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Abstract

Let k be a positive integer, Sx and C} denote, respectively, a star and
a cycle of k edges. MK, is the usual notation for the complete multigraph
on n vertices and in which every edge is taken A times. In this paper,
we investigate necessary and sufficient conditions for the existence of the
decomposition of AK,, into edges disjoint of stars Si’s and cycles Cy’s.
Keywords: graph decomposition, complete multigraph, stars, cycles.

2010 Mathematics Subject Classification: 05C70.

1. INTRODUCTION

All graphs considered in this paper are finite and undirected, with no loops.
Let G, H and F be three graphs. An H-decomposition of G is a partition
of the edge set of G into copies of H. If G has an H-decomposition, we say
that G is H-decomposable. An (H, F')-decomposition of G is a partition of the
edge set of G into copies of H and F using at least one copy of each. If G
has an (H, F)-decomposition, we say that G is (H, F')-decomposable (or (H, F)-
multidecomposable).

In [20], Wilson stated his fundamental theorem on the existence of an H-
decomposition of the complete graph K, for any fixed H as long as the number
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of edges of K, is divisible by the number of edges of H and n is large enough.
Since then, decomposition problems became an active research area. There have
been several important research papers relating to various decompositions of dif-
ferent graphs. For example, the problem of the H-decomposition has been widely
studied such as the decomposition of bipartite graphs into closed trails [8] and
also the decomposition of complete multigraphs into crowns [10], paths [19], or
cycles [7]. Moreover, the multidecomposition problems were also considered by
several studies such as the multidecomposition of complete graph into cycles and
stars [15] or paths and cycles [14, 13]. Another multidecomposition of bipartite
graphs into subgraphs was considered in [16, 9].

Let K, be a complete graph of order n and let A be a positive integer. We
denote by MK, the complete multigraph obtained by replacing each edge of K,
by A parallel edges that have the same end-nodes. In [1, 2], Abueida and Daven
gave necessary and sufficient conditions for decomposing K, into cycles of k£ edges
and stars of k — 1 edges, for k = 4 and k = 5. Abueida and O’Neil [3] extended
this decomposition for the complete multigraph AK,, when k = 3,4,5, and they
conjectured the result for any integer k¥ > 3 and n > k. In [11], Priyadharsini
and Muthusamy showed the above conjecture to be true for n = k.

More recently, Abueida and Lian [4] gave necessary and sufficient conditions
for decomposing K,, into cycles and stars of k edges, for n > 4k and k even or
n odd. In our paper, we improve results on this decomposition and we extend
it for the complete multigraph AK,,. Thus, we present necessary and sufficient
conditions for different cases as follows:

e [ is prime,
e [ divides either n — 1, n or A,
e n > 2k and \ is even or ged(\, k) = 1,

e n > 4k, independently of the parity of n or k, thus improving the result of
Abueida and Lian [4].

2. PRELIMINARIES

2.1. Related works

We introduce here some results on a Ck-decomposition an dan Si-decomposition
that are useful for our proofs.

Theorem 1 [21]. A necessary and sufficient condition for the existence of an
Sy -decomposition of AK,, is that:

e \n(n—1) =0[2k],

o n>2k for =1,
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e n>k+1 for even A,
en>k+1+k/\ for odd A > 3.

Theorem 2 [6]. Let A, n and k be integers with n,k > 3 and X > 1. There exists
a decomposition of AK,, into cycles of k edges if and only if k <mn, A (n—1) is
even and k divides An(n —1)/2. There exists a decomposition of NK,, into cycles
of k edges and a perfect matching if and only if k < n, A (n —1) is odd and k
divides An(n — 1)/2 — (n/2).

Theorem 3 ([5],[12]). Let n and k be positive integers. K,, has a Cy-decomposi-
tion if and only if n is odd, 3 <k <n, and n(n — 1) = 0[2k].

Theorem 4 [21]. Let m and n be integers with m > n > 1. Then K, , is Sk-
decomposable if and only if m >k and m =0[k] if n <k, mn=0[k] if n > k.

Theorem 5 [17]. For positive integers m, n, and k, the graph Ky, , is Ck-
decomposable if and only if m, n, and k are even, k > 4, min{m,n} > k/2, and
mn = 0 [k].

2.2. Introductory results

Let G be a graph. The order of G is the cardinality of its vertex set and the
size of the graph G is the cardinality of its edge set. We begin with the following
lemma to prove the necessary conditions when AK,, is (S, C})-decomposable.

Lemma 6. Let n > 3 and A > 1 be positive integers. If AK,, is (Sg,Ck)-
decomposable, then 2 <k <mn —1 and An(n — 1) = 0[2k].

Proof. Since the minimum length of a cycle and the maximum size of a star in
MK, are, respectively, 2 and n — 1, so 2 < k < n — 1 is necessary. Since AK, has
An(n —1)/2 edges and each subgraph in a (Cy, Si)-decomposition has k edges, k
has to divide An(n — 1)/2. |

As an introduction result, we show in the next proposition that the necessary
conditions in Lemma 6 of the (Cy, Si)-decomposition of MK, are also sufficient
in the special case when k = 4.

Proposition 7. Letn > 4 and \ > 1 be positive integers. There exists a (Cy, Sy)-
decomposition if and only if A\n(n —1)/2 =014].
Proof. We distinguish two cases according to the parity of .

Case 1. X is odd. Since An(n — 1)/2 = 0[4] and A is odd by assumption,
n(n —1) = 0[8]. We have two subcases.
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Subcase la. n is even. Since n(n — 1) = 0[8] and n is even, we obtain
n = 0[8]. Let n = 8a with @ > 1. Then AK,, can be decomposed into disjoint
union of & copies of AKg and disjoint union of a(a —1)/2 copies of AKgg. Every
AKgg can be decomposed into Sj using Theorem 4. We now decompose each
AKg into C4’s and Sy’s as follows. Note that A\Kg = Kg U (A — 1)Kg. Since
Theorem 1 implies that Kg is S4-decomposable and Theorem 2 guarantees that
(A — 1)Ky is C4-decomposable, we have AKg is (Cy, S4)-decomposable. Thus,
MK, is (Cy, S4)-decomposable.

Subcase 1b. n is odd. Since n is odd and n(n — 1) = 0[8] by assumption,
n—1=0][8]. Let n — 1 = 8a. Since the degree of each vertex of AK,, equals to
A(n — 1) and is divisible by 4, we take one vertex and decompose all its incident
edges into 2\« stars of 4 edges. The remaining graph is AK,,_1 with n — 1 = 8a.
In this case, we use the same method as in the previous Subcase la for AK,, with
n = 8a.

Case 2. X is even. Recall that n > 4. We give the (Cy, S4)-decomposition of
MK, as follows according to values of n.

n = 5: Note that AK5 = AS4 U AKy. Since ) is even we decompose AKy into
Cy4, by Theorem 2. Thus, K} is (Cy, S4)-decomposable.

n=6orn =7 We have n(n—1) = 0[2] and An(n—1) = 0[8] by assumption.
Consequently, A = 0 [4]. Then we take incident edges of one vertex and decompose
them into Sy’s. The remaining graph is either AK5 when n = 6 or AKg when
n = 7. Both remaining graphs are C4y-decomposable using Theorem 2.

n = 8: Since A is even, AKg can be written as the disjoint union of 2Kg’s.
Now we give the (C4, Sy)-decomposition of 2Kg. Each 2K, is decomposed into
C4’s by Theorem 2 and 2K, 4 is decomposed into S4’s using Theorem 4. Since
each 2Ky is (Cy, S4)-decomposable we have A\Ky is also (Cy, Sy)-decomposable.

n > 9: Note that NK,, = AK4 U AK,,_4 U XKy ,,—4. Observe that |[E(AKy)|
and |E(AKy4,—4)| are divisible by 4. By assumption |E(K,)| is a multiple of 4, so
|E(AK,,—4)] is also a multiple of 4. We decompose AK into cycles of 4 edges using
Theorem 2 with A even. MKy ,_4 is Ss-decomposable using Theorem 4. Since A
is even, we decompose AK,,_4 into Cy using Theorem 2. Thus, we conclude that
MK, is (S4, Cy)-decomposable. |

3. DECOMPOSITION OF AK,, WHEN n > 4k OR n > 2k AND A EVEN

In this section, we prove some lemmas and theorems, each of them treating a
special case of decomposition of AK,, into Si’s and C}’s.

The next proposition proves that AK), is (S, Cj)-decomposable for all n > 4k
and A = 1, so we complete the missing cases in [4] when n > 4k.
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Proposition 8. Let n and k be positive integers such that n > 4k and n(n —
1)/2 =01k]. Then the graph K, is (Sk,C})-decomposable.

Proof. Let n = gk + r, where g and r are integers with 0 < r < k and g > 4.
Note that K,, = Kyp1, = Ko U K(q72)k+r U KQk?,(Q*2)k+T”

Clearly, |E(Ka)| and |E(Kop, (q—2)k4r)| are multiples of k. Thus ((q —2)k +
r)((¢ —2)k+r —1)/2 is also a multiple of k. We distinguish two cases according
to the parity of k.

Case 1. kis odd. It follows that K,_9)r4, is Sk-decomposable by Theorem 1,
since (¢ — 2)k +r > 2k, and Ko, (q—2)k+r 1s also Sg-decomposable by Theorem 4.

We write Ko, = K U K, U K ;.. Now, it is clear that each copy of Kj, is
C-decomposable when £ is odd by Theorem 3, and Kj, j is Si-decomposable by
Theorem 4.

Case 2. k is even. In this case, Ko is Sp-decomposable by Theorem 1. If
n is even, then (¢ — 2)k + r is even. So, we can decompose Koy, (q—2)k+r intO
C using Theorem 5. Since ¢ > 4, (¢ — 2)k +r > 2k. Consequently, K;_o)ptr
is Sg-decomposable by Theorem 1. Conversely, if n is odd, then (¢ — 2)k + r is
odd. Using Theorem 3, K(;_2)r4, can be decomposed into cycles of k edges, and
Koy, (¢—2)k+r 18 Sk-decomposable by Theorem 4. Thus, we conclude that AK,, is
(Sk, Ci)-decomposable when A = 1. |

In the rest of this section, we will focus on complete multigraph AK,,, where
A > 1. The following lemma gives sufficient conditions for decomposing AK, into
Cy’s and Si’s, where A > 1 is odd and n > 4k.

Lemma 9. Let n, kK and A > 1 be positive integers such that n > 4k and X\ is
odd. If \n(n —1)/2 = 0[k], then \K,, is (Ck, Sk)-decomposable.

Proof. Let n = gk 4+ r, where g and r are integers with 0 < r < k and ¢ > 4.
Note that

MK, = )\qu—i—r = AKy, U )‘K(q—Q)k—H" U )\KQk,(q—Q)k—l—r
= (A= 1)Ko U Kop UK (g_9)i1r U AK o (g—2)tr-

|E(AK3)| and |E(AKoy, (q—2)k+r)| are multiples of k. Using argument that
|E(AK,)| is a multiple of k, i.e., An(n — 1) is divisible by k, we obtain \((q —
2k +7r)((¢g—2)k+7r—1)/2 =0[k]. Since (A —1)(2k — 1) is even and 2k > k
we have (A — 1)Ky is Ci-decomposable by Theorem 2. Theorem 1 for Ky with
A =1 implies that Ky is Sp-decomposable. We now decompose AK (4_2)p -

We have ¢ > 4. Then (¢ — 2)k + r > 2k + r implies that (¢ —2)k +r > 2k >
3k/2 + 1 for any k > 2. Given that A > 2 we obtain 3k/2+1>k+ 1+ k/A, so
(q—2)k+r > k4+1+k/\. Using Theorem 1 when \ is odd, since (¢—2)k+r > k+
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1+k/A, we have AK (;_9)j4, is Sk-decomposable. Note that MKy, (4—2)x+, can be
decomposed into A copies of Koy, (q—2)4r- Since Ko, (_2)k4y 18 Sk-decomposable
by Theorem 4, so is Aoy, (q—2)ktr- Thus MK, is (Ck, Sk)-decomposable. [

In the following lemmas, we will give sufficient conditions of the decomposi-
tion of A\K,, into C’s and Sy’s, where n > 2k and A is even or ged(A, k) = 1.

Lemma 10. Let n, k and A be positive integers such that \ is even. For all
n > 2k, if \n(n —1)/2 = 0[k], then AK,, is (C, Sk)-decomposable.

Proof. Let n = gk + r, where g and r are integers with 0 < r < k and ¢ > 2.
Note that AK,, = AK g1, = )\K(qfl)k UAKgqr U AK(q,Dk’kJrr.

Obviously, |E(AK(g—1))| and |E(AK(4—1)kk+r)| are multiples of k. Thus,
Mk +7)(k+r—1)/2 =0[k] from the assumption that An(n — 1)/2 is divisible
by k. AK(4_1)r and AKj, are Cg-decomposable by Theorem 2 because A is
even, (¢ — 1)k > k and k +r > k by assumption. Note that AK(,_1) j4r can be
decomposed into A copies of K(q_1)g p4r- Since Ky 1)pp4r 18 Sk-decomposable
by Theorem 4, so is AK(q_1)g,k+r- Thus, K, is (Ck, Sk)-decomposable. [

Lemma 11. Letn, k and A\ > 1 be positive integers such that gcd(\, k) = 1. For
all n > 2k, if \n(n —1)/2 = 0[k], then AK,, is (Cy, Sk )-decomposable.

Proof. From the previous lemma, we only have to examine the case when \ is
odd. We can decompose AK,, as an edge disjoint union of (A — 1)K,, and K.
Since ged(A, k) = 1, we have |E(K,,)| = 0[k]. It is clear that (A — 1)K, has a
(Ck, Sk)-decomposition by Lemma 10. Now we decompose K, into stars of size
k by Theorem 1, since n > 2k. Thus AK,, is (Cy, Sk)-decomposable. |

Using Proposition 8 and Lemmas 9, 10 and 11, we obtain the following the-
orem.

Theorem 12. Let n, k and X\ be positive integers. If An(n —1)/2 = 0[k] and

e n >4k, or
e n > 2k and X\ > 1 is even or ged(\, k) = 1,

then A\K,, is (Cy, Sk)-decomposable.
4. DECOMPOSITION OF AK, WHEN k Is PRIME OrR DIVIDES EITHER n — 1,n
OR A

One can easily check that AK,, is (C2,S3)-decomposable if and only if n > 2,
A >1and An(n —1) = 0[4]. Thus, we admit the following lemma without proof.
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Lemma 13. Let n > 2 and A > 1 be positive integers. There exists a decom-
position of AK,, into copies of So and copies of Cy if and only if An(n —1)/2 is
even.

In Lemmas 14-16, we will show the sufficient conditions of the decomposition
of AK,, into C}’s and Si’s when n = k+1, n = 2k+1 and n = 3k+1, respectively,
with &k > 3.

Lemma 14. Letn=k+ 1, A > 1 and k > 3 be positive integers. There exists a
decomposition of NK,, into copies of Sy, and Cy, if and only if Ak(k—1)/2 = 0[k].

Proof. We split the proof into two cases as follows.

Case 1. k is odd or A is even. By assumption, n = k + 1 and the degree of
each vertex of AK,, is \k. We use one vertex in order to construct A\ stars of k
edges. The remaining graph is AK,_1. Since k is odd or A is even and we have
n—1 =k, we obtain A\(n—2) = A(k—1) is always even and \k(k—1)/2 = 0 [k], so
by Theorem 2 AK,,_; is Ci-decomposable. Thus, A\K,, is (S, Ci)-decomposable.

Case 2. k is even and A is odd. This subcase does not exist because by
assumption \k(k—1)/2 = 0 [k], which implies A(k—1) to be even, a contradiction.
The opposite implication is easy to prove. [ |

Lemma 15. Letn = 2k+1 and A > 1 be positive integers, and let k be a positive
integer, k > 3. There exists a decomposition of AK,, into copies of Sy, and Cy, for
any k.

Proof. The number of edges in AKoi+1, Ak(2k + 1), is a multiple of k. We
decompose \Koj11 as follows : AKop 1 = (A—1)Kop+1 UKop 1. Clearly, |E((A—
1)Kog41)| and |E(Kak+1)| are multiples of k. We decompose (A — 1)Kgx41 into
Cy’s and Ky y1 into Si’s. Hence MKk y1 is (Sk, Ck)-decomposable. |

Lemma 16. Letn =3k+1, A > 1 and k > 3 be positive integers. There exists a
decomposition of NK,, into copies of S, and Cy, if and only if 3A\k(3k—1)/2 = 0 [K].

Proof. We split the proof into two cases as follows:

Case 1. X is even. This case is solved by Lemma 10.

Case 2. Xis odd. If k is odd, then AK3;41 = AKopr1 UK, U )\KQ}C_A'_L]C. By
Lemma 15, AKsj11 is (Sg, Ck)-decomposable. AK}, can be decomposed into C’s,
and AKagj41 1 is Si-decomposable.

If k£ is even, then 3\(3k 4 1) is not even, so this case cannot exist. The
opposite implication is easy to prove. [ |

In the following proposition, we prove that for any k£ that divides n or n — 1,
MK, is (S, C)-decomposable.
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Proposition 17. For integers k,n and A with A > 1 and 2 < k < n+ 1, if
n=0,1[k] and An(n —1)/2 = 01k|, then AK,, is (Sk, Cx)-decomposable.

Proof. In the case when n =k + 1, n =2k + 1 and n = 3k + 1 we use Lemmas
13, 14, 15 and 16, respectively.

By Theorem 12, if n = ak + 1 or n = ak with a > 4, then AK, is (Sk, Ck)-
decomposable. To complete the proof, we study the cases when n = 2k and
n = 3k.

n = 2k: When \ is even, AK), is (Sk, Ck)-decomposable by Lemma 10. When
A is odd, observe that AKor = (A — 1)Ko U Kog. (A — 1)Ky is Cg-decomposable
by Theorem 2 and Ky, is Si-decomposable by Theorem 1.

n = 3k: If X is even, then we have A\K, is (Sk, C)-decomposable by Lemma
10. If X\ is odd and k is odd, then AK3; = (A — 1)K3 U K3, since |E(Ksy)]
and |E((A —1)Ksy)| are multiples of k. Thus, (A — 1) K3y is Ck-decomposable by
Theorem 2, and K3y is Si-decomposable by Theorem 1. On the other hand, if A
is odd and k is even, then it is sufficient to show that A3k(3k — 1) = 0[2k] is not
true in this case. So, when A is odd, £ must be also odd. [

In the following proposition, we will show the decomposition of MK, into Si’s
and C}’s when A is a multiple of k.

Proposition 18. For integers k and n with 2 < k < n —1, if \ = 0[k], then
MK, is (S, Cy)-decomposable.

Proof. Since n > k + 1, we distinguish two cases.

Case 1. m > k+ 2. XA = 0[k] implies that the degree of each vertex of
AK,, is multiple of k. Thus, we can construct stars S using each vertex of the
multigraph. First we decompose incident edges of some vertex into Si’s in a
circular manner as illustrated in Example 19. This process is repeated until the
remaining graph is a AK,,, where m = k + 1 if k is even, and m = k if k is odd.

If k is odd, then the remaining graph is AKy and \k(k — 1)/2 = 0[k], which
implies that MK} can be decomposed into cycles of size k by Theorem 2. If £ is
even, then the remaining graph is AKjy1, which has Ak(k 4+ 1)/2 edges. Thus
the number of edges is divisible by k. Since Ak is even, the graph AKjy i can
be decomposed into cycles of size k by Theorem 2. Hence, AK,, is (S, Ck)-
decomposable.

Case 2. n = k 4+ 1. Since the degree of each vertex is Ak, we decompose
the incident edges of one vertex into A copies of S;. The remaining graph is
AK}j. By assumption, AKj; has number of edges divisible by k, which implies
that Ak(k —1)/2 = 0[k]. Since A\(k — 1) is even, we decompose AK}, into copies
of C using Theorem 2. ]
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Example 19, illustrated by Figure 1, shows how Proposition 18 is applied to
a graph 3Ks.

Example 19. (S3, C3)-decomposition of a graph AK,, with n =5 and A = 3 is
as follows.

e Consider the graph 3K5. Since A = 0[3] we have |E(3K5)| = 0[k].

e Taking on a vertex of 3K5 called v, we decompose the graph into A(n —
1)/k = 4 stars by rotation. This rotation is applied to all the incident edges
of the considered node v (Figure 1 illustrates rotation construction).

e The remaining graph is 3K4. The same rotation construction is applied to
finding A(n—2)/k = 3 stars. This rotation construction is applied until the
remaining graph is 3Ky (k = 3).

e The remaining graph 3K3 can be decomposed into 3 copies of Cj.

1% Star 2"Star 3Star 4" Star

Figure 1. Rotation construction of stars. The edges of a star are labeled by a, b and c.

In the following corrolary, we will investigate the problem of decomposing
MK, into S}’s and C}’s for each prime number k.

Corollary 20. Letn and X > 1 be positive integers, and let k be a positive prime
number. There ezists a (Cy, Sy )-decomposition of NK,, if and only if n > k + 1
and An(n —1)/2 = 0[k].

Proof. We show that the necessary conditions given in Lemma 6 are also suffi-
cient. An(n —1)/2 is a multiple of k£ and k is a prime number, so we distinguish
three cases according to the multiplicity of n, n — 1 and A.

When £ divides n or k divides n— 1, these cases are proved in Proposition 17.
When £ divides A, this case is proved in Proposition 18. [



638 F. BEccas, M. HADDAD AND H. KHEDDOUCI

The following theorem is a direct consequence of Propositions 17 and 18, and
Corollary 20.

Theorem 21. Let n, k and A > 1 be positive integers. Then NK, is (Sk,Ck)-
decomposable if \n(n —1)/2 =0[k| and

e k is prime, or

o L divides eithern —1, n or A.
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