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Abstract

It is known that Θ(log n) chords must be added to an n-cycle to produce
a pancyclic graph; for vertex pancyclicity, where every vertex belongs to a
cycle of every length, Θ(n) chords are required. A possibly ‘intermediate’
variation is the following: given k, 1 ≤ k ≤ n, how many chords must be
added to ensure that there exist cycles of every possible length each of which
passes exactly k chords? For fixed k, we establish a lower bound of Ω

(

n1/k
)

on the growth rate.
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A simple graph G on n vertices is pancyclic if it has cycles of every length l,
3 ≤ l ≤ n. The study of these graphs was initiated by Bondy’s observation [1, 2]
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that, for non-bipartite graphs, sufficient conditions for Hamiltonicity can also be
sufficient for pancyclicity. In general, we may distinguish, in a pancyclic graph G,
a Hamilton cycle C; then the remaining edges of G form chords of C. We can
then ask, given k ≤ l ≤ n if, relative to C, a cycle of length l exists which uses
exactly k chords. This suggests a k-chord analog of pancyclicity: do all possible
cycle lengths occur when cycles must use exactly k-chords of a suitably chosen
Hamilton cycle?

We accordingly define a function c(n, k), n ≥ 6, k ≥ 1, to be the smallest
number of chords which must be added to an n-cycle in order that cycles of all
possible lengths may be found, each passing exactly k chords. No Hamilton cycle
can use exactly one chord of another Hamilton cycle, so that when k = 1 cycle
lengths must lie between 3 and n − 1. The function is undefined for k > n. We
define the function for n ≥ 6 because n = 4, 5 are too restrictive to be of interest
to us.

Our aim in this paper is to investigate the growth of the function c(n, k) as
n increases, for fixed k.

Example 1. Label the vertices around the cycle C6, in order, as v1, . . . , v6. Add
chords v1v3 and v1v4; the result is a pancyclic graph. It also has cycles of all
lengths ≤ 5 each passing exactly one of the chords. If v2v6 is added then cycles
exist of all lengths ≥ 3, each passing two chords. If two further chords, v2v4 and
v4v6, are added then cycles exist of all lengths ≥ 3, each passing three chords.
For 4-chord cycles we require six chords to be added, i.e., c(6, 4) = 6. Six suitably
chosen chords are also sufficient for 5-chord and 6-chord cycles: c(6, 5) = c(6, 6) =
6.

Lemma 2. (1) c(n, 1) =

⌈

n− 3

2

⌉

.

(2) c(n, k) ≥ k, with equality if and only if k = n.

(3) c(n, n− 1) = n.

Proof. (1) follows from the observation that a chord in Cn forming a 1-chord
cycle of length k automatically forms a 1-chord cycle of length n+ 2− k.

(2) is immediate from the definition of c(n, k).
(3) Let G consist of an (n − 1)-cycle, together with an (n − 1)-chord cycle

on the same vertices. Choose vertex v: let the chords at v be xv and yv and
its adjacent cycle edges be uv and vw, with u, v, w, x, y appearing in clockwise
order around the cycle. Replace v and its incident edges with two vertices vu
and vw, with edges vuvw, uvu, vww, xvw and yvu. The (n − 1)-chord cycle in G
becomes an (n−1)-chord n-cycle. Add an n-th chord xvu to give an (n−1)-chord
(n− 1)-cycle.

Table 1 supplies some small values/bounds for c(n, k). The lower bounds
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are supplied by Corollary 7; except for those values covered by Lemma 2, exact
values and upper bounds were found by computer search.

k

1 2 3 4 5 6 7 8 9 10 11

n 6 2 3 5 6 6 6

7 2 3 5 6 6 7 7

8 3 4 5 6 6 7 8 8

9 3 4 5 6 7 8 8 9 9

10 4 4 5 6 ≥ 6 ≥ 7 ≥ 8 ≥ 9 10 10

11 4 4 ≥ 5 ≥ 6 ≥ 7 ≥ 7 ≥ 8 ≥ 9 ≥ 10 11 11

12 5 4 ≥ 5 ≥ 6 ≥ 7 ≥ 7 ≥ 8 ≥ 9 ≥ 10 ≥ 11 12

13 5 4 ≥ 5 ≥ 6 ≥ 7 ≥ 8 ≥ 8 ≥ 9 ≥ 10 ≥ 11 ≥ 12

Table 1. Values of c(n, k) for 6 ≤ n ≤ 13 and 1 ≤ k ≤ 11.

Our aim is to compare c(n, k) with the number of chords required for pan-
cyclicity and for vertex pancyclicity, in which each vertex must lie on a cycle of
every length.

The following lower bound is stated without proof in [1].

Theorem 3. In a pancyclic graph G on n vertices the number of edges is not

less than n− 1 + log2(n− 1).

For the sake of completeness we observe that Theorem 3 follows immediately
from the following lemma.

Lemma 4. Suppose p chords are added to Cn, n ≥ 3. Then the number N(n, p)
of cycles in the resulting graph satisfies

(

p+ 2

2

)

≤ N(n, p) ≤ 2p+1 − 1.

Proof. Embed Cn convexly in the plane. Suppose the chords added to Cn are,
in order of inclusion, e1, e2, . . . , ep. Say that ei intersects ej if these edges cross
each other when added to the embedding of Cn. Let ni be the number of new
cycles obtained with ei is added. Then ni satisfies:

1. ni ≥ i + 1, the minimum occurring if and only if the ej are pairwise non-
intersecting for j ≤ i;



536 F. Affif Chaouche, C.G. Rutherford and R.W. Whitty

2. ni ≤ 2i, the maximum occurring if and only if ei intersects with ej for all
j < i, giving ni =

∑i
j=0

(

i
j

)

.

Now 1 +
∑p

i=1
(i+ 1) ≤ 1 +

∑p

i=1
ni ≤ 1 +

∑p

i=1
2i and the result follows.

The exact value of the minimum number of edges in an n-vertex pancyclic
graph has been calculated for small n by George et al. [5] and Griffin [6]. For
3 ≤ n ≤ 14, the lower bound in Theorem 3 is exact; however, it can be seen that,
for n = 15, 16, we must add four chords to Cn to achieve pancyclicity while the
argument in the proof of Lemma 4 can only account for three.

As regards an upper bound on the number of chords required for pancyclicity,
[1] again asserts O(logn), again without a proof. A log n construction has been
given by Sridharan [7]. Together with Theorem 3 this gives an ‘exact’ growth
rate for pancyclicity: it is achieved by adding Θ(log n) chords to Cn.

In contrast, vertex pancyclicity, in which every vertex lies in a cycle of every
length has been shown by Broersma [3] to require Θ(n) edges to be added to Cn.
Our question is: where between log n and n does c(n, k) lie? For fixed k, we find
a lower bound strictly between the two: Ω(n1/k).

Let us for the moment restrict to k ≥ 3. Suppose we add p chords to Cn,

3 ≤ k ≤ p ≤
(

n

2

)

− n. Suppose that these p added chords include a k-cycle. We

will use K(k, p), defined for k ≥ 3, to denote the maximum number of k-chord
cycles that can be created in the resulting graph. Then 1 ≤ K(k, p) by definition
and K(k, p) ≤ 2p+1 − 1 by Lemma 4. By lowering this upper bound we can
increase the lower bound on c(n, k).

Theorem 5. K(k, p) ≤
(

p

k

)

+ k

(

p− k

k − 1

)

+

(

p− k

k

)

.

We will use the following Lemma to prove Theorem 5.

Lemma 6. Suppose that a set X of chords is added to Cn. In the resulting graph

the maximum number of cycles passing all edges in X is

1 if X contains adjacent chords,

2 if no two chords of X are adjacent.

Proof. Let G be the graph resulting from adding the chords of X to Cn. We
may assume without loss of generality that G has no vertices of degree 2, since
such vertices may be contracted out. For a given cycle in G passing all chords
of X, let H denote the intersection of this cycle with the Cn. Then H consists of
isolated vertices and disjoint edges, and H is completely determined once any of
these vertices or edges is fixed. If two chords are adjacent this fixes an isolated
vertex of H; if no two chords are adjacent then there is a maximum of two ways
in which a single edge of H may be fixed.
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Proof of Theorem 5. By definition of K(k, p) we must use a set, say S, of k
chords to create a k-cycle. We add new chords to S, one by one. On adding the
r-th additional chord, 1 ≤ r ≤ p − k, we ask how many k-chord cycles use this
chord. For any such a cycle the previous r− 1 chords will be split between S and
non-S chords: with i chords from S being used, 0 ≤ i ≤ k − 1, this can happen
in

(

k

i

)(

r − 1

k − i− 1

)

ways. Since i > 1 forces two adjacent chords in S to be used, summing over i,
according to Lemma 6, and then over r gives

K(k, p) ≤ 1 +
∑p−k

r=1

(

2
∑1

i=0

(

k

i

)(

r − 1

k − i− 1

)

+
∑k−1

i=2

(

k

i

)(

r − 1

k − i− 1

))

.

This simplifies (e.g. using symbolic algebra software such as Maple) to give the
result.

Corollary 7. For given positive integers k and n, with 3 ≤ k ≤ n and n ≥ 6, the
value of c(n, k) is not less than the largest root of the following polynomial in p:

Π(p;n, k) =

(

p

k

)

+ k

(

p− k

k − 1

)

+

(

p− k

k

)

− n+ k − 1.

Proof. Suppose that, with n and k fixed, we add p chords to Cn and create
cycles of all lengths ≥ k, each passing k chords. Then n− k + 1 ≤ K(k, p). So p

must satisfy 0 ≤
(

p

k

)

+ k

(

p− k

k − 1

)

+

(

p− k

k

)

− n + k − 1. The right-hand side

of this inequality is a polynomial in p which has positive slope at its largest root,
so that c(n, k) cannot be less than this root.

We finally extend our analysis to include the cases k = 1, 2.

Corollary 8. Let n ≥ 6 be a positive integer. Then for k ≥ 1 fixed, c(n, k) is of
order Ω(n1/k).

Proof. For k = 1 the required linear bound was provided in Lemma 2.
For k = 2 an analysis similar to that used in the proof of Theorem 5 shows

that the number of 2-chord cycles which may be created by adding p chords to Cn

is at most p2 − p − 1. So to have 2-chord cycles of all lengths from 3 to n we
require p2 − p− 1 ≥ n− 2. In this case we can solve explicitly to get the bound

p ≥
1

2

(

1 +
√
4n− 3

)

.

Now suppose k ≥ 3. In order to have all k-chord cycles of all lengths be-
tween k and n we must have

n− k + 1 ≤
(

p

k

)

+ k

(

p− k

k − 1

)

+

(

p− k

k

)

≤ f(k)pk,
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for some function f(k). Therefore pk ≥ (n − k + 1)/f(k) so, for k fixed, p =
Ω(n1/k).

Remark 1. We are suggesting that the value of c(n, k) may be ‘intermediate’
between pancyclicity and vertex pancyclicity in the sense that the number of
chords it requires to be added to Cn may lie between log n and n. Thus far we
have only a lower bound in support of our suggestion. Moreover, a comparison
of the growth orders, Ω(log n) as opposed to Ω(n1/k), suggests that this is very
much a ‘for large n’ type result. The equation lnn = n1/k has two positive real
solutions for k ≥ 3, given in terms of the two real branches of the Lambert W
function [4]. In particular lnn exceeds n1/k for n > e−kW

−1(−1/k), and this bound
grows very fast with k. To give a specific example, k = 10, the log bound exceeds
the 10-th root bound until the number of vertices exceeds about 3.4×1015. Until
then, so far as our analysis goes, we might expect ‘most’ pancyclic graphs to be
10-chord pancyclic. However we suggest that, in the long term, a guarantee of
this implication, analogous to Hamiltonicity guaranteeing pancyclicity, will not
be found.

Remark 2. We would like to know if c(n, k) is monotonically increasing in n.
However, it is still open even whether pancyclicity is monotonic in the number of
chords requiring to be added to Cn (the question is investigated in [6]). We believe
that c(n, k) it is not increasing in k and c(n, 1) > c(n, 2) for n = 12, 13 confirms
this in a limited sense. Our n1/k lower bound instead suggests the possibility
that c(n, k) is convex for fixed n, as a function of k.

Figure 1. No 4-cycle uses exactly 1 chord of the bold-edge Hamilton cycle.

Remark 3. We observe that, unlike pancyclicity, the property of having cycles
of all lengths each passing k chords is not an invariant of a graph: it depends on
the initial choice of a Hamilton cycle. For example, in Figure 1, there are cycles
of all lengths ≤ 9 each passing exactly one of the c(10, 1) = 4 chords of the outer
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cycle but there is no 4-cycle passing exactly one chord of the bold-edge Hamilton
cycle.
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