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Abstract

Let k be a positive integer, Sk and Ck denote, respectively, a star and
a cycle of k edges. λKn is the usual notation for the complete multigraph
on n vertices and in which every edge is taken λ times. In this paper,
we investigate necessary and sufficient conditions for the existence of the
decomposition of λKn into edges disjoint of stars Sk’s and cycles Ck’s.
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1. Introduction

All graphs considered in this paper are finite and undirected, with no loops.
Let G, H and F be three graphs. An H-decomposition of G is a partition
of the edge set of G into copies of H. If G has an H-decomposition, we say
that G is H-decomposable. An (H,F )-decomposition of G is a partition of the
edge set of G into copies of H and F using at least one copy of each. If G
has an (H,F )-decomposition, we say that G is (H,F )-decomposable (or (H,F )-
multidecomposable).

In [20], Wilson stated his fundamental theorem on the existence of an H-
decomposition of the complete graph Kn for any fixed H as long as the number
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of edges of Kn is divisible by the number of edges of H and n is large enough.
Since then, decomposition problems became an active research area. There have
been several important research papers relating to various decompositions of dif-
ferent graphs. For example, the problem of the H-decomposition has been widely
studied such as the decomposition of bipartite graphs into closed trails [8] and
also the decomposition of complete multigraphs into crowns [10], paths [19], or
cycles [7]. Moreover, the multidecomposition problems were also considered by
several studies such as the multidecomposition of complete graph into cycles and
stars [15] or paths and cycles [14, 13]. Another multidecomposition of bipartite
graphs into subgraphs was considered in [16, 9].

Let Kn be a complete graph of order n and let λ be a positive integer. We
denote by λKn the complete multigraph obtained by replacing each edge of Kn

by λ parallel edges that have the same end-nodes. In [1, 2], Abueida and Daven
gave necessary and sufficient conditions for decomposing Kn into cycles of k edges
and stars of k − 1 edges, for k = 4 and k = 5. Abueida and O’Neil [3] extended
this decomposition for the complete multigraph λKn when k = 3, 4, 5, and they
conjectured the result for any integer k ≥ 3 and n ≥ k. In [11], Priyadharsini
and Muthusamy showed the above conjecture to be true for n = k.

More recently, Abueida and Lian [4] gave necessary and sufficient conditions
for decomposing Kn into cycles and stars of k edges, for n ≥ 4k and k even or
n odd. In our paper, we improve results on this decomposition and we extend
it for the complete multigraph λKn. Thus, we present necessary and sufficient
conditions for different cases as follows:

• k is prime,

• k divides either n− 1, n or λ,

• n ≥ 2k and λ is even or gcd(λ, k) = 1,

• n ≥ 4k, independently of the parity of n or k, thus improving the result of
Abueida and Lian [4].

2. Preliminaries

2.1. Related works

We introduce here some results on a Ck-decomposition an dan Sk-decomposition
that are useful for our proofs.

Theorem 1 [21]. A necessary and sufficient condition for the existence of an
Sk-decomposition of λKn is that:

• λn(n− 1) ≡ 0 [2k],

• n ≥ 2k for λ = 1,
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• n ≥ k + 1 for even λ,

• n ≥ k + 1 + k/λ for odd λ ≥ 3.

Theorem 2 [6]. Let λ, n and k be integers with n,k ≥ 3 and λ ≥ 1. There exists
a decomposition of λKn into cycles of k edges if and only if k ≤ n, λ (n − 1) is
even and k divides λn(n− 1)/2. There exists a decomposition of λKn into cycles
of k edges and a perfect matching if and only if k ≤ n, λ (n − 1) is odd and k
divides λn(n− 1)/2− (n/2).

Theorem 3 ([5],[12]). Let n and k be positive integers. Kn has a Ck-decomposi-
tion if and only if n is odd, 3 ≤ k ≤ n, and n(n− 1) ≡ 0 [2k].

Theorem 4 [21]. Let m and n be integers with m ≥ n ≥ 1. Then Km,n is Sk-
decomposable if and only if m ≥ k and m ≡ 0 [k] if n < k, mn ≡ 0 [k] if n ≥ k.

Theorem 5 [17]. For positive integers m, n, and k, the graph Km,n is Ck-
decomposable if and only if m, n, and k are even, k ≥ 4, min{m,n} ≥ k/2, and
mn ≡ 0 [k].

2.2. Introductory results

Let G be a graph. The order of G is the cardinality of its vertex set and the
size of the graph G is the cardinality of its edge set. We begin with the following
lemma to prove the necessary conditions when λKn is (Sk, Ck)-decomposable.

Lemma 6. Let n ≥ 3 and λ > 1 be positive integers. If λKn is (Sk, Ck)-
decomposable, then 2 ≤ k ≤ n− 1 and λn(n− 1) ≡ 0 [2k].

Proof. Since the minimum length of a cycle and the maximum size of a star in
λKn are, respectively, 2 and n− 1, so 2 ≤ k ≤ n− 1 is necessary. Since λKn has
λn(n− 1)/2 edges and each subgraph in a (Ck, Sk)-decomposition has k edges, k
has to divide λn(n− 1)/2.

As an introduction result, we show in the next proposition that the necessary
conditions in Lemma 6 of the (Ck, Sk)-decomposition of λKn are also sufficient
in the special case when k = 4.

Proposition 7. Let n > 4 and λ > 1 be positive integers. There exists a (C4, S4)-
decomposition if and only if λn(n− 1)/2 ≡ 0 [4].

Proof. We distinguish two cases according to the parity of λ.

Case 1. λ is odd. Since λn(n − 1)/2 ≡ 0 [4] and λ is odd by assumption,
n(n− 1) ≡ 0 [8]. We have two subcases.
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Subcase 1a. n is even. Since n(n − 1) ≡ 0 [8] and n is even, we obtain
n ≡ 0 [8]. Let n = 8α with α ≥ 1. Then λKn can be decomposed into disjoint
union of α copies of λK8 and disjoint union of α(α− 1)/2 copies of λK8,8. Every
λK8,8 can be decomposed into S4 using Theorem 4. We now decompose each
λK8 into C4’s and S4’s as follows. Note that λK8 = K8 ∪ (λ − 1)K8. Since
Theorem 1 implies that K8 is S4-decomposable and Theorem 2 guarantees that
(λ − 1)K8 is C4-decomposable, we have λK8 is (C4, S4)-decomposable. Thus,
λKn is (C4, S4)-decomposable.

Subcase 1b. n is odd. Since n is odd and n(n − 1) ≡ 0 [8] by assumption,
n − 1 ≡ 0 [8]. Let n − 1 = 8α. Since the degree of each vertex of λKn equals to
λ(n− 1) and is divisible by 4, we take one vertex and decompose all its incident
edges into 2λα stars of 4 edges. The remaining graph is λKn−1 with n− 1 = 8α.
In this case, we use the same method as in the previous Subcase 1a for λKn with
n = 8α.

Case 2. λ is even. Recall that n > 4. We give the (C4, S4)-decomposition of
λKn as follows according to values of n.

n = 5: Note that λK5 = λS4 ∪ λK4. Since λ is even we decompose λK4 into
C4, by Theorem 2. Thus, λK5 is (C4, S4)-decomposable.

n = 6 or n = 7: We have n(n−1) ≡ 0 [2] and λn(n−1) ≡ 0 [8] by assumption.
Consequently, λ ≡ 0 [4]. Then we take incident edges of one vertex and decompose
them into S4’s. The remaining graph is either λK5 when n = 6 or λK6 when
n = 7. Both remaining graphs are C4-decomposable using Theorem 2.

n = 8: Since λ is even, λK8 can be written as the disjoint union of 2K8’s.
Now we give the (C4, S4)-decomposition of 2K8. Each 2K4 is decomposed into
C4’s by Theorem 2 and 2K4,4 is decomposed into S4’s using Theorem 4. Since
each 2K8 is (C4, S4)-decomposable we have λK8 is also (C4, S4)-decomposable.

n ≥ 9: Note that λKn = λK4 ∪ λKn−4 ∪ λK4,n−4. Observe that |E(λK4)|
and |E(λK4,n−4)| are divisible by 4. By assumption |E(Kn)| is a multiple of 4, so
|E(λKn−4)| is also a multiple of 4. We decompose λK4 into cycles of 4 edges using
Theorem 2 with λ even. λK4,n−4 is S4-decomposable using Theorem 4. Since λ
is even, we decompose λKn−4 into C4 using Theorem 2. Thus, we conclude that
λKn is (S4, C4)-decomposable.

3. Decomposition of λKn When n ≥ 4k or n ≥ 2k and λ Even

In this section, we prove some lemmas and theorems, each of them treating a
special case of decomposition of λKn into Sk’s and Ck’s.

The next proposition proves that λKn is (Sk, Ck)-decomposable for all n ≥ 4k
and λ = 1, so we complete the missing cases in [4] when n ≥ 4k.
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Proposition 8. Let n and k be positive integers such that n ≥ 4k and n(n −
1)/2 ≡ 0 [k]. Then the graph Kn is (Sk, Ck)-decomposable.

Proof. Let n = qk + r, where q and r are integers with 0 ≤ r < k and q ≥ 4.
Note that Kn = Kqk+r = K2k ∪K(q−2)k+r ∪K2k,(q−2)k+r.

Clearly, |E(K2k)| and |E(K2k,(q−2)k+r)| are multiples of k. Thus ((q − 2)k +
r)((q− 2)k+ r− 1)/2 is also a multiple of k. We distinguish two cases according
to the parity of k.

Case 1. k is odd. It follows that K(q−2)k+r is Sk-decomposable by Theorem 1,
since (q− 2)k+ r ≥ 2k, and K2k,(q−2)k+r is also Sk-decomposable by Theorem 4.

We write K2k = Kk ∪ Kk ∪ Kk,k. Now, it is clear that each copy of Kk is
Ck-decomposable when k is odd by Theorem 3, and Kk,k is Sk-decomposable by
Theorem 4.

Case 2. k is even. In this case, K2k is Sk-decomposable by Theorem 1. If
n is even, then (q − 2)k + r is even. So, we can decompose K2k,(q−2)k+r into
Ck using Theorem 5. Since q ≥ 4, (q − 2)k + r ≥ 2k. Consequently, K(q−2)k+r

is Sk-decomposable by Theorem 1. Conversely, if n is odd, then (q − 2)k + r is
odd. Using Theorem 3, K(q−2)k+r can be decomposed into cycles of k edges, and
K2k,(q−2)k+r is Sk-decomposable by Theorem 4. Thus, we conclude that λKn is
(Sk, Ck)-decomposable when λ = 1.

In the rest of this section, we will focus on complete multigraph λKn, where
λ > 1. The following lemma gives sufficient conditions for decomposing λKn into
Ck’s and Sk’s, where λ > 1 is odd and n ≥ 4k.

Lemma 9. Let n, k and λ > 1 be positive integers such that n ≥ 4k and λ is
odd. If λn(n− 1)/2 ≡ 0 [k], then λKn is (Ck, Sk)-decomposable.

Proof. Let n = qk + r, where q and r are integers with 0 ≤ r < k and q ≥ 4.
Note that

λKn = λKqk+r = λK2k ∪ λK(q−2)k+r ∪ λK2k,(q−2)k+r

= (λ− 1)K2k ∪K2k ∪ λK(q−2)k+r ∪ λK2k,(q−2)k+r.

|E(λK2k)| and |E(λK2k,(q−2)k+r)| are multiples of k. Using argument that
|E(λKn)| is a multiple of k, i.e., λn(n − 1) is divisible by k, we obtain λ((q −
2)k + r)((q − 2)k + r − 1)/2 ≡ 0 [k]. Since (λ − 1)(2k − 1) is even and 2k ≥ k
we have (λ− 1)K2k is Ck-decomposable by Theorem 2. Theorem 1 for K2k with
λ = 1 implies that K2k is Sk-decomposable. We now decompose λK(q−2)k+r.

We have q ≥ 4. Then (q − 2)k+ r ≥ 2k+ r implies that (q − 2)k+ r ≥ 2k ≥
3k/2 + 1 for any k ≥ 2. Given that λ ≥ 2 we obtain 3k/2 + 1 ≥ k + 1 + k/λ, so
(q−2)k+r ≥ k+1+k/λ. Using Theorem 1 when λ is odd, since (q−2)k+r ≥ k+
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1+k/λ, we have λK(q−2)k+r is Sk-decomposable. Note that λK2k,(q−2)k+r can be
decomposed into λ copies of K2k,(q−2)k+r. Since K2k,(q−2)k+r is Sk-decomposable
by Theorem 4, so is λK2k,(q−2)k+r. Thus λKn is (Ck, Sk)-decomposable.

In the following lemmas, we will give sufficient conditions of the decomposi-
tion of λKn into Ck’s and Sk’s, where n ≥ 2k and λ is even or gcd(λ, k) = 1.

Lemma 10. Let n, k and λ be positive integers such that λ is even. For all
n ≥ 2k, if λn(n− 1)/2 ≡ 0 [k], then λKn is (Ck, Sk)-decomposable.

Proof. Let n = qk + r, where q and r are integers with 0 ≤ r < k and q ≥ 2.
Note that λKn = λKqk+r = λK(q−1)k ∪ λKk+r ∪ λK(q−1)k,k+r.

Obviously, |E(λK(q−1)k)| and |E(λK(q−1)k,k+r)| are multiples of k. Thus,
λ(k + r)(k + r − 1)/2 ≡ 0 [k] from the assumption that λn(n − 1)/2 is divisible
by k. λK(q−1)k and λKk+r are Ck-decomposable by Theorem 2 because λ is
even, (q − 1)k ≥ k and k + r ≥ k by assumption. Note that λK(q−1)k,k+r can be
decomposed into λ copies of K(q−1)k,k+r. Since K(q−1)k,k+r is Sk-decomposable
by Theorem 4, so is λK(q−1)k,k+r. Thus, λKn is (Ck, Sk)-decomposable.

Lemma 11. Let n, k and λ > 1 be positive integers such that gcd(λ, k) = 1. For
all n ≥ 2k, if λn(n− 1)/2 ≡ 0 [k], then λKn is (Ck, Sk)-decomposable.

Proof. From the previous lemma, we only have to examine the case when λ is
odd. We can decompose λKn as an edge disjoint union of (λ − 1)Kn and Kn.
Since gcd(λ, k) = 1, we have |E(Kn)| ≡ 0 [k]. It is clear that (λ − 1)Kn has a
(Ck, Sk)-decomposition by Lemma 10. Now we decompose Kn into stars of size
k by Theorem 1, since n ≥ 2k. Thus λKn is (Ck, Sk)-decomposable.

Using Proposition 8 and Lemmas 9, 10 and 11, we obtain the following the-
orem.

Theorem 12. Let n, k and λ be positive integers. If λn(n− 1)/2 ≡ 0 [k] and

• n ≥ 4k, or

• n ≥ 2k and λ > 1 is even or gcd(λ, k) = 1,

then λKn is (Ck, Sk)-decomposable.

4. Decomposition of λKn When k Is Prime or Divides Either n− 1,n
or λ

One can easily check that λKn is (C2, S2)-decomposable if and only if n > 2,
λ > 1 and λn(n− 1) ≡ 0 [4]. Thus, we admit the following lemma without proof.
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Lemma 13. Let n > 2 and λ > 1 be positive integers. There exists a decom-
position of λKn into copies of S2 and copies of C2 if and only if λn(n− 1)/2 is
even.

In Lemmas 14–16, we will show the sufficient conditions of the decomposition
of λKn into Ck’s and Sk’s when n = k+1, n = 2k+1 and n = 3k+1, respectively,
with k ≥ 3.

Lemma 14. Let n = k + 1, λ > 1 and k ≥ 3 be positive integers. There exists a
decomposition of λKn into copies of Sk and Ck if and only if λk(k−1)/2 ≡ 0 [k].

Proof. We split the proof into two cases as follows.

Case 1. k is odd or λ is even. By assumption, n = k + 1 and the degree of
each vertex of λKn is λk. We use one vertex in order to construct λ stars of k
edges. The remaining graph is λKn−1. Since k is odd or λ is even and we have
n−1 = k, we obtain λ(n−2) = λ(k−1) is always even and λk(k−1)/2 ≡ 0 [k], so
by Theorem 2 λKn−1 is Ck-decomposable. Thus, λKn is (Sk, Ck)-decomposable.

Case 2. k is even and λ is odd. This subcase does not exist because by
assumption λk(k−1)/2 ≡ 0 [k], which implies λ(k−1) to be even, a contradiction.
The opposite implication is easy to prove.

Lemma 15. Let n = 2k+1 and λ > 1 be positive integers, and let k be a positive
integer, k ≥ 3. There exists a decomposition of λKn into copies of Sk and Ck for
any k.

Proof. The number of edges in λK2k+1, λk(2k + 1), is a multiple of k. We
decompose λK2k+1 as follows : λK2k+1 = (λ−1)K2k+1∪K2k+1. Clearly, |E((λ−
1)K2k+1)| and |E(K2k+1)| are multiples of k. We decompose (λ − 1)K2k+1 into
Ck’s and K2k+1 into Sk’s. Hence λK2k+1 is (Sk, Ck)-decomposable.

Lemma 16. Let n = 3k+1, λ > 1 and k ≥ 3 be positive integers. There exists a
decomposition of λKn into copies of Sk and Ck if and only if 3λk(3k−1)/2 ≡ 0 [k].

Proof. We split the proof into two cases as follows:

Case 1. λ is even. This case is solved by Lemma 10.

Case 2. λ is odd. If k is odd, then λK3k+1 = λK2k+1 ∪ λKk ∪ λK2k+1,k. By
Lemma 15, λK2k+1 is (Sk, Ck)-decomposable. λKk can be decomposed into Ck’s,
and λK2k+1,k is Sk-decomposable.

If k is even, then 3λ(3k + 1) is not even, so this case cannot exist. The
opposite implication is easy to prove.

In the following proposition, we prove that for any k that divides n or n− 1,
λKn is (Sk, Ck)-decomposable.
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Proposition 17. For integers k, n and λ with λ > 1 and 2 ≤ k ≤ n + 1, if
n ≡ 0, 1 [k] and λn(n− 1)/2 ≡ 0 [k], then λKn is (Sk, Ck)-decomposable.

Proof. In the case when n = k + 1, n = 2k + 1 and n = 3k + 1 we use Lemmas
13, 14, 15 and 16, respectively.

By Theorem 12, if n = αk + 1 or n = αk with α ≥ 4, then λKn is (Sk, Ck)-
decomposable. To complete the proof, we study the cases when n = 2k and
n = 3k.

n = 2k: When λ is even, λKn is (Sk, Ck)-decomposable by Lemma 10. When
λ is odd, observe that λK2k = (λ− 1)K2k ∪K2k. (λ− 1)K2k is Ck-decomposable
by Theorem 2 and K2k is Sk-decomposable by Theorem 1.

n = 3k: If λ is even, then we have λKn is (Sk, Ck)-decomposable by Lemma
10. If λ is odd and k is odd, then λK3k = (λ − 1)K3k ∪ K3k, since |E(K3k)|
and |E((λ− 1)K3k)| are multiples of k. Thus, (λ− 1)K3k is Ck-decomposable by
Theorem 2, and K3k is Sk-decomposable by Theorem 1. On the other hand, if λ
is odd and k is even, then it is sufficient to show that λ3k(3k− 1) ≡ 0 [2k] is not
true in this case. So, when λ is odd, k must be also odd.

In the following proposition, we will show the decomposition of λKn into Sk’s
and Ck’s when λ is a multiple of k.

Proposition 18. For integers k and n with 2 ≤ k ≤ n − 1, if λ ≡ 0 [k], then
λKn is (Sk, Ck)-decomposable.

Proof. Since n ≥ k + 1, we distinguish two cases.

Case 1. n ≥ k + 2. λ ≡ 0 [k] implies that the degree of each vertex of
λKn is multiple of k. Thus, we can construct stars Sk using each vertex of the
multigraph. First we decompose incident edges of some vertex into Sk’s in a
circular manner as illustrated in Example 19. This process is repeated until the
remaining graph is a λKm, where m = k + 1 if k is even, and m = k if k is odd.

If k is odd, then the remaining graph is λKk and λk(k − 1)/2 ≡ 0 [k], which
implies that λKk can be decomposed into cycles of size k by Theorem 2. If k is
even, then the remaining graph is λKk+1, which has λk(k + 1)/2 edges. Thus
the number of edges is divisible by k. Since λk is even, the graph λKk+1 can
be decomposed into cycles of size k by Theorem 2. Hence, λKn is (Sk, Ck)-
decomposable.

Case 2. n = k + 1. Since the degree of each vertex is λk, we decompose
the incident edges of one vertex into λ copies of Sk. The remaining graph is
λKk. By assumption, λKk has number of edges divisible by k, which implies
that λk(k − 1)/2 ≡ 0 [k]. Since λ(k − 1) is even, we decompose λKk into copies
of Ck using Theorem 2.
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Example 19, illustrated by Figure 1, shows how Proposition 18 is applied to
a graph 3K5.

Example 19. (S3, C3)-decomposition of a graph λKn with n = 5 and λ = 3 is
as follows.

• Consider the graph 3K5. Since λ ≡ 0 [3] we have |E(3K5)| ≡ 0 [k].

• Taking on a vertex of 3K5 called v, we decompose the graph into λ(n −
1)/k = 4 stars by rotation. This rotation is applied to all the incident edges
of the considered node v (Figure 1 illustrates rotation construction).

• The remaining graph is 3K4. The same rotation construction is applied to
finding λ(n−2)/k = 3 stars. This rotation construction is applied until the
remaining graph is 3Kk(k = 3).

• The remaining graph 3K3 can be decomposed into 3 copies of C3.

=

a

+ ++

c

3   Starnd rd th4   Star

b

b

a

c

c

b

a

a

b

c

1   Star 2   Star
st

Figure 1. Rotation construction of stars. The edges of a star are labeled by a, b and c.

In the following corrolary, we will investigate the problem of decomposing
λKn into Sk’s and Ck’s for each prime number k.

Corollary 20. Let n and λ > 1 be positive integers, and let k be a positive prime
number. There exists a (Ck, Sk)-decomposition of λKn if and only if n ≥ k + 1
and λn(n− 1)/2 ≡ 0 [k].

Proof. We show that the necessary conditions given in Lemma 6 are also suffi-
cient. λn(n− 1)/2 is a multiple of k and k is a prime number, so we distinguish
three cases according to the multiplicity of n, n− 1 and λ.

When k divides n or k divides n−1, these cases are proved in Proposition 17.
When k divides λ, this case is proved in Proposition 18.
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The following theorem is a direct consequence of Propositions 17 and 18, and
Corollary 20.

Theorem 21. Let n, k and λ > 1 be positive integers. Then λKn is (Sk, Ck)-
decomposable if λn(n− 1)/2 ≡ 0 [k] and

• k is prime, or

• k divides either n− 1, n or λ.
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[12] M. Šajna, Cycle decompositions III: Complete graphs and fixed length cycles , J.
Combin. Des. 10 (2002) 27–78.
doi:10.1002/jcd.1027

[13] T.-W. Shyu, Decompositions of complete graphs into paths and cycles , Ars Combin.
97 (2010) 257–270.

[14] T.-W. Shyu, Decomposition of complete graphs into paths of length three and trian-
gles , Ars Combin. 107 (2012) 209–224.

[15] T.-W. Shyu, Decomposition of complete graphs into cycles and stars , Graphs Com-
bin. 29 (2013) 301–313.
doi:10.1007/s00373-011-1105-3

[16] T.-W. Shyu, Decomposition of complete bipartite graphs into paths and stars with
same number of edges , Discrete Math. 313 (2013) 865–871.
doi:10.1016/j.disc.2012.12.020

[17] D. Sotteau, Decomposition of Km,n (K
(∗)
m,n) into cycles (circuits) of length 2k, J.

Combin. Theory, Ser. B 30 (1981) 75–81.
doi:10.1016/0095-8956(81)90093-9

[18] M. Tarsi, Decomposition of complete multigraphs into stars , Discrete Math. 26

(1979) 273–278.
doi:10.1016/0012-365X(79)90034-7

[19] M. Tarsi, Decomposition of a complete multigraph into simple paths: Nonbalanced
handcuffed designs , J. Combin. Theory, Ser. A 34 (1983) 60–70.
doi:10.1016/0097-3165(83)90040-7

[20] R.M. Wilson, Decomposition of complete graphs into subgraphs isomorphic to a given
graph, in: Proceedings of the 5th British Combinatorial Conference, Util. Math.,
Winnipeg, Congr. Numer. 15 (1976) 647–659.

[21] S. Yamamoto, H. Ikeda, S. Shige-eda, K. Ushio and N. Hamada, On claw-
decomposition of complete graphs and complete bigraphs , Hiroshima Math. J. 5

(1975) 33–42.

Received 9 september 2014
Revised 23 December 2014

Accepted 23 December 2014

Powered by TCPDF (www.tcpdf.org)

http://dx.doi.org/10.1007/s12190-009-0267-0
http://dx.doi.org/10.1002/jcd.1027
http://dx.doi.org/10.1007/s00373-011-1105-3
http://dx.doi.org/10.1016/j.disc.2012.12.020
http://dx.doi.org/10.1016/0095-8956\(81\)90093-9
http://dx.doi.org/10.1016/0012-365X\(79\)90034-7
http://dx.doi.org/10.1016/0097-3165\(83\)90040-7
http://www.tcpdf.org

