 ∪D2 ∪ · · · ∪Dk as its unique γ-set.

Operation 3. Let G2 be a tree. If x ∈ πG1
(D1), y 6∈ πG2

(D2), and y is a
neighbor of at least two vertices in πG2

(D2), then ((G1∪G2)+xy)�Kn ∈ U and
UD(((G1 ∪G2) + xy)�Kn) = D1 ∪D2.
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Proof. Let H denote the graph ((G1 ∪ G2) + xy)�Kn. Note that D1 ∪ D2

dominates H. Let D be a γ-set of H. Suppose that ({y} × [n]) ∩ D 6= ∅. This
implies that some subset of {x} × [n] will be dominated from outside of H1. By
Lemma 11, we still have that |D ∩ V (H1)| ≥ |D1|. Additionally, D ∩ V (H2)
dominates H2, in which case |D ∩ V (H2)| > |D2| since D2 is the unique γ-set for
H2 and y 6∈ πG2

(D2). Thus, we have |D| > |D1 ∪D2|. This implies that no γ-set
of H intersects {y} × [n]. Hence, if D is a γ-set for H, then D ∩ V (H1) = D1.
Lemma 6 then implies that D ∩ V (H2) = D2. Thus, D1 ∪D2 is the unique γ-set
for H.

Operation 4. Let G1 and G2 be trees. If x ∈ πG1
(D1) and y ∈ πG2

(D2), then
((G1 ∪G2) + {xy})�Kn ∈ U and UD(((G1 ∪G2) + {xy})�Kn) = D1 ∪D2.

Proof. Once again, let H denote the graph ((G1 ∪ G2) + {xy})�Kn. Since
D1 ∪ D2 dominates H, we have that γ(H) ≤ |D1 ∪ D2| = |D1| + |D2|. Let A
denote the set {x} × [n], let B denote the set {y} × [n], and suppose that D is a
γ-set for H.

If A ⊆ D and B ⊆ D, then D ∩ V (H1) and D ∩ V (H2) are γ-sets for H1 and
H2, respectively, in which case D = D1 ∪D2.

Suppose that D ∩ A = ∅. This implies that D ∩ V (H1) dominates H1 − A.
However, by Theorem 13, we know that γ(H1−A) > γ(H1) = |D1|. Additionally,
in this case D ∩ V (H2) is a γ-set of H2 implying that D ∩ H2 = D2. Thus, we
have |D| > |D1|+ |D2| = |D1 ∪D2|. The same contradiction arises if D ∩B = ∅.

This leaves us with one case to consider. Without loss of generality, suppose
that 0 < |D ∩A| < |A| and that D ∩B 6= ∅. Then D ∩ V (H1) dominates H1 and
D ∩ V (H2) dominates H2. However, since D1 and D2 are the unique γ-sets for
H1 and H2 respectively, and since A ⊆ D1, we have that |D∩V (H1)| > |D1| and
that |D ∩ V (H2)| ≥ |D2|. Thus, we have |D| > |D1 ∪D2|, a contradiction.

Thus, we have D = D1 ∪D2, which implies D1 ∪D2 is the unique γ-set for
H.

6. Main Result

We are now able to prove our main theorem, which we restate for your conve-
nience.

Theorem 1. Let n be a positive integer and let T be a nontrivial tree. The graph

T �Kn ∈ U if and only if T has a minimum dominating set D such that for all

v ∈ D, |epn(v,D)| ≥ n+ 1.

Proof. Suppose that T �Kn has a unique γ-set denoted UD. By Lemma 2,
we know that UD satisfies the stacked property. Thus, there exists S ⊆ V (T )
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such that UD = S × [n]. Additionally, by Lemma 6, for every element v ∈ UD,
|epn(v, UD)| ≥ n + 1. This implies that for every element w ∈ S, |epn(w, S)| ≥
n+ 1. Finally, by the proof of Proposition 5, S is a γ-set for T .

Now suppose that T is a tree, and suppose that T has a γ-set D′ for which
every element in D′ has at least n + 1 external private neighbors with respect
to D′. Define H to be the graph T �Kn, and let D = D′ × [n]. Clearly D is a
dominating set for H. Furthermore, since every element of D′ has at least n+ 1
external private neighbors with respect to D′ in T , every element of D has at
least n + 1 external private neighbors with respect to D in H. Thus, if we can
prove that D is a γ-set for H, Theorem 13 will imply that D is the unique γ-set
for H. We do this by induction on the cardinality of T .

The base case is given by T = K1,n+1 where the result holds. Thus, assume
the result holds whenever |V (T )| < r. Let T be a tree on r vertices having
a γ-set D′ for which every element in D′ has at least n + 1 external private
neighbors with respect to D′. By Theorem 12, D′ is the unique γ-set for T . Let
H be T �Kn, and let D be defined as above. Consider a diametral path in T ,
call it v1v2 · · · vk. Note that vk is a leaf and cannot be an element of D′. This
implies that vk−1 ∈ D′. In order for vk−1 to have at least n+ 1 external private
neighbors, vk−1 must be adjacent to at least n− 1 other leaves. Let A be the set
{vk−1} ∪ epn(vk−1, D

′) and let B = {v ∈ N(vk−1) : v 6∈ D′, |N(v)∩D′| ≥ 2}. We
note that B equals either the empty set or {vk−2}. By Theorem 12, {vk−1} and
D′ − {vk−1} are the unique minimum dominating sets for T 〈A〉 and T − (A∪B)
respectively. By our induction hypothesis, {vk−1} × [n] and D − ({vk−1} × [n])
are the unique minimum dominating sets for T 〈A〉�Kn and (T − (A∪B))�Kn

respectively. Our original graph H can be reconstructed from T 〈A〉�Kn and
(T − (A ∪ B))�Kn by performing at least one of the operations discussed in
Section 5 above. Hence, D is the unique γ-set for H.

Theorem 1 implies that in order to determine whether T �Kn ∈ U it is
sufficient to consider T alone. That is, one need only find a γ-set in T and count
the number of external private neighbors for each vertex in the set. Since finding
a minimum dominating set in a tree can be done in linear time (see [2]), we see
that the problem of determining for which Kn, T �Kn ∈ U is polynomial.
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