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Given graphs G and H, a vertex coloring c : V (G) → N is an H-free
coloring of G if no color class contains a subgraph isomorphic to H. The
H-free chromatic number of G, χ(H,G), is the minimum number of colors
in an H-free coloring of G. The H-free chromatic sum of G, Σ(H,G), is
the minimum value achieved by summing the vertex colors of each H-free
coloring of G. We provide a general bound for Σ(H,G), discuss the com-
putational complexity of finding this parameter for different choices of H,
and prove an exact formulas for some graphs G. For every integer k and
for every graph H, we construct families of graphs, Gk with the property
that k more colors than χ(H,G) are required to realize Σ(H,G) for H-free
colorings. More complexity results and constructions of graphs requiring
extra colors are given for planar and outerplanar graphs.
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1. Introduction

Given a finite undirected simple graph G = (V,E), a k-coloring is a partition of
its vertex set V into independent sets V1, V2, . . . , Vk. The chromatic number χ(G)
is the minimum integer k for which such a partition exists. In a proper coloring,
the subgraph 〈Vi〉 induced by each set of the partition does not contain K2. Many
generalizations of this classical coloring concept were born when this condition
was relaxed. For a given graph property π, one can try to k-color G in such
a way that each induced subgraph 〈Vi〉 has property π. Such generalizations
were studied for different properties π: being acyclic or being a path of fixed
length by Chartrand et al. [9], [10], and [11], being a cycle of fixed length [14,
22, 23], being a disjoint union of cliques by Albertson et al. [1]. A concept of
generalized chromatic numbers defined in terms of partitions of V for additive
hereditary properties was studied by Broere et al. [6]. A framework of such an
approach comes from the earlier survey paper by Borowiecki et al. [4]. Broere and
Mynhardt [5] introduced colorings in which color classes avoid a specific graph
as an induced subgraph. In this paper we will use the terminology of H-free
coloring adopted from paper [7] by Broersma et al. In fact, they consider the
general problem of avoiding all subgraphs from a given family either as induced
subgraphs (weakly colorings and chromatic numbers) or as noninduced subgraphs
(strongly colorings and chromatic numbers). In this paper, we will consider only
strongly colorings. The smallest possible number of colors in a coloring of G

such that each color class does not contain noninduced H as a subgraph is called
the H-free chromatic number and is denoted by χ(H,G). If H is a star K1,d+1

then H-free coloring is equivalent to a d-defective coloring in which every color
class induces a subgraph of maximum degree not exceeding d. This concept was
introduced by Andrews and Jacobson [2] and studied, for example, by Archdeacon
[3], Cowen et al. [12, 13], Harary and Jones [17, 18].

However, we are interested in minimizing not the number of colors but rather
their sum. Given an H-free coloring c of G, the sum of colors over all vertices
is Σ(c) =

∑

vǫV (G) c(v). The H-free chromatic sum of G, Σ(H,G) = min{Σ(c):
c is an H-free coloring of G}. A coloring c for which Σ(c) = Σ(H,G) is called
a best H-free coloring of G. The concept of chromatic sum for proper colorings
was introduced by Kubicka and Schwenk [19, 21]; one of the most interesting
phenomena was the necessity for some graphs to use more colors than χ(G) in a
best coloring. The paper by Erdős, Kubicka and Schwenk [15] provides examples
of such graphs.

In the next section we observe some basic facts about H-free chromatic sum,
provide a general upper bound for it and discuss some complexity issues proving
that this problem is NP-complete for star-free colorings. The main results are
in Section 3. We construct, for every integer k and every graph H, a graph Hk
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with H-free chromatic number equal to 2 but requiring exactly k colors in any
best H-free coloring. This construction is generalized to provide a graph Gk with
a jump from χ(H,Gk) = p colors to p + k colors in any best H-free coloring
of Gk. In the last section, H-free chromatic numbers and sums are discussed
for planar and outerplanar graphs. In particular, we prove that determining the
P3-free chromatic sum is NP-hard even for planar graphs and construct a family
of maximal outerplanar graphs requiring many colors in any best H-free coloring
for H a star or a cycle.

2. General Bounds and Complexity Results

For any graphs G and H, the most general bound on χ(H,G) results from the
observation that any coloring in which each color class has fewer vertices than H

is an H-free coloring. For example, if H is a nontrivial graph of order j then the
smallest complete graph Kn with χ(H,Kn) = k is of order n = (j−1)(k−1)+1.
This leads to the following bound which is obtained by assigning the colors with

the smallest values to
⌊

n
|H|−1

⌋

color classes with |H| − 1 vertices each.

Proposition 1. If G has order n and H is a nontrivial graph of order j, then

Σ(H,G) ≤

⌊

n
j−1

⌋

+1

2

(

2n− (j − 1)
⌊

n
j−1

⌋)

.

While this clearly is a sharp bound for complete graphs, there are other
families of graphs G for which equality also holds. For example, it was shown
in [23] that when H = K1 + Cj−1 (a wheel), K1 + Pj−1 (a fan) or tK2 +K1 (a
pinwheel) where j is odd and the edges of Ḡ form a 1-regular graph, no color
class in an H-free coloring of G can contain more than j − 1 vertices. However,
for such graphs G and H with j = 2m, we have a strict inequality in the bound

since χ(H,G) and Σ(H,G) are realized exactly when there are
⌊

2m
j

⌋

color class

with j vertices while as many of the remaining vertices as possible are in color
classes with j − 1 vertices and, if necessary, there is one color class with fewer
than j − 1 vertices.

Our next result shows, not surprisingly, that the problem of finding the H-
free chromatic sum of a graph is as least as difficult as finding itsH-free chromatic
number.

Proposition 2. The problem to determine whether or not an H-free chromatic

sum of a graph is bounded by a given positive integer is reducible to a correspond-

ing problem for an H-free chromatic number.

Proof. For a given positive integer k and connected nontrivial graph H consider
the decision problem: Is χ(H,G) ≤ k for a given graph G of order n? If j is
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the order of H, define G′ ∼= K(j−1)k × G and k′ = 1
2k(k + 1)(j − 1)n, where the

symbol ”×” stands for the cartesian product of graphs. Then, the graph G has
an H-free coloring with k colors if and only if Σ(H,G′) ≤ k′. In fact, if G can be
H-free colored using k colors, we can color (j − 1) copies of G in G′ in the same
way and then cyclically shift all colors by 1 for the next (j − 1) copies, by 2 for
next (j − 1) copies, . . . , by k − 1 for the last (j − 1) copies of G in G′. Then
the sum of colors in G′ is equal to k′. Conversely, if the sum of colors in G′ is
bounded by k′, then we must use colors 1 through k in every copy of K(j−1)k

because at most (j − 1) vertices of each copy can be monochromatic. Therefore,
G′ has an H-free coloring with k colors and the same holds for G.

Corollary 3. If H is a fixed connected graph for which the H-free k-coloring

problem is NP-hard for G belonging to some family of graphs, then the corre-

sponding problem for the H-free chromatic sum is NP-hard as well.

Since the problem of determining whether a graph has an r-defective color-
ing using at most k colors is NP-complete (for k ≥ 3, r ≥ 0), the problem of
determining whether χ(K1,r+1, G) ≤ k is NP-complete and the problem of deter-
mining Σ(K1,r+1, G) is NP-hard. Notice that the case with r = 0 corresponds to
standard proper coloring, the case with r = 1 to P3-free coloring, and the case
with r = 2 to K1,3-free coloring.

Finding the H-free chromatic sum (for a fixed H) of a tree algorithmically
can be done in linear time. We have pseudo-code for a program that computes
the P3-free chromatic sum for a tree. This is a straightforward algorithm which
uses a preorder traversal of the vertices of a tree. For each vertex of the tree it
keeps track of the three lowest sums for the subtree rooted at this vertex and two
possible choices for the color of the vertex. Although the algorithm is standard,
it has a lot of cumbersome details. This algorithm can be generalized to compute
an H-free chromatic sum of a tree.

For a full binary (or d-ary) tree, we can find an exact formula for Σ(H,T ).
For d ≥ 2, a d-ary tree is a rooted tree in which each vertex has either 0 or d

children. In a full d-ary tree, all leaves are at the same level. In a full d-ary tree
of height h, the root is at level 1 and all leaves at level h+ 1.

Theorem 4. (a) If Th is a full binary tree of height h, then Σ(P3, Th)=
⌊

2h+3−4
3

⌋

.

(b) If Th is a full d-ary tree of height h, then

Σ(K1,d+1, Th) =
dh+1 − 1

d− 1
+

dh+1 − d(h+1)( mod 3)

d3 − 1
.

Proof. Both proofs are by induction on h, the height of the tree Th.
For (a), it is straightforward to prove that for h even, Th has the unique best

P3-free coloring; in fact this coloring is a proper coloring in which all leaves have
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color 1. For h odd, a similar proper coloring is a best P3-free coloring, but there
are other best colorings that are P3-free and not proper (see Figure 1).

Figure 1. An example of an odd height binary tree and two different best P3-free colorings.

1 1 1 1 1 1 1 1

1 1 1 1

2 2

1

1 1 1 1 1 1 1 1

1 1 1 1

2 2

1

1

Figure 2. A best K1,3-free coloring of the full binary tree T4.

Since the full binary tree Th has 2i−1 vertices at each level i, straightforward

computations show that Σ(P3, Th) =
⌊

2h+3−4
3

⌋

.

For (b), the coloring c that assigns color 1 to the vertices on levels h+1, h, h−
2, h−3, . . . and color 2 to the vertices on levels h−1, h−4, . . . is a best K1,d+1-free
coloring. The details of a standard inductive proof are omitted. The formula for
Σ(K1,d+1, Th) is computed using the fact that, for each i = 1, 2, . . . , h+ 1, level i
of a full d-ary tree contains di−1 vertices.

3. Graphs that Require More Colors in Their Best H-Free

Colorings

Note that in all examples we provided so far, a best H-free coloring uses χ(H,G)
colors. However, in some instances, a best H-free coloring may require more than
χ(H,G) colors. This is addressed in the following theorem.
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Figure 3. Graphs H2, H3, and Hk.

Theorem 5. For every integer k ≥ 2 and every connected graph H, there is a

graph Hk with χ(H,Hk) = 2 and for which every best H-free coloring of Hk must

use k colors. Furthermore, color k is assigned to exactly one vertex of Hk.

Proof. The graphs Hk are constructed recursively and the proof of the theorem
is by induction. In addition, we prove that after assigning color k to the root rk,
the best H-free coloring of Hk is unique. Let H2 = H. Any best H-free coloring
of H2 assigns color 2 to exactly one vertex and color 1 to every other vertex. Let
us fix one such coloring, say c, and call the vertex r2 with c(r2) = 2 the root of
H2. Now, for k ≥ 3, suppose Hk−1 has the property that χ(H,Hk−1) = 2 and
every best H-free coloring assigns color k− 1 to exactly one vertex, namely rk−1,
the root of Hk−1. Take a copy of H to form the skeleton of Hk and then identify
the roots of three copies of Hk−1 with each vertex of the skeleton, as illustrated
in Figure 3. Of course χ(H,Hk) = 2 because we can color the skeleton using two
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colors; color 2 only for its root, and on each copy of Hk−1, that can be H-free
colored with two colors, switch colors 1 and 2, if necessary to have an agreement
of colors on the skeleton. This is not a best coloring, however. We claim that any
best H-free coloring of Hk requires color k on exactly one vertex of the skeleton.
To prove this, suppose c is a coloring of Hk such that each copy of Hk−1 has been
colored with a best H-free coloring and each vertex of the skeleton of Hk has been
assigned color k−1. Let S represent the sum of the vertex colors in this coloring.
Increasing by one the color of a vertex on the skeleton will produce an H-free
coloring. Without loss of generality, assign color k to rk, which corresponds to
r2 in H. Thus, Σ(H,Hk) ≤ S + 1.

Now suppose that c′ is a best H-free coloring of Hk and u is a vertex on its
skeleton with c′(u) ≤ k − 2. Since Hk−1 satisfies the theorem, color k − 1 must
be assigned to a vertex other than u in each of the three copies of Hk−1 rooted
at u. This results in an additional cost of at least 2 in coloring this subgraph
of Hk and Σ(c′) ≥ S + 2, which contradicts the assumption that c′ is a best
H-free coloring of Hk. Thus, every best H-free coloring of Hk must have exactly
one vertex assigned color k and that vertex must be on the skeleton. Then the
remaining vertices of the skeleton must be colored with k − 1 and each copy of
Hk−1 (except its root that is already colored) is colored according to its unique
best coloring given by inductive assumption. If H has n vertices, then the order
|Hk| of the graph Hk satisfies the following recurrence relation: |H2| = n and

|Hk| = 3n|Hk−1| − 2n for k ≥ 3, which implies that |Hk| = (3n)k−1(n−1)+2n
3n−1 .

For the chromatic sums, from the recursive equation Σ(H,H2) = n + 1 and
Σ(H,Hk) = [Σ(H,Hk−1)− (k−1)]3n+n(k−1)+1 for k ≥ 3, we get Σ(H,Hk) =
n(3n+4)(3n)k−2−2n−1

3n−1 − 2n
∑k

i=3 i(3n)
k−i.

The graph Hk in the proof of Theorem 5 has χ(H,Hk) = 2 but requires k

colors in any best coloring. We can modify this construction to get a graph Gk

with χ(H,Gk) = p that needs k additional colors to achieve the H-free chromatic
sum.

Theorem 6. For all integers p ≥ 2 and k ≥ 1 and every connected graph H,

there is a graph Gk with χ(H,Gk) = p for which every best H-free coloring of Gk

must use p+ k colors.

Proof. Let H be a connected nontrivial graph of order j and Hk+1 the graph
constructed in the proof of Theorem 5, i.e., χ(H,Hk) = 2 but every best H-free
coloring of Hk+1 uses k + 1 colors with color k + 1 used once. Construct Gk

by taking a copy of the complete graph K(j−1)(p−1)+1 as the skeleton and then
identify the roots of p + k copies of Hk+1 with each vertex of the skeleton. Of
course χ(H,Gk) = p because p colors are required to H-free color the skeleton
and the rest of vertices of Gk can be 2-colored. We claim that the following is a
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best H-free coloring of Gk: take a best coloring of each copy of Hk+1 with colors
1 through k on the vertices different then the roots; use color k + 1 for j − 1
roots, color k + 2 for j − 1 roots, etc., color k + p − 1 for j − 1 roots and color
k + p for the remaining root (the last vertex on the skeleton). This is clearly an
H-free coloring of Gk that uses k+ p colors. Assume that the sum of colors in it
is Sk. Suppose that there is a best coloring c of Gk in which some vertex v on
the skeleton has c(v) < k + 1. This causes a maximum saving of k + p − 1 on v

but a loss of at least one for each of k + p copies of Hk+1 rooted at v producing
a sum larger than Sk, a contradiction.

4. Chromatic Numbers and Chromatic Sums of Planar and

Outerplanar Graphs

We will summarize here some known results about H-free chromatic numbers for
planar and outerplanar graphs. As we will see all these numbers are small, but in
contrast, some planar or outerplanar graphs will require arbitrary many colors for
their best H-free colorings. A linear forest is a disjoint union of paths. Goddard
[16] and Poh [24] proved independently that every planar graph has a partition
of its vertex set into three subsets such that every subset induces a linear forest.
Therefore, if ∆(H) ≥ 3, then for every planar graph G we have χ(H,G) ≤ 3.
Using results of Thomassen [25] and Burstein [8], Broersma et al. [7] observed
that if H contains a cycle, then for every planar graph G we have χ(H,G) ≤ 2.
Let us observe that if H is a planar graph or a tree, then for every integer k the
graph Hk from Theorem 3 is planar (respectively, a tree). Therefore, for a family
of planar graphs we have the following results.

Proposition 7. (1) If H is a planar graph containing a cycle, then for every

planar graph G, χ(H,G) ≤ 2, but for every k ≥ 3, there exists a planar

graph requiring k colors in any best H-free coloring of G.

(2) If H is a tree different from a path, then for every planar graph G, χ(H,G) ≤
3, but for every k ≥ 4, there exists a planar graph (in fact a tree) requiring

k colors in any best H-free coloring of G.

(3) If H = K2, then by the Four Color Theorem, for every planar graph G,

χ(H,G) ≤ 4, but for every k ≥ 5, there exists a planar graph (a tree)
requiring k colors in any best H-free coloring of G.

Returning to complexity issues, Broersma et al. [7] proved that the following
problems are NP-hard for planar graphs.

1. Let H be a tree with at least two edges. Deciding whether a planar graph
G has a H-free 2-coloring is NP-hard.
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2. For any k ≥ 2 deciding whether a planar graph G has Pk-free 3-coloring is
NP-hard.

We will use result 1 for H = P3 to prove that P3-free chromatic sum for planar
graphs is NP-hard.

Theorem 8. The following decision problem is NP-complete. For a given integer

k and a planar graph G, is Σ(P3, G) ≤ k?

Proof. We perform a polynomial reduction to the following decision problem: Is
χ(P3, G) ≤ 2 for a planar graph G?
Notice first that the graph K4 − e has a P3-free chromatic sum equal to 6 and
each of the two colorings presented in Figure 4 is a best P3-free coloring.

2 2

1

1

r

1 1

2

2

r

Figure 4. Two best P3-free colorings of K4 − e.

Having a planar graph G of order n, take n copies of the graph K4 − e and
identify the root r of each copy with one vertex of G. The obtained graph G′ of
order 4n is P3-free 2-colorable if and only if G is P3-free 2-colorable. Moreover,
Σ(P3, G

′) = 6n if and only if G is 2-colorable. Therefore, by taking k = 6n,
the positive answer to the decision problem: Σ(P3, G

′) ≤ k? is equivalent to the
problem: χ(P3, G) = 2?

A graph G is outerplanar if it can be embedded in the plane so that every
vertex of G lies on the boundary of the exterior region. A well known charac-
terization of outerplanar graphs states that G is outerplanar if and only if G

contains no subgraph homeomorphic from K4 or K2,3, i.e. does not contain a
subgraph that can be obtained from K4 or K2,3 by a sequence of edge subdi-
visions. Broere and Mynhardt [5] proved by induction that every outerplanar
graph has a partition of its vertex set into two subsets such that the subgraph
induced by each subset is a linear forest. We observe in the next lemma that the
same result can be achieved by a constructive proof using a concept of ”layers”
based on the distance. Let us recall that G is a maximal outerplanar graph if G
is outerplanar but G + uv is not for any nonadjacent vertices u, v ∈ V (G). In
maximal outerplanar graphs, all interior regions are triangles. Such graphs are
also 2-connected.
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Lemma 9. Let G be a maximal outerplanar graph and x ∈ V (G). Let Vk(x) =
{v ∈ V (G) : d(v, x) = k} be the set of vertices whose distance from x is k. Then

the induced graph 〈Vk(x)〉 contains neither K1,3 nor a cycle Cl for any l ≥ 3.

Proof. Suppose that 〈Vk(x)〉 contains a copy of Cl, l ≥ 3. Pick three consecutive
vertices a, b, c on that cycle (see Figure 5).

Figure 5. A color class cannot contain a cycle.

Let Pa, Pb, Pc be shortest x− a, x− b, x− c paths, respectively, in G. The
vertices a, b and c cannot be internal vertices of these paths. Let y be a vertex
belonging to at least two of these paths that is farthest from x (y could be x, if Pa,
Pb, Pc are internally disjoint). It is easy to see that 〈Vk(x)∪Pa∪Pb∪Pc〉 contains
a subgraph homeomorphic from K4, which cannot happen in outerplanar graphs.
The proof that 〈Vk(x)〉 does not contain a copy of K1,3 is similar and therefore
omitted.

If, for a maximal outerplanar graph G and a vertex x ∈ V (G), we define
C1 = {v ∈ V (G) : d(v, x) is odd} and C2 = {v ∈ V (G) : d(v, x) is even}, then in
the induced subgraphs 〈C1〉 and 〈C2〉, there are no edges between vertices with
different distance from x. Therefore, Lemma 1 implies that 〈C1〉 and 〈C2〉 are
both linear forests. This observation gives the following result.

Corollary 10. If G is a connected outerplanar graph and H is a connected graph

that is not a path, then χ(H,G) ≤ 2.

Proof. Assume that G is a connected outerplanar graph. Add edges to G until
we get a maximal outerplanar graph M . Pick a vertex x ∈ V (M) = V (G).
Let C1 = {v ∈ V (M) : d(v, x) is odd} and C2 = {v ∈ V (M) : d(v, x) is even}.
Assigning color i to all vertices in Ci defines anH-free coloring ofM that produces
also an H-free coloring of G.
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Of course, for a particular graph H, connected and different from a path, it
is easy to decide whether χ(H,G) = 1 or χ(H,G) = 2; therefore, for outerplanar
graphs the H-free chromatic number problem is trivially solvable. The K1,3-
free coloring presented in the last theorem is usually not the one producing the
chromatic sum. We would like to find a partition that is unbalanced in order
to minimize the number of occurences of color 2. For example, the graph G

presented in Figure 6 has the K1,3-free chromatic sum equal to 14 and contains
a long path induced by vertices colored by 1.

Figure 6. Maximal outerplanar graph with K1,3-free chromatic sum 14.

Black vertices have color 1.

However, as we will see from the next theorem, a partition of the vertex set
into two subsets (and using two colors) is sometimes not sufficient. The purpose
of the next theorem is the construction of a family of maximal outerplanar graphs
that require many colors to achieve the K1,3-free chromatic sum. In this construc-
tion, we will repeatedly use a fan attaching procedure that is described below.
Let uv be an edge lying on the boundary of the exterior region of a maximal
outerplanar graph G. A p-fan attachment at uv around u is obtained by adding
a path on vertices v1, v2, . . . , vp (with v1 adjacent to v) and all edges between
them and u (see Figure 7).

Figure 7. Construction of a p-fan attachement at uv around u.
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The graph obtained by a p-fan attachment is also maximal outerplanar.

Theorem 11. For every natural number k, k ≥ 3, there exists a maximal outer-

planar graph Gk requiring at least k colors to achieve the K1,3-free chromatic

sum.

Proof. To construct Gk, we use induction on k. For abbreviation, we introduce
Σk = Σ(K1,3, Gk). For k = 3, we start with a copy of K4−e on vertices x, y, z, w.
Attach to it a 5-fan at xz around x, a 5-fan at wy around w, a 4-fan at yx around
y, and a 4-fan at zw around z producing the graph G3 of order 22 (see Figure 8).

Figure 8. Maximal outerplanar graph requiring three colors to achieve the K1,3-free
chromatic sum.

If we color all attached vertices in G3 by 1, vertices x, z, and w by 2, and
the vertex y by 3, then we will get the K1,3-free coloring with the sum of colors
18 × 1 + 3 × 2 + 3 = 27. If only two colors are used for G3, then at least one of
the vertices x, y, z, or w must be colored with 1. Since the degree of this vertex
is 8, at least six of its neighbors must be colored with 2. Then the sum of the
colors would be at least 6× 2 + 16× 1 = 28. Therefore, the K1,3-free chromatic
sum Σ3 of G3 is at most 27 and requires at least 3 colors.

Suppose that, for k ≥ 3, Gk is an maximal outerplanar graph of order nk

requiring at least k colors to achieve the K1,3-free chromatic sum Σk. If less
than k colors are used for a K1,3-free coloring of Gk, then the sum of colors
is at least Σk + 1. The graph Gk+1 is obtained from Gk by going along all
edges on the exterior boundary of Gk and attaching a p-fan to each edge around
each consecutive vertex of the boundary, where p = Σk. The order of Gk+1 is
nk+1 = nk + nkΣk = nk(Σk + 1). The vertices on attached fans have degree 2 or
3, but each vertex of the core graph (the vertices present in Gk) now will have
degree at least 2 + Σk + 1 = Σk + 3. Color the vertices of Gk+1 as follows: all
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new attached vertices get color 1, each vertex of the core Gk gets the color one
more than in the optimal coloring of the graph Gk. This is a K1,3-free coloring
c with the sum Σ(c) = Σk + nk + nkΣk = Σk(nk + 1) + nk. Suppose that at
most k colors are used to color the vertices of Gk+1. If there is a vertex, say x,
of the core graph Gk with color 1, then at least Σk + 1 of its neighbors must be
colored with colors larger than 1 (otherwise K1,3 in color 1 would be present in
Gk+1). But then the sum of colors is at least 2(Σk + 1) + 1(nk+1 − Σk − 1) =
2(Σk +1)+nk(Σk +1)− (Σk +1) = nk(Σk +1)+Σk +1 = Σ(c)+ 1, so it cannot
be optimal.

If none of the vertices of Gk has color 1, then the colors used for Gk are from
the range [2, k]. The best we can do is to take the coloring of Gk with k − 1
colors (with the sum at least Σk + 1) and increase the color of each of the nk

vertices by 1. Then the sum of the colors of the core graph Gk must be at least
Σk +1+nk and with all other vertices colored with 1, the sum would be at least
Σk +1+nk +nk(Σk) = Σ(c)+ 1 and cannot be optimal. Therefore, Σk+1 ≤ Σ(c)
and at least k + 1 colors are needed to obtain a K1,3-free chromatic sum of Gk.

The construction from the proof of Theorem 11 can be easily generalized for
other forbidden subgraphs. For example, if H = K1,r with r ≥ 4, we can use
similar fan attachments to a core graph that is a maximal outerplanar graph
obtained from H by adding r − 1 edges. Similarly, for H = Cl, where l ≥ 3, one
can start with the core graph being a triangulation of Cl. In fact, for l = 4 the
core graph will be the same as for the K1,3-free coloring from Theorem 11, i.e.
K4 − e.
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