ON UNIQUE MINIMUM DOMINATING SETS IN SOME CARTESIAN PRODUCT GRAPHS

Jason T. Hedetniemi
Department of Mathematical Sciences
Clemson University
Clemson, South Carolina 29634, USA
e-mail: jhedetn@clemson.edu

Abstract

Unique minimum vertex dominating sets in the Cartesian product of a graph with a complete graph are considered. We first give properties of such sets when they exist. We then show that when the first factor of the product is a tree, consideration of the tree alone is sufficient to determine if the product has a unique minimum dominating set.

Keywords: vertex domination, graph products, trees.
2010 Mathematics Subject Classification: 05C69, 05C76, 05 C 05.

1. Introduction

In this paper, we show that if T is a nontrivial tree, then $T \square K_{n}$ has a unique minimum dominating set if and only if T has a minimum dominating set D such that each vertex in D has at least $n+1$ external private neighbors with respect to D. The study of unique minimum vertex dominating sets began with Gunther, Hartnell, Markus and Rall in [12] where the authors established a method for recognizing unique γ-sets in trees, and provided a characterization of those trees which have a unique γ-set. Their work was later expanded upon by Fischermann in [3] where block graphs were considered, and by Fischermann and Volkmann in [8] where cactus graphs were considered. The maximum number of edges contained in graphs with unique γ-sets was studied in [5] and [11], and complexity results concerning unique γ-sets can be found in [6]. Uniqueness of other types of dominating sets has also been studied. For example, edge domination was studied in [17] and [7]. Distance k domination was analyzed in [7]. Total domination was first studied in [14] and later in [4]. Mixed domination was considered in
[8], and paired domination was studied in [1]. Connections between unique minimum dominating sets and unique irredundant and independent dominating sets was studied in [10], while connections between maximum independent sets and unique upper dominating sets can be found in [9]. Finally, properties of unique domination were used in [16] and [15] to study properties of Roman dominating sets.

In the work to follow, we consider unique minimum dominating sets in graphs $G \square K_{n}$ where G is a connected, fnite, simple, nontrivial graph and K_{n} is the complete graph on n vertices. A characterization of the unique γ-sets in such graphs is considered in Section 3. Using this characterization, we then generalize a main result of [12] in Section 4, giving a method for recognizing a γ-set as unique when the first factor G is a tree. In Section 5, we consider the ways two such graphs, each having a unique minimum dominating set, can be combined while preserving a unique γ-set. Finally, in Section 6, we present the proof of our main result and characterize those trees whose Cartesian product with a complete graph has a unique γ-set.

2. Notation and Definitions

Let G be a finite, simple graph with vertex set $V(G)$ and edge set $E(G)$. For any vertex u in G, the open neighborhood of u is the set $N(u)$ defined by $N(u)=\{v$: $u v \in E(G)\}$, and the closed neighborhood of u, denoted $N[u]$, is the set $N(u) \cup\{u\}$. If S is a subset of $V(G)$, then the open neighborhood of S is $\bigcup_{v \in S} N(v)$ and the closed neighborhood of S is $S \cup N(S)$; these are denoted by $N(S)$ and $N[S]$, respectively. Any subset D of $V(G)$ with the property that $N[D]=V(G)$ is called a dominating set of G. A dominating set of G of minimum cardinality is called a minimum dominating set or a γ-set of G, and its cardinality is denoted by $\gamma(G)$. If D is a dominating set of G and $x \in D$, then a private neighbor of x with respect to D (or just a private neighbor if the dominating set is clear from the context) is any vertex u that belongs to $N[x]-N[D-\{x\}]$. If $u \neq x$, then u is also called an external private neighbor of x with respect to D. We let epn (x, D) denote the set of external private neighbors of x with respect to D. A vertex in a dominating set need not have a private neighbor, but if the dominating set is minimal with respect to set inclusion, then each of its vertices has a private neighbor.

The Cartesian product of two graphs G_{1} and G_{2} is the graph $G_{1} \square G_{2}$ whose vertex set is the Cartesian product of the sets $V\left(G_{1}\right)$ and $V\left(G_{2}\right)$ with two vertices. Two vertices $\left(a_{1}, a_{2}\right)$ and $\left(b_{1}, b_{2}\right)$ in $G_{1} \square G_{2}$ adjacent if either $a_{1}=b_{1}$ and $a_{2} b_{2} \in$ $E\left(G_{2}\right)$, or $a_{2}=b_{2}$ and $a_{1} b_{1} \in E\left(G_{1}\right)$. For $i=1,2$ we define the projections $\pi_{G_{i}}$: $G_{1} \square G_{2} \rightarrow G_{i}$ by $\pi_{G_{i}}\left(\left(u_{1}, u_{2}\right)\right)=u_{i}$. Additionally, for $\left(u_{1}, u_{2}\right) \in V\left(G_{1} \square G_{2}\right)$, we
define the G_{i}-layer through (u_{1}, u_{2}) to be the induced subgraph

$$
G_{i}^{\left(u_{1}, u_{2}\right)}=\left\langle\left\{\left(v_{1}, v_{2}\right): \pi_{G_{3-i}}\left(\left(v_{1}, v_{2}\right)\right)=\pi_{G_{3-i}}\left(\left(u_{1}, u_{2}\right)\right)\right\}\right\rangle .
$$

We note that if A is a dominating set of $G_{1} \square G_{2}$, then $\pi_{G_{i}}(A)$ dominates G_{i} for $i=1$ and $i=2$. For other graph product terminology, we follow [13].

We consider graphs $G \square K_{n}$ where G is a connected, finite, simple graph. We assume that the vertex set of K_{n} is $\{1,2, \ldots, n\}$ which we will denote by $[n]$. For $u \in V(G)$ and for $k \in[n]$, we denote the G-layer through (u, k) as G^{k} for notational convenience. We let \mathcal{U} denote the class of all finite simple graphs that have a unique minimum dominating set. If $G \in \mathcal{U}$, then we let $U D(G)$ denote the unique γ-set for G.

Our main theorem, proven in Section 6, is as follows.
Theorem 1. Let n be a positive integer and let T be a nontrivial tree. The graph $T \square K_{n} \in \mathcal{U}$ if and only if T has a minimum dominating set D such that for all $v \in D,|\operatorname{epn}(v, D)| \geq n+1$.

3. Basic Structure

Suppose that $G \square K_{n} \in \mathcal{U}$. What can we say about $U D\left(G \square K_{n}\right)$? We begin with the following observation.

Lemma 2. If $G \square K_{n} \in \mathcal{U}$, then there exists $S \subseteq V(G)$ such that $U D\left(G \square K_{n}\right)=$ $S \times[n]$.

Proof. Denote $U D\left(G \square K_{n}\right)$ by D. Without loss of generality, suppose that $(v, 1) \in D$ but $(v, 2) \notin D$. Let
$D^{\prime}=\{(x, 1):(x, 2) \in D\} \cup\{(y, 2):(y, 1) \in D\} \cup\{(w, j):(w, j) \in D, 3 \leq j \leq n\}$.
We claim that D^{\prime} is also a γ-set for $G \square K_{n}$.

- If $x \in \pi_{G}(D)$, then by the definition of D^{\prime}, it follows that the K_{n}-layer through $(x, 1)$ is contained in $N\left[D^{\prime}\right]$.
- If $x \notin \pi_{G}(D)$, then for $1 \leq j \leq n$, each (x, j) is dominated by some $\left(v_{j}, j\right)$ in D. Thus, $(x, 1)$ is dominated by $\left(v_{2}, 1\right)$ in $D^{\prime},(x, 2)$ is dominated by $\left(v_{1}, 2\right)$ in D^{\prime}, and (x, j) is dominated by $\left(v_{j}, j\right)$ in D^{\prime} for $3 \leq j \leq n$. Hence, every vertex in the K_{n}-layer through $(x, 1)$ is contained in $N\left[D^{\prime}\right]$.

Thus, we see that D^{\prime} is a γ-set of $G \square K_{n}$ distinct from D, proving our result.
Corollary 3. If $G \square K_{n} \in \mathcal{U}$, then $\gamma\left(G \square K_{n}\right)$ is a multiple of n.

Any subset A of $V\left(G \square K_{n}\right)$ such that $A=S \times[n]$ for some subset S of $V(G)$ is said to have the stacked property. Before proceeding to our next result, we recall the following lemma from [12].

Lemma 4 [12]. Let G be a graph with a unique γ-set D. Let $[u, v]$ be any edge in G other than an edge connecting a vertex in D to one of its private neighbors. Let G^{-}be the graph obtained from G by deleting the edge $[u, v]$. Then G^{-}has D as the unique γ-set.

We now consider the following consequence of Lemma 2 .
Proposition 5. If $G \square K_{n} \in \mathcal{U}$, then $G \in \mathcal{U}$. Moreover, $G \square K_{m} \in \mathcal{U}$ for $1 \leq m \leq n$.

Proof. Denote $U D\left(G \square K_{n}\right)$ by D. By Lemma 2 , there exists $S \subseteq V(G)$ such that $D=S \times[n]$. Thus, for any $(x, i) \in D$, the external private neighbors of (x, i) with respect to D all belong to G^{i}. Define H to be the graph

$$
G \square K_{n}-\{(v, n)(v, j): v \in V(G), 1 \leq j \leq n-1\} .
$$

We see that H is isomorphic to $\left(G \square K_{n-1}\right) \cup G$. By Lemma $4, D$ is still the unique γ-set for H. The proposition follows by induction.

Suppose that $A \subseteq V\left(G \square K_{n}\right)$ has the stacked property and that $\{v\} \times$ $[n] \subseteq A$. If $(u, j) \in \operatorname{epn}((v, j), A)$ for some j, then $(u, i) \in e p n((v, i), A)$ for $1 \leq i \leq n$. Bearing this in mind, suppose that D is a γ-set of $G \square K_{n}$ with the stacked property. Additionally, suppose that $(v, 1) \in D$ has $\operatorname{epn}((v, 1), D)=$ $\left\{\left(u_{1}, 1\right),\left(u_{2}, 1\right), \ldots,\left(u_{j}, 1\right)\right\}$ for some $j \leq n$. This implies that $\operatorname{epn}((v, i), D)=$ $\left\{\left(u_{1}, i\right),\left(u_{2}, i\right), \ldots,\left(u_{j}, i\right)\right\}$ for $2 \leq i \leq n$. The set D^{\prime} defined by

$$
D^{\prime}=(D-\{(v, 1),(v, 2), \ldots,(v, j)\}) \cup\left\{\left(u_{1}, 1\right),\left(u_{2}, 2\right), \ldots,\left(u_{j}, j\right)\right\}
$$

is a γ-set of $G \square K_{n}$ distinct from D. Thus, we have the following.
Lemma 6. If G is a connected, nontrivial graph such that $G \square K_{n} \in \mathcal{U}$, then for each element $v \in U D\left(G \square K_{n}\right)$,

$$
\left|e p n\left(v, U D\left(G \square K_{n}\right)\right)\right| \geq n+1
$$

The graph $K_{1, n+1} \square K_{n}$ demonstrates that this "bound" is sharp. The family of graphs $K_{m} \square K_{n}, m \geq n$, demonstrates that no condition on the number of external private neighbors for vertices in a minimum dominating set is, by itself, sufficient to force the product with K_{n} to have a unique γ-set. For use in the proof of Theorem 13 to follow, we note here the following.

Observation 7. If $v \in V(G)$ has at least $n+1$ leaf neighbors, then $\{v\} \times[n]$ is contained in every γ-set of $G \square K_{n}$.

In [12], the authors prove the following lemma.
Lemma 8 [12]. Let D be a γ-set of a graph G. If for every $x \in D, \gamma(G-x)>$ $\gamma(G)$, then D is the unique γ-set of G.

The following statement is a generalization of this result to our setting.
If $G \square K_{n}$ has a γ-set D satisfying the stacked property such that for every $v \in \pi_{G}(D), \gamma\left(G \square K_{n}-(\{v\} \times[n])\right)>\gamma\left(G \square K_{n}\right)$, then D is the unique γ-set of $G \square K_{n}$.

This statement, however, does not hold for a general product $G \square K_{n}$. The graph G illustrated in Figure 1 provides a counterexample. Define H to be the graph $G \square K_{2}$. The set D defined by $D=\{1,2,3,4,5,6\} \times\{1,2\}$ is a γ-set satisfying the stacked property such that for every $v \in \pi_{G}(D), \gamma(H-\{(v, 1),(v, 2)\})>$ $\gamma(H)$. However, D is not a unique γ-set since the set $\{(1,1),(1,2),(2,1),(2,2)$, $(3,1),(3,2),(4,1),(5,1),(6,1),(10,2),(14,2),(18,2)\}$ is also a γ-set of H.

Figure 1

In the next section, we will show that if G is a tree, then the conditions above do imply that $G \square K_{n} \in \mathcal{U}$. The following lemma will be used in the proof.

Lemma 9. If $G \square K_{n}$ has a γ-set D satisfying the stacked property such that for every $v \in \pi_{G}(D), \gamma\left(G \square K_{n}-(\{v\} \times[n])\right)>\gamma\left(G \square K_{n}\right)$, then for all $y \in D$, $|e p n(y, D)| \geq n+1$.

Proof. Let $v \in \pi_{G}(D)$. Suppose for some $j \leq n$ that

$$
\operatorname{epn}((v, 1), D)=\left\{\left(u_{1}, 1\right),\left(u_{2}, 1\right), \ldots,\left(u_{j}, 1\right)\right\}
$$

Since D satisfies the stacked property,

$$
\operatorname{epn}((v, i), D)=\left\{\left(u_{1}, i\right),\left(u_{2}, i\right), \ldots,\left(u_{j}, i\right)\right\}
$$

for $1 \leq i \leq n$. The set

$$
(D-(\{v\} \times[n])) \cup\left\{\left(u_{1}, 1\right),\left(u_{2}, 2\right), \ldots\left(u_{j}, j\right),\left(u_{j}, j+1\right), \ldots,\left(u_{j}, n\right)\right\}
$$

is a dominating set of $G \square K_{n}-(\{v\} \times[n])$ of cardinality equal to $|D|$, a contradiction. Thus, our result follows.

Before we proceed to our first theorem, we need the following two lemmas, which are generalizations of Lemmas 3 and 4 from [12].

Lemma 10. Let $G \square K_{n} \in \mathcal{U}$ and let $v \notin \pi_{G}\left(U D\left(G \square K_{n}\right)\right)$. For any subset B of $\{v\} \times[n], \gamma\left(G \square K_{n}-B\right)=\gamma\left(G \square K_{n}\right)$.

Proof. Suppose that $\gamma\left(G \square K_{n}-B\right)<\gamma\left(G \square K_{n}\right)$. This implies that $G \square K_{n}-B$ is dominated by a set D^{\prime} with $\left|D^{\prime}\right|<\left|U D\left(G \square K_{n}\right)\right|$. However, for any $(v, i) \in B$, $D^{\prime} \cup\{(v, i)\}$ is a dominating set of $G \square K_{n}$ distinct from $U D\left(G \square K_{n}\right)$ of cardinality less than or equal to $\left|U D\left(G \square K_{n}\right)\right|$, a contradiction. Thus, $\gamma\left(G \square K_{n}-B\right) \geq$ $\gamma\left(G \square K_{n}\right)$. Since $U D\left(G \square K_{n}\right)$ dominates $G \square K_{n}-B$, we see that $\gamma\left(G \square K_{n}-\right.$ $B)=\gamma\left(G \square K_{n}\right)$.

Lemma 11. Let G be a connected, nontrivial graph, let $G \square K_{n} \in \mathcal{U}$, and let $v \in$ $\pi_{G}\left(U D\left(G \square K_{n}\right)\right)$. For any subset B of $\{v\} \times[n], \gamma\left(G \square K_{n}-B\right) \geq \gamma\left(G \square K_{n}\right)$.

Proof. For the sake of contradiction, suppose that $\gamma\left(G \square K_{n}-B\right)<\gamma\left(G \square K_{n}\right)$ for some $B \subseteq\{v\} \times[n]$. If D^{\prime} is a γ-set of $G \square K_{n}-B$, then $\left|D^{\prime}\right|<\left|U D\left(G \square K_{n}\right)\right|$ and D^{\prime} dominates all of the external private neighbors of the vertices in B with respect to $U D\left(G \square K_{n}\right)$. However, for any $(v, i) \in B, D^{\prime} \cup\{(v, i)\}$ is a γ-set of $G \square K_{n}$ and $U D\left(G \square K_{n}\right) \neq D^{\prime} \cup\{(v, i)\}$, a contradiction.

4. Trees

In this section, we restrict our attention to graphs $T \square K_{n}$ where T is a nontrivial tree. We prove a set of equivalences which can be used to determine whether a γ-set in $T \square K_{n}$ is unique. This result, formulated as Theorem 13 below, is a generalization of the following theorem from [12], and as such, the notation and proof structure are similar.

Theorem 12 [12]. Let T be a tree of order at least 3. The following conditions are equivalent.
(1) T has a unique γ-set D.
(2) T has a γ-set D for which every vertex $x \in D$ has at least two private neighbors other than itself.
(3) T has a γ-set D for which every vertex $x \in D$ has the property that $\gamma(T-x)>$ $\gamma(T)$.

Theorem 13. Let T be a nontrivial tree. The following conditions are equivalent.
(1) $T \square K_{n} \in \mathcal{U}$.
(2) $T \square K_{n}$ has a stacked γ-set D such that for all $v \in D,|e p n(v, D)| \geq n+1$.
(3) $T \square K_{n}$ has a stacked γ-set A such that for every $v \in \pi_{G}(A), \gamma\left(T \square K_{n}-\right.$ $(\{v\} \times[n]))>\gamma\left(T \square K_{n}\right)$.

Proof. By Lemmas 2 and 6, we see that statement (1) implies statement (2). We first show that statement (2) implies statement (1). We proceed by induction on $|V(T)|$.

The base case is given by $T=K_{1, n+1}$ where the result holds. We note that for any other tree T on $n+2$ vertices, statement (2) does not hold for $T \square K_{n}$. Suppose then that the result has been shown whenever $|V(T)|<r$. Let T be a tree on r vertices for which there exists a subset $S \subseteq V(T)$ such that $S \times[n]$ is a γ-set for $T \square K_{n}$ and such that every element $v \in S \times[n]$ satisfies $|e p n(v, S \times[n])| \geq n+1$. To simplify notation, we let $D=S \times[n]$ and $H=T \square K_{n}$. Suppose that $H-D$ contains two vertices $(u, 1),(v, 1)$ which are connected by the edge $(u, 1)(v, 1)$. Let $H(u)$ be the component of $(T-u v) \square K_{n}$ containing $(u, 1)$, and let $H(v)$ be the component containing $(v, 1)$. Let $D(u)=D \cap V(H(u))$ and $D(v)=D \cap V(H(v))$. We first claim that $D(u)$ and $D(v)$ are γ-sets for $H(u)$ and $H(v)$ respectively. To see this, note that $D(u)$ and $D(v)$ dominate $H(u)$ and $H(v)$. Additionally, if $H(u)$, for example, had a γ-set A of cardinality smaller than $|D(u)|$, then $A \cup D(v)$ would be a dominating set of $T \square K_{n}$ smaller than D, a contradiction. Since all private neighbors with respect to D are preserved in the individual components, our induction hypothesis implies that $D(u)$ and $D(v)$ are the unique γ-sets for $H(u)$ and $H(v)$ respectively.

Assume now that D^{\prime} is a γ-set of H distinct from D. If $D^{\prime} \cap(\{u, v\} \times[n])=\emptyset$ then $D^{\prime} \cap V(H(u))=D(u)$ and $D^{\prime} \cap V(H(v))=D(v)$, a contradiction. Thus, $D^{\prime} \cap(\{u, v\} \times[n]) \neq \emptyset$.

If $D^{\prime} \cap(\{u\} \times[n]) \neq \emptyset$, then $D^{\prime} \cap V(H(u))$ dominates $H(u)$ in which case $\left|D^{\prime} \cap V(H(u))\right|>|D(u)|$. Similarly, if $D^{\prime} \cap(\{v\} \times[n]) \neq \emptyset$, then $\left|D^{\prime} \cap V(H(v))\right|>$ $|D(v)|$.

If $D^{\prime} \cap(\{u\} \times[n])=\emptyset$ but $D^{\prime} \cap(\{v\} \times[n]) \neq \emptyset$, then certainly $D^{\prime} \cap V(H(u))$ dominates $H(u)-(\{u\} \times[n])$ in which case by Lemma $10,\left|D^{\prime} \cap V(H(u))\right| \geq|D(u)|$. Similarly, if $D^{\prime} \cap(\{v\} \times[n])=\emptyset$ but $D^{\prime} \cap(\{u\} \times[n]) \neq \emptyset$, then $\left|D^{\prime} \cap V(H(v))\right| \geq$ $|D(v)|$.

Thus, since $D^{\prime} \cap(\{u, v\} \times[n]) \neq \emptyset$, we see that $\left|D^{\prime}\right|=\left|D^{\prime} \cap V(H(u))\right|+\mid D^{\prime} \cap$ $V(H(v))|>|D(u)|+|D(v)|=|D|$, a contradiction. Hence, in this case, D is the unique γ-set for H.

Our last case assumes there are no edges in H of the form $(u, 1)(v, 1)$ with $(u, 1),(v, 1) \in V(H)-D$. In this case, let $(x, i) \in D$. If (y, i) is an external private neighbor of (x, i) with respect to D, then y is a leaf of T. Hence, $x \in V(T)$ has at least $n+1$ leaf neighbors. As observed above, this implies that $\{x\} \times[n]$ is contained in every γ-set of H. Since $(x, i) \in D$ was arbitrary, we see that D is the unique γ-set of H. Hence, we have now shown that (1) and (2) are equivalent.

Assume now that statement (3) holds. By Lemma 9, statement (2) holds. Our work above then implies that statement (1) also holds. Thus, we next prove that statement (1) implies statement (3).

Let $T \square K_{n} \in \mathcal{U}$. Let $D=U D\left(T \square K_{n}\right)$ and let $H=T \square K_{n}$. By Lemma 2, there exists $S \subseteq V(T)$ such that $D=S \times[n]$. Suppose that $\{v\} \times[n] \subseteq D$. Partition $N((v, 1)) \cap V\left(G^{1}\right)$ as $\operatorname{epn}((v, 1), D) \cup Q((v, 1))$. Let

$$
\operatorname{epn}((v, 1), D)=\left\{\left(p_{1}, 1\right),\left(p_{2}, 1\right), \ldots,\left(p_{m}, 1\right)\right\}
$$

and

$$
Q((v, 1))=\left\{\left(q_{1}, 1\right),\left(q_{2}, 1\right), \ldots,\left(q_{k}, 1\right)\right\} .
$$

We know that $m \geq n+1$ and that $k \geq 0$. Let $H\left(p_{i}\right)$, respectively $H\left(q_{j}\right)$, be the component of $H-(\{v\} \times[n])$ containing $\left(p_{i}, 1\right)$, respectively $\left(q_{j}, 1\right)$. For $1 \leq i \leq m$, let $D\left(p_{i}\right)=D \cap V\left(H\left(p_{i}\right)\right)$ and define $D\left(q_{j}\right)$ similarly. Since T is a tree, we see that

$$
\gamma(H)=|D|=n+\sum_{i=1}^{m}\left|D\left(p_{i}\right)\right|+\sum_{j=1}^{k}\left|D\left(q_{j}\right)\right|
$$

Since $H-(\{v\} \times[n])$ is the disjoint union

$$
\left[\bigcup_{i=1}^{m} H\left(p_{i}\right)\right] \cup\left[\bigcup_{j=1}^{k} H\left(q_{j}\right)\right]
$$

we can calculate $\gamma(H-(\{v\} \times[n]))$ by calculating $\gamma\left(H\left(p_{i}\right)\right)$ and $\gamma\left(H\left(q_{j}\right)\right)$ for each i and j and summing the results.

First, we consider $H\left(p_{i}\right)$. If $V\left(H\left(p_{i}\right)\right)=\left\{p_{i}\right\} \times[n]$, then $D\left(p_{i}\right)=\emptyset$. In this case, it is easy to see that $\gamma\left(H\left(p_{i}\right)\right)=1=\left|D\left(p_{i}\right)\right|+1$.

If $V\left(H\left(p_{i}\right)\right) \neq\left\{p_{i}\right\} \times[n]$, then $D\left(p_{i}\right) \neq \emptyset$. Moreover, for each j such that $1 \leq j \leq n$, no neighbor of $\left(p_{i}, j\right)$ in the graph $H\left(p_{i}\right)$ is in $D\left(p_{i}\right)$, since $\left(p_{i}, j\right) \in$ $\operatorname{epn}((v, j), D)$. Thus, $D\left(p_{i}\right)$ is not a γ-set for $H\left(p_{i}\right)$ since it does not dominate $\left(p_{i}, 1\right)$. Nevertheless, suppose that $\gamma\left(H\left(p_{i}\right)\right)=\left|D\left(p_{i}\right)\right|$, and let B be a γ-set of $H\left(p_{i}\right)$. It follows that $\left(D-D\left(p_{i}\right)\right) \cup B$ is a dominating set of H of cardinality equal to $|D|$, contradicting the uniqueness of D. Hence, $\gamma\left(H\left(p_{i}\right)\right)>\left|D\left(p_{i}\right)\right|$. Since $D\left(p_{i}\right) \cup\left\{\left(p_{i}, 1\right)\right\}$ dominates $H\left(p_{i}\right)$, we see, once again, that $\gamma\left(H\left(p_{i}\right)\right)=\left|D\left(p_{i}\right)\right|+1$.

Next, we consider $H\left(q_{j}\right)$. Since $\left(q_{j}, i\right) \notin \operatorname{epn}((v, i), D)$ for $1 \leq i \leq n$, we see that $D\left(q_{j}\right)$ is a γ-set of $H\left(q_{j}\right)$. Moreover, for each $v \in D\left(q_{j}\right),\left|\operatorname{epn}\left(v, D\left(q_{j}\right)\right)\right| \geq$ $n+1$. Thus, $D\left(q_{j}\right)$ is the unique γ-set of $H\left(q_{j}\right)$, giving us that $\gamma\left(H\left(q_{j}\right)\right)=\left|D\left(q_{j}\right)\right|$.

Thus, we can now compute $\gamma(H-(\{v\} \times[n]))$:

$$
\begin{aligned}
\gamma(H-(\{v\} \times[n])) & =\sum_{i=1}^{m} \gamma\left(H\left(p_{i}\right)\right)+\sum_{j=1}^{k} \gamma\left(H\left(q_{j}\right)\right) \\
& =\sum_{i=1}^{m}\left(\left|D\left(p_{i}\right)\right|+1\right)+\sum_{j=1}^{k}\left|D\left(q_{j}\right)\right| \\
& =\gamma(H)+m-n \\
& \geq \gamma(H)+(n+1)-n \\
& =\gamma(H)+1>\gamma(H) .
\end{aligned}
$$

Thus, we see that statement (1) implies statement (3), and our proof is complete.

In Section 6 to follow, we will use this result to show that finding a γ-set inK_{n} is not required to determine whether $T \square K_{n} \in \mathcal{U}$. We will show that analysis of a γ-set of T will suffice.

5. Combining Graphs with Unique γ-Sets

Suppose that $G_{1} \square K_{n}$ and $G_{2} \square K_{n}$ have unique minimum dominating sets. In this section, we consider the ways in which these two graphs can be combined to produce a new graph having a unique minimum dominating set. We discuss four operations. Throughout this section, $G_{1} \square K_{n}$ and $G_{2} \square K_{n}$, denoted H_{1} and H_{2} respectively, are nontrivial graphs in \mathcal{U}. Let D_{1} and D_{2} denote the sets $U D\left(G_{1} \square K_{n}\right)$ and $U D\left(G_{2} \square K_{n}\right)$ respectively.

Operation 1. If $x \notin \pi_{G_{1}}\left(D_{1}\right)$ and $y \notin \pi_{G_{2}}\left(D_{2}\right)$, then $\left(\left(G_{1} \cup G_{2}\right)+x y\right) \square K_{n} \in \mathcal{U}$ and $U D\left(\left(\left(G_{1} \cup G_{2}\right)+x y\right) \square K_{n}\right)=D_{1} \cup D_{2}$.

Proof. Let H denote the graph $\left(\left(G_{1} \cup G_{2}\right)+x y\right) \square K_{n}$. First, we see that $D_{1} \cup D_{2}$ dominates all of H. Let D be a γ-set for H. It follows that

$$
|D| \leq\left|D_{1} \cup D_{2}\right|=\left|D_{1}\right|+\left|D_{2}\right| .
$$

Without loss of generality, suppose that $\left|D \cap V\left(H_{1}\right)\right| \leq\left|D_{1}\right|$. Since the only vertices of H_{1} that could be dominated from outside of H_{1} are elements of $\{x\} \times$ [n], we see that either $D \cap V\left(H_{1}\right)$ dominates all of H_{1}, or $D \cap V\left(H_{1}\right)$ fails to dominate a subset B of $\{x\} \times[n]$.

First, suppose that $D \cap V\left(H_{1}\right)$ dominates all of H_{1}. Since H_{1} has a unique γ-set, and since we are assuming $\left|D \cap V\left(H_{1}\right)\right| \leq\left|D_{1}\right|$, we have that $D \cap V\left(H_{1}\right)=$
D_{1}. However, if $D \cap V\left(H_{1}\right)=D_{1}$, then we also have $D \cap V\left(H_{2}\right)=D_{2}$ since $x \notin \pi_{G_{1}}\left(D_{1}\right)$. Thus, in this case, we have that $D=D_{1} \cup D_{2}$.

Now suppose that $D \cap V\left(H_{1}\right)$ fails to dominate a subset B of $\{x\} \times[n]$. By Lemma 10, we have that $\left|D \cap V\left(H_{1}\right)\right| \geq\left|D_{1}\right|$. Since $|D| \leq\left|D_{1}\right|+\left|D_{2}\right|$, we have that $\left|D \cap V\left(H_{2}\right)\right| \leq\left|D_{2}\right|$. Note, however, that $D \cap V\left(H_{2}\right)$ intersects $\{y\} \times[n]$, in which case we have a set of cardinality at most $\left|D_{2}\right|$ that is distinct from D_{2} and dominates H_{2}. This contradicts the uniqueness of D_{2}. Our result now follows.

Operation 2. Let $x \in \pi_{G_{1}}\left(D_{1}\right)$ and $y \in \pi_{G_{2}}\left(D_{2}\right)$. If u is a new vertex in neither G_{1} nor G_{2}, then $\left(\left(G_{1} \cup G_{2}\right)+\{u x, u y\}\right) \square K_{n} \in \mathcal{U}$ and $U D\left(\left(\left(G_{1} \cup G_{2}\right)+\right.\right.$ $\left.\{u x, u y\}) \square K_{n}\right)=D_{1} \cup D_{2}$.

Proof. Let H denote the graph $\left(\left(G_{1} \cup G_{2}\right)+\{u x, u y\}\right) \square K_{n}$. First, note that $D_{1} \cup D_{2}$ dominates H. If D is a γ-set of H with $|D|<\left|D_{1}\right|+\left|D_{2}\right|$, then $D \cap(\{u\} \times[n]) \neq \emptyset$. Suppose that $\left\{\left(u, i_{1}\right),\left(u, i_{2}\right), \ldots,\left(u, i_{k}\right)\right\} \subseteq D$. Then $\left\{\left(x, i_{1}\right),\left(x, i_{2}\right), \ldots,\left(x, i_{k}\right)\right\}$ and $\left\{\left(y, i_{1}\right),\left(y, i_{2}\right), \ldots,\left(y, i_{k}\right)\right\}$ need not be dominated from H_{1} and H_{2} respectively. However, by Lemma 11, we know that $\mid D \cap$ $V\left(H_{1}\right)\left|\geq\left|D_{1}\right|\right.$ and that $| D \cap V\left(H_{2}\right)\left|\geq\left|D_{2}\right|\right.$. Thus, $| D\left|\geq\left|D_{1}\right|+\left|D_{2}\right|+k>\right.$ $\left|D_{1} \cup D_{2}\right|$. Thus, no γ-set of H intersects $\{u\} \times[n]$. Hence, any γ-set of H intersects each of $V\left(H_{1}\right)$ and $V\left(H_{2}\right)$ in a γ-set, in which case $D=D_{1} \cup D_{2}$.

Before we discuss the next operation, we need the following lemma.
Lemma 14. Let T be a tree, and let $T \square K_{n} \in \mathcal{U}$. If $(v, i) \notin U D\left(T \square K_{n}\right)$ is adjacent to at least two elements of $U D\left(T \square K_{n}\right)$, then $(T-v) \square K_{n} \in \mathcal{U}$ and $U D\left((T-v) \square K_{n}\right)=U D\left(T \square K_{n}\right)$.

Proof. Let H^{\prime} denote the graph $(T-v) \square K_{n}$ and let D denote the set $U D\left(T \square K_{n}\right)$. By Lemma 10, we know that $\gamma\left(H^{\prime}\right)=\gamma\left(T \square K_{n}\right)$. Thus, D is a γ-set for H^{\prime}. We must show that D is the only γ-set for H^{\prime}. Note that the removal of $(v, 1),(v, 2), \ldots,(v, n)$ from $T \square K_{n}$ breaks $T \square K_{n}$ into $k \geq 2$ components; call them $H_{1}, H_{2}, \ldots, H_{k}$.

We claim that for $i=1,2, \ldots k, D_{i}=D \cap V\left(H_{i}\right)$ is the unique γ-set for H_{i}. Without loss of generality, consider D_{1}. Clearly D_{1} is a dominating set for H_{1}. If D_{1}^{\prime} were a smaller dominating set of H_{1}, then $D_{1}^{\prime} \cup D_{2} \cup \cdots \cup D_{k}$ would be a smaller γ-set for $T \square K_{n}$. Thus, D_{1} will be a γ-set of H_{1}. By the same logic, D_{1} is the unique γ-set for H_{1}.

Thus, each H_{i} has D_{i} as its unique minimum dominating set, in which case H^{\prime} has $D=D_{1} \cup D_{2} \cup \cdots \cup D_{k}$ as its unique γ-set.

Operation 3. Let G_{2} be a tree. If $x \in \pi_{G_{1}}\left(D_{1}\right), y \notin \pi_{G_{2}}\left(D_{2}\right)$, and y is a neighbor of at least two vertices in $\pi_{G_{2}}\left(D_{2}\right)$, then $\left(\left(G_{1} \cup G_{2}\right)+x y\right) \square K_{n} \in \mathcal{U}$ and $U D\left(\left(\left(G_{1} \cup G_{2}\right)+x y\right) \square K_{n}\right)=D_{1} \cup D_{2}$.

Proof. Let H denote the graph $\left(\left(G_{1} \cup G_{2}\right)+x y\right) \square K_{n}$. Note that $D_{1} \cup D_{2}$ dominates H. Let D be a γ-set of H. Suppose that $(\{y\} \times[n]) \cap D \neq \emptyset$. This implies that some subset of $\{x\} \times[n]$ will be dominated from outside of H_{1}. By Lemma 11, we still have that $\left|D \cap V\left(H_{1}\right)\right| \geq\left|D_{1}\right|$. Additionally, $D \cap V\left(H_{2}\right)$ dominates H_{2}, in which case $\left|D \cap V\left(H_{2}\right)\right|>\left|D_{2}\right|$ since D_{2} is the unique γ-set for H_{2} and $y \notin \pi_{G_{2}}\left(D_{2}\right)$. Thus, we have $|D|>\left|D_{1} \cup D_{2}\right|$. This implies that no γ-set of H intersects $\{y\} \times[n]$. Hence, if D is a γ-set for H, then $D \cap V\left(H_{1}\right)=D_{1}$. Lemma 6 then implies that $D \cap V\left(H_{2}\right)=D_{2}$. Thus, $D_{1} \cup D_{2}$ is the unique γ-set for H.

Operation 4. Let G_{1} and G_{2} be trees. If $x \in \pi_{G_{1}}\left(D_{1}\right)$ and $y \in \pi_{G_{2}}\left(D_{2}\right)$, then $\left(\left(G_{1} \cup G_{2}\right)+\{x y\}\right) \square K_{n} \in \mathcal{U}$ and $U D\left(\left(\left(G_{1} \cup G_{2}\right)+\{x y\}\right) \square K_{n}\right)=D_{1} \cup D_{2}$.

Proof. Once again, let H denote the graph $\left(\left(G_{1} \cup G_{2}\right)+\{x y\}\right) \square K_{n}$. Since $D_{1} \cup D_{2}$ dominates H, we have that $\gamma(H) \leq\left|D_{1} \cup D_{2}\right|=\left|D_{1}\right|+\left|D_{2}\right|$. Let A denote the set $\{x\} \times[n]$, let B denote the set $\{y\} \times[n]$, and suppose that D is a γ-set for H.

If $A \subseteq D$ and $B \subseteq D$, then $D \cap V\left(H_{1}\right)$ and $D \cap V\left(H_{2}\right)$ are γ-sets for H_{1} and H_{2}, respectively, in which case $D=D_{1} \cup D_{2}$.

Suppose that $D \cap A=\emptyset$. This implies that $D \cap V\left(H_{1}\right)$ dominates $H_{1}-A$. However, by Theorem 13, we know that $\gamma\left(H_{1}-A\right)>\gamma\left(H_{1}\right)=\left|D_{1}\right|$. Additionally, in this case $D \cap V\left(H_{2}\right)$ is a γ-set of H_{2} implying that $D \cap H_{2}=D_{2}$. Thus, we have $|D|>\left|D_{1}\right|+\left|D_{2}\right|=\left|D_{1} \cup D_{2}\right|$. The same contradiction arises if $D \cap B=\emptyset$.

This leaves us with one case to consider. Without loss of generality, suppose that $0<|D \cap A|<|A|$ and that $D \cap B \neq \emptyset$. Then $D \cap V\left(H_{1}\right)$ dominates H_{1} and $D \cap V\left(H_{2}\right)$ dominates H_{2}. However, since D_{1} and D_{2} are the unique γ-sets for H_{1} and H_{2} respectively, and since $A \subseteq D_{1}$, we have that $\left|D \cap V\left(H_{1}\right)\right|>\left|D_{1}\right|$ and that $\left|D \cap V\left(H_{2}\right)\right| \geq\left|D_{2}\right|$. Thus, we have $|D|>\left|D_{1} \cup D_{2}\right|$, a contradiction.

Thus, we have $D=D_{1} \cup D_{2}$, which implies $D_{1} \cup D_{2}$ is the unique γ-set for H.

6. Main Result

We are now able to prove our main theorem, which we restate for your convenience.

Theorem 1. Let n be a positive integer and let T be a nontrivial tree. The graph $T \square K_{n} \in \mathcal{U}$ if and only if T has a minimum dominating set D such that for all $v \in D,|e p n(v, D)| \geq n+1$.

Proof. Suppose that $T \square K_{n}$ has a unique γ-set denoted $U D$. By Lemma 2, we know that $U D$ satisfies the stacked property. Thus, there exists $S \subseteq V(T)$
such that $U D=S \times[n]$. Additionally, by Lemma 6 , for every element $v \in U D$, $|e p n(v, U D)| \geq n+1$. This implies that for every element $w \in S,|e p n(w, S)| \geq$ $n+1$. Finally, by the proof of Proposition 5, S is a γ-set for T.

Now suppose that T is a tree, and suppose that T has a γ-set D^{\prime} for which every element in D^{\prime} has at least $n+1$ external private neighbors with respect to D^{\prime}. Define H to be the graph $T \square K_{n}$, and let $D=D^{\prime} \times[n]$. Clearly D is a dominating set for H. Furthermore, since every element of D^{\prime} has at least $n+1$ external private neighbors with respect to D^{\prime} in T, every element of D has at least $n+1$ external private neighbors with respect to D in H. Thus, if we can prove that D is a γ-set for H, Theorem 13 will imply that D is the unique γ-set for H. We do this by induction on the cardinality of T.

The base case is given by $T=K_{1, n+1}$ where the result holds. Thus, assume the result holds whenever $|V(T)|<r$. Let T be a tree on r vertices having a γ-set D^{\prime} for which every element in D^{\prime} has at least $n+1$ external private neighbors with respect to D^{\prime}. By Theorem 12, D^{\prime} is the unique γ-set for T. Let H be $T \square K_{n}$, and let D be defined as above. Consider a diametral path in T, call it $v_{1} v_{2} \cdots v_{k}$. Note that v_{k} is a leaf and cannot be an element of D^{\prime}. This implies that $v_{k-1} \in D^{\prime}$. In order for v_{k-1} to have at least $n+1$ external private neighbors, v_{k-1} must be adjacent to at least $n-1$ other leaves. Let A be the set $\left\{v_{k-1}\right\} \cup \operatorname{epn}\left(v_{k-1}, D^{\prime}\right)$ and let $B=\left\{v \in N\left(v_{k-1}\right): v \notin D^{\prime},\left|N(v) \cap D^{\prime}\right| \geq 2\right\}$. We note that B equals either the empty set or $\left\{v_{k-2}\right\}$. By Theorem $12,\left\{v_{k-1}\right\}$ and $D^{\prime}-\left\{v_{k-1}\right\}$ are the unique minimum dominating sets for $T\langle A\rangle$ and $T-(A \cup B)$ respectively. By our induction hypothesis, $\left\{v_{k-1}\right\} \times[n]$ and $D-\left(\left\{v_{k-1}\right\} \times[n]\right)$ are the unique minimum dominating sets for $T\langle A\rangle \square K_{n}$ and $(T-(A \cup B)) \square K_{n}$ respectively. Our original graph H can be reconstructed from $T\langle A\rangle \square K_{n}$ and $(T-(A \cup B)) \square K_{n}$ by performing at least one of the operations discussed in Section 5 above. Hence, D is the unique γ-set for H.

Theorem 1 implies that in order to determine whether $T \square K_{n} \in \mathcal{U}$ it is sufficient to consider T alone. That is, one need only find a γ-set in T and count the number of external private neighbors for each vertex in the set. Since finding a minimum dominating set in a tree can be done in linear time (see [2]), we see that the problem of determining for which $K_{n}, T \square K_{n} \in \mathcal{U}$ is polynomial.

Acknowledgements

Before concluding, the author would like to thank the anonymous referees for their suggestions, which helped improve this paper. He would also like to thank his two advisors, Dr. Kevin James of Clemson University and Dr. Doug Rall of Furman University, for their guidance.

References

[1] M. Chellali and T. Haynes, Trees with unique minimum paired-dominating sets, Ars Combin. 73 (2004) 3-12.
[2] E. Cockayne, S. Goodman and S. Hedetniemi, A linear algorithm for the domination number of a tree, Inform. Process. Lett. 4 (1975) 41-44. doi:10.1016/0020-0190(75)90011-3
[3] M. Fischermann, Block graphs with unique minimum dominating sets, Discrete Math. 240 (2001) 247-251. doi:10.1016/S0012-365X(01)00196-0
[4] M. Fischermann, Unique total domination graphs, Ars Combin. 73 (2004) 289-297.
[5] M. Fischermann, D. Rautenbach and L. Volkmann, Maximum graphs with a unique minimum dominating set, Discrete Math. 260 (2003) 197-203. doi:10.1016/S0012-365X(02)00670-2
[6] M. Fischermann, D. Rautenbach and L. Volkmann, A note on the complexity of graph parameters and the uniqueness of their realizations, J. Combin. Math. Combin. Comput. 47 (2003) 183-188.
[7] M. Fischermann and L. Volkmann, Unique minimum domination in trees, Australas. J. Combin. 25 (2002) 117-124.
[8] M. Fischermann and L. Volkmann, Cactus graphs with unique minimum dominating sets, Util. Math. 63 (2003) 229-238.
[9] M. Fischermann and L. Volkmann, Unique independence, upper domination and upper irredundance in graphs, J. Combin. Math. Combin. Comput. 47 (2003) 237249.
[10] M. Fischermann, L. Volkmann and I. Zverovich, Unique irredundance, domination, and independent domination in graphs, Discrete Math. 305 (2005) 190-200. doi:10.1016/j.disc.2005.08.005
[11] M. Fraboni and N. Shank, Maximum graphs with unique minimum dominating set of size two, Australas. J. Combin. 46 (2010) 91-99.
[12] G. Gunther, B. Hartnell, L. Markus and D. Rall, Graphs with unique minimum dominating sets, in: Proc. 25th S.E. Int. Conf. Combin., Graph Theory, and Computing, Congr. Numer. 101 (1994) 55-63.
[13] R. Hammack, W. Imrich and S. Klavžar, Handbook of Product Graphs (CRC Press, 2011).
[14] T. Haynes and M. Henning, Trees with unique minimum total dominating sets, Discuss. Math. Graph Theory 22 (2002) 233-246. doi:10.7151/dmgt. 1172
[15] M. Henning, Defending the Roman Empire from multiple attacks, Discrete Math. 271 (2003) 101-115.
doi:10.1016/S0012-365X(03)00040-2
[16] M. Henning and S. Hedetniemi, Defending the Roman Empire - a new strategy, Discrete Math. 266 (2003) 239-251.
doi:10.1016/S0012-365X(02)00811-7
[17] J. Topp, Graphs with unique minimum edge dominating sets and graphs with unique maximum independent sets of vertices, Discrete Math. 121 (1993) 199-210. doi:10.1016/0012-365X(93)90553-6

Received 15 May 2014
Revised 23 December 2014
Accepted 23 December 2014

