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Abstract

A degree monotone path in a graph G is a path P such that the sequence
of degrees of the vertices in the order in which they appear on P is monotonic.
The length (number of vertices) of the longest degree monotone path in G

is denoted by mp(G). This parameter, inspired by the well-known Erdős-
Szekeres theorem, has been studied by the authors in two earlier papers.
Here we consider a saturation problem for the parameter mp(G). We call
G saturated if, for every edge e added to G, mp(G + e) > mp(G), and we
define h(n, k) to be the least possible number of edges in a saturated graph
G on n vertices with mp(G) < k, while mp(G+ e) ≥ k for every new edge e.

We obtain linear lower and upper bounds for h(n, k), we determine ex-
actly the values of h(n, k) for k = 3 and 4, and we present constructions of
saturated graphs.
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1. Introduction

Given a graph G, a degree monotone path is a path v1v2 · · · vk such that deg(v1) ≤
deg(v2) ≤ · · · ≤ deg(vk) or deg(v1) ≥ deg(v2) ≥ · · · ≥ deg(vk). This notion,
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inspired by the well-known Erdős-Szekeres theorem [7, 9], was introduced in [6]
under the name of uphill and downhill path in relation to domination problems,
also studied in [4, 5, 11]. In [6], the study of the parameter mp(G), which denotes
the length of the longest degree monotone path in G, was specifically suggested.
This parameter was studied by the authors in [2, 3], and among many results
obtained, the parameter f(n, k) = max{|E(G)| : |V (G)| = n,mp(G) < k} was
also defined. It was shown that this is closely related to the Turán numbers
t(n, k) = max{|E(G)| : |V (G)| = n,G contains no copy of Kk}.

A general form of the Turán numbers with respect to a graph H is t(n,H) =
max{|E(G)| : |V (G)| = n,G contains no copy of H}. The study of Turán num-
bers is undoubtedly considered as one of the fundamental problems in extremal
graph and hypergraph theory [1].

The Turán number has a counter-part known as the saturation number with
respect to a given graph H, defined as

sat(n,H) = min{|E(G)| : |V (G)| = n, G contains no copy of H,

but G+ e contains H for any edge added to G}.

Tuza and Kászonyi in [12] launched a systematic study of sat(n,H) following
an earlier result by Erdős, Hajnal and Moon [8] who proved that sat(n,Kk) =
(

k−2
2

)

+(k−2)(n−k+2) with a unique graph attaining this bound, namelyKk−2+
Kn−k+2. For the current paper, it is worth noting that sat(n, Pk) (sat(n, k) for
short) is known [12] for every k and n sufficiently large with respect to k, and in
particular for n large enough, sat(n, k) = n(1−c(k)), where c(k) < 1 is a positive
constant which depends only on k (for the exact value we refer the interested
reader to [12]). For a survey and recent information about saturation, see [10].

In this spirit, we call a graph G saturated if mp(G+ e) > mp(G) for all new
edges e joining non-adjacent vertices in G. If it happens that mp(G+ e) ≥ k for
all new edges e we sometimes refer to the saturated graph G as k-saturated. By
convention we say that Km is k-saturated for m ≤ k − 1. Then we define

h(n, k) = min{|E(G)| : |V (G)| = n,G is k-saturated}.

In Section 2, we prove linear lower and upper bounds for this parameter. In
Section 3, we provide exact determination of h(n, k) for k = 3, 4. In Section 4
we present several open problems concerning h(n, k) for k ≥ 5 as well as several
other problems and conjectures.

2. General Lower and Upper bounds

2.1. Lower bounds

We begin by showing that sat(n, k) is a lower bound for h(n, k).
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Proposition 2.1. For k ≥ 2, h(n, k) ≥ sat(n, k).

Proof. Clearly, if G is a graph realising sat(n, Pk) = sat(n, k), this means that
G does not contain a copy of Pk, and hence no degree monotone path of length
k. But G+ e contains Pk, but not necessarily a degree monotone path of length
k. Hence h(n, k) ≥ sat(n, k).

Recall that for fixed k and large n, sat(n, k) = n(1 − c(k)) < n. We now
strengthen Proposition 2.1 to show that for k ≥ 4, h(n, k) ≥ n. First we prove a
lemma, and subsequently a corollary, which will then be used in the main proof.

Lemma 2.2. Let G be a connected graph with a vertex u of degree 1 and a vertex

v of maximum degree ∆ ≥ 2 which are not adjacent. Then mp(G+uv) ≤ mp(G),
namely G is not saturated.

Proof. Let H = G+ uv and let P be a path in H which realizes mp(H). Let u∗

and v∗ be the vertices u and v as they appear in H.
If ∆ = 2, then clearly G is a path on k ≥ 4 vertices and mp(G) = k− 1 , and

if we take u to be the first vertex of the path, and v to be the (k − 1)th vertex,
then mp(H) = k − 1 = mp(G).

So we may assume ∆ ≥ 3. Now, if u∗ and v∗ are not on P , then P is degree
monotone in G and hence mp(H) ≤ mp(G). If v∗ is on P but u∗ is not, then
v∗ must be the last vertex on P , and hence the path P with v∗ replaced by v is
also degree monotone in G and mp(H) ≤ mp(G). Similarly, if u∗ is on P but v∗

is not, then u∗ must be the first vertex on P , since clearly u∗ cannot be in the
“middle” of the path as then the next vertex on P must be v∗, which is not on
P . Then the path P in G with u∗ replaced by u is also degree monotone in G

and again mp(H) ≤ mp(G). If u∗ is the last vertex on the path, then clearly P

is not maximal as P ∪ {v∗} via the edge u∗v∗ is a longer degree monotone path,
contradicting maximality of P .

So the only remaining case to consider is when u∗ and v∗ are both on P .
Then clearly v∗ is the last vertex on P . If u∗ is the first vertex, then either
P = u∗v∗ and mp(H) = 2 ≤ mp(G), or the path P is degree monotone in G

too. If u∗ is not the first vertex, then the next vertex on P must be v∗ which
is the last vertex. Hence, in this case, all predecessors of u∗ on P must have
degree at most 2. But if the first vertex y in P has degree 1, then, in G, the
path y · · ·u is disconnected from the rest of G, which is impossible. Therefore
deg(y) = 2 and y has a neighbour w which must have degree greater than 2 (note
that w may be equal to v∗ but cannot be any other vertex on P ). But then, the
path u · · · yw is degree monotone in G and is of the same length as P , and hence
mp(H) ≤ mp(G).

Lemma 2.2 is best possible with respect to the adjacency condition between
minimum degrees and maximum degrees because if the minimum degree is greater
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than 1, and a vertex u of minimum degree is not adjacent to vertex v, then
mp(G + uv) may be larger than mp(G). As an example, consider a graph Gn

made up of the cycle C2n, n ≥ 3, with vertices labelled v1, v2, . . . , v2n, and a
vertex w connected to vertices v1, v3, v5, . . . , v2n−1. Thus w has degree ∆ = n

and δ = 2, and mp(Gn) = 3. The vertices of degree 2 are not connected to w,
but connecting any such vertex to w by an edge e gives mp(Gn + e) = 5. In
fact, these graphs are 5-saturated even though they have non-adjacent vertices
of maximum degree ∆ ≥ 3 and minimum degree δ = 2.

Corollary 2.3. Let T be a tree on n ≥ 3 vertices. Then T is saturated for a

degree monotone path if and only if T = K1,n−1.

Proof. Suppose first mp(T ) ≥ 3. Then clearly T is not a star, hence there is a
leaf not connected to a vertex of maximum degree and by Lemma 2.2, T is not
saturated.

So suppose mp(T ) = 2. If not all leaves are adjacent to the same vertex of
maximum degre, then again by Lemma 2.2, T is not saturated. Hence T must
be a star K1,n−1.

Indeed, K1,n−1 is saturated and mp(K1,n−1) = 2 while mp(K1,n−1 + e) = 3
for every edge e 6∈ E(K1,n−1).

Theorem 2.4. For n ≥ 3 and k ≥ 4, h(n, k) ≥ n.

Proof. We may assume that n ≥ k for otherwise, trivially, Kn is saturated
having

(

n
2

)

≥ n edges for n ≥ 3.
So let G be a graph on n ≥ k vertices realizing h(n, k), k ≥ 4. If G is

connected, then by Corollary 2.3, G is not a tree, and hence |E(G)| ≥ n as
required.

So we may assume that G is not connected, and let G1, G2, . . . , Gt be the
connected components of G. Again, by Corollary 2.3, we infer that every compo-
nent on at least three vertices is not a tree and hence must have at least |V (Gj)|
edges.

If there are two components Gi and Gj on at most two vertices, adding an
edge joining these two components does not create a degree monotone path of
length 4 or more, contradicting the fact that G is saturated.

If there is just one component on at most two vertices, then one can connect
one vertex of this component to a vertex of maximum degree in another com-
ponent, and again no degree monotone path of length four or more is created,
contradicting the fact that G is saturated.

Hence

|E(G)| =
∑

i=1
|E(Gi)| ≥

∑

i=1
|V (Gi)| = n,

and therefore h(n, k) ≥ n for n ≥ 3 and k ≥ 4.
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2.2. Upper bounds

We now give a linear upper bound for h(n, k). We consider separately k odd and
k even.

First, we recall the definition of the Cartesian product G�H for two graphs
G and H. The vertex set of the product is V (G) × V (H). Two vertices (u1, v1)
and (u2, v2) are adjacent if either u1 and u2 are adjacent in G and v1 = v2, or
v1, v2 are adjacent in H and u1 = u2.

Theorem 2.5. If k ≥ 3 is an odd integer, then h(n, k) ≤ n(3k−1)
12 for n ≡ 0

(mod 3(k−1)
2 ).

Proof. Consider the graph G = P3�Kt for k ≥ 3 odd and t = k−1
2 . Clearly,

|V (G)| = 3(k−1)
2 and |E(G)| = 3(k−1)(k−3)

8 + 2(k−1)
2 = (k−1)(3k−1)

8 . For k = 3 (so
t = 1) this is simply P3 and mp(P3) = 2, while for k = 5 (so t = 2) this gives the
graph G = P3�K2, which is C6 plus one edge joining two antipodal vertices and
clearly mp(G) = 4.

We now show that this graph, which has mp(G) = k − 1, is saturated. In
G = P3�Kt, let the top t vertices be u1, . . . , ut, all having degree t, the middle
vertices v1, . . . , vt all having degree t+ 1, and the bottom vertices w1, . . . , wt all
having degree t. It is clear that mp(G) = 2t = k − 1, taking for example the
path u1 · · ·utvt · · · v1. Because of the symmetry of G, we only need to check the
addition of the edges u1v2, v1w2 and u1w1.

• If the edge u1v2 is added, then the path w1 · · ·wtvt · · · v3v1u1v2 has exactly
t+ t− 2 + 3 = 2t+ 1 = k vertices.

• If the edge v1w2 is added, then the path u1 · · ·utvt · · · v2w2v1 has exactly
t+ t− 1 + 2 = 2t+ 1 = k vertices.

• If the edge u1w1 is added, then the path u2 · · ·utvt · · · v1w1u1 has exactly
t− 1 + t+ 2 = 2t+ 1 = k vertices.

Hence G is saturated with mp(G) = k − 1.
We now consider two disjoint copies of G, G1 and G2. We label this graph

2G and show that this graph is also saturated. Again labelling the vertices of
G as above, by the symmetry of G we only need to consider the addition of the
edges joining ut in G1 to u1 in G2, ut in G1 to v1 in G2, and vt in G1 to v1 in G2.

• If the edge joining ut in G1 to u1 in G2 is added, then the path u1 · · ·ut in
G1 followed by u1v1 · · · vt in G2 has exactly t+ t+ 1 = 2t+ 1 = k vertices.

• If the edge joining ut in G1 to v1 in G2 is added, then the path v1 · · · vtut
in G1 followed by v1 · · · vt in G2 has exactly t+ 1+ t = 2t+ 1 = k vertices.
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• If the edge joining vt in G1 to v1 in G2 is added, then the path ut · · ·u1v1 · · ·
vt in G1 followed by v1 in G2 has exactly 2t+ 1 = k vertices.

Hence 2G is saturated, and clearly this also applies to p ≥ 3 disjoint copies
of G, pG. Now pG has n = p

3(k−1)
2 vertices and p

(k−1)(3k−1)
8 edges. Hence, for

n ≡ 0(mod 3(k−1)
2 ), the number of edges is n(3k−1)

12 , as stated.

Lemma 2.6. Let G be a saturated graph with mp(G) = k. Consider the graph

H = G + v, where v is a new vertex connected to all the vertices of G. Then

mp(H) = k + 1, and H is saturated.

Proof. Consider the graph H. Then deg(v) = |V (G)| and v has maximum
degree. So any degree monotone path in G can be extended in H by including
vertex v, and hence mp(H) = mp(G) + 1 = k + 1.

Now, since G is saturated, adding any edge e creates a degree monotone path
of length k + 1, and hence, adding the same edge in H creates a path of length
k + 2. The only edges which can be added in H are those that can be added in
G, and hence H is saturated with mp(H) = k + 1, as required.

This lemma together with Theorem 2.5 leads to the following result.

Theorem 2.7. For even k, k ≥ 4, h(n, k) ≤ n(3k+8)(k−2)
4(3k−4) for n ≡ 0 (mod 3k−4

2 ).

Proof. In Theorem 2.5 we proved that G = P3�Kt, where t =
j−1
2 , hasmp(G) =

j−1, and G is saturated for j ≥ 3 and j odd. Now by Lemma 2.6, H = G+v has
mp(H) = j + 1 (even) and is saturated. Then H has 3(j−1)

2 + 1 = 3j−1
2 vertices

and (j−1)(3j−1)
8 + 3(j−1)

2 = (3j+11)(j−1)
8 edges. Now let k = j + 1, and hence we

have 3k−4
2 vertices and (3k+8)(k−2)

2 edges.

We now consider two disjoint copies of H, H1 and H2 and call this graph
2H. We need only consider edges which involve the new vertex of degree 3(k−2)

2 ,
which has the largest degree, as other edges have the same effect as they have in
2G. If we connect the vertex of degree 3(k−2)

2 in H1 to that of the same degree
in H2, then we can take a path of length k − 1 in H1 ending with the vertex of
maximum degree, and then move to the vertex in H2, giving a path of length
k. If we connect the vertex of degree 3(k−2)

2 in H1 to one of degree k
2 in H2,

then we take a path of length k − 1 in H2 ending with the vertex connected to
the vertex in H1, and then move to this vertex in H1 to give a degree monotone
path of length k. Finally, if we connect the vertex of degree 3(k−2)

2 in H1 to one

of degree k+2
2 in H2, then we can take a degree monotone path in H2 of length

k− 1 ending with the vertex connected to H2, and then the vertex in H2 to give
a degree monotone path of length k in 2H.
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Hence 2H is saturated, and this also applies to p ≥ 3 disjoint copies of H,
pH. This graph has n = p3k−4

2 vertices and p
(3k+8)(k−2)

8 edges. Hence for n ≡ 0

(mod 3k−4
2 ), the number of edges is n(3k+8)(k−2)

4(3k−4) , as stated.

Next We show, as an example, how to extend the results given in Theorems
2.5 and 2.7 , to the case where n 6≡ 0(mod f(k)), where f(k) is the modulus
given in these theorems. We will demonstrate it in the case k = 5.

Proposition 2.8. For n ≥ 8, h(n, 5) ≤ 7n+c(n(mod 6))
6 , where c(n(mod 6)) =

{0, 35, 16, 27, 8, 28} for n ≡ 0, 1, 2, 3, 4, 5(mod 6), respectively.

Proof. Consider the graphs G = P3�K2, H = K5 − e for e ∈ E(K5) and K4,
which are sturated for k = 5 and clearly mp(G) = mp(H) = mp(K4) = 4. Every
integer n ≥ 8 can be represented in the form 6x+5y+4z with x, y, z non-negative
integers. Hence x copies of G, y copies of H and z copies of K4 produce graphs
for every n ≥ 8. It is easy to check that any graph made up of two vertex
disjoint copies of any combination of G, H and K4 is also saturated, and hence
any combination of vertex disjoint copies of these graphs is saturated.

Hence any graph made up of a disjoint combination of any number of these
three graphs is saturated.

For n ≡ 0(mod 6), the result follows immediately by substituting k = 5 in
Theorem 2.5.

For n ≡ 1(mod 6), we take the graph made up of n−13
6 copies of G, two

copies K4 and one copy of H. The graph thus obtained is saturated and has
7(n−13)

6 + 12 + 9 = 7n+35
6 edges.

For n ≡ 2(mod 6), we take the graph made up of n−8
6 copies of G and two

copies K4. The graph thus obtained is saturated and has 7(n−8)
6 + 12 = 7n+16

6
edges.

For n ≡ 3(mod 6), we take the graph made up of n−9
6 copies of G, one

copy of K4 and one copy of H. The graph thus obtained is saturated and has
7(n−9)

6 + 6 + 9 = 7n+27
6 edges.

For n ≡ 4(mod 6), we take the graph made up of n−4
6 copies of G and one

copy of K4 . The graph thus obtained is saturated and has 7(n−4)
6 + 6 = 7n+8

6
edges.

For n ≡ 5(mod 6), we take the graph made up of n−5
6 copies of G and one

copy of H. The graph thus obtained is saturated and has 7(n−5)
6 + 9 = 7n+28

6
edges.

Note: Applying the technique demonstrated in Proposition 2.8, we can ex-
tend Theorems 2.5 and 2.7 to cover all n ≥ (k− 1)(k− 2), and we state it rather
crudely as follows.

1. For odd k, k ≥ 3, and n ≥ (k − 1)(k − 2), h(n, k) ≤ n(3k−1)
12 +O(k2).
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2. For even k, k ≥ 4, and n ≥ (k − 1)(k − 2), h(n, k) ≤ n(3k+8)(k−2)
4(3k−4) +O(k2).

3. Determination of h(n, k) for k = 2, 3, 4.

First we determine the exact value of h(n, 2) and h(n, 3).

Proposition 3.1. (1) h(n, 2) = 0.

(2) h(n, 3) = n
2 for n even, while h(n, 3) = n+1

2 for n odd.

Proof. 1. mp(G) = 1 if and only if G is a graph with no edges, and any edge
we add gives mp(G+ e) = 2.

2. By Proposition 2.1, h(n, 3) ≥ sat(n, 3) = ⌊n2 ⌋. Consider even. Let G

be made up of n
2 copies of K2. This is the only graph which achieves sat(n, 3).

Clearlymp(G) = 2, and adding any edge will create a copy of P4 somp(G+e) = 3.

Now if n is odd, then the graph G made up of ⌊n2 ⌋ copies of K2, and one
copy of K1 achieves sat(n, 3), and is the only such graph. Again mp(G) = 2.
If we add an edge joining two vertices from disjoint copies of K2, then we get a
copy of P4 and mp(G+ e) = 3. However, if we add a vertex joining a vertex from
K2 to the vertex in K1, then this gives a copy of P3, and mp(G+ e) = 2, hence
h(n, 3) ≥ sat(n, 3) + 1.

Consider the graph G made up of n−3
2 copies of K2, and a single copy of

P3. Again it is clear that mp(G) = 2. Adding an edge joining two vertices from
disjoint copies of K2 then we get a copy of P4 and mp(G+ e) = 3, while adding
an edge joining a vertex from K2 to one in P3 gives mp(G+ e) = 4. The number
of edges in this graph is n+1

2 = sat(n, 3) + 1, as stated.

We now determine the exact value of h(n, 4). For this we need another
lemma.

Lemma 3.2. Let G be a saturated connected graph with |E(G)| ≤ |V (G)| and
2 ≤ mp(G) ≤ 3. Then

(1) If mp(G) = 2, then G = K1,∆, and for ∆ ≥ 2, mp(G + e) = 3, for every

e 6∈ E(G).

(2) If mp(G) = 3, then G = K3, which is saturated by definition.

Proof. Let G be such a graph. Then since |E(G)| ≤ |V (G)|, G is either a tree
or is unicyclic.

If G is a tree such that all leaves are adjacent to the same vertex which has
maximum degree, that is G = K1,∆, then mp(G) = 2 and, in case ∆ ≥ 2, adding
any edge between two leaves u and v gives mp(G + uv) = 3. If G is a tree but
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not K1,∆, then there is a leaf u and a vertex v of maximum degree which are not
adjacent, and hence by Lemma 2.2, G is not saturated.

So suppose G is unicyclic. Then it cannot be a simple cycle Cn on n ≥ 4
vertices, since otherwise mp(Cn) = n ≥ 4. Observe that C3 = K3 is saturated by
definition. So G is unicyclic with at least one leaf if the cycle has at least four
vertices.

Suppose mp(G) = 2. If there are at least two vertices on the cycle which
have branches attached, then on one of these branches (including the vertex on
the cycle) there must be a vertex of maximum degree, and on the other branch
there must be a leaf not connected to this vertex of maximum degree, and hence
by Lemma 2.2 G is not saturated. So there is precisely one vertex on the cycle
with degree greater than two, which means that mp(G) > 2, a contradiction.

So now suppose mp(G) = 3. If there are at least two vertices on the cycle
which have branches attached, then on one of these branches (including the vertex
on the cycle) there must be a vertex of maximum degree, and on the other branch
there must be a leaf not connected to this vertex of maximum degree, and hence
by Lemma 2.2 G is not saturated. So there is precisely one vertex on the cycle
with degree greater than two, and if the cycle has at least four vertices, then
mp(G) ≥ 4, a contradiction.

So it remains to consider the cycle K3 with exactly one vertex x with degree
greater than two. Suppose the vertex x has p leaves and q branches with p, q ≥ 0.
We consider several cases.

Case 1. If p ≥ 2, then we connect two leaves to get H with mp(H) =
mp(G) = 3, and G is not saturated. Hence p ≤ 1.

Case 2. If p = 1 and q ≥ 1, then either x is a vertex of maximum degree
∆ ≥ 3, and there is a leaf not connected to x, so by Lemma 2.2 G is not saturated,
or there is a vertex of maximum degree in one of these branch, so the leaf at x is
not connected to the vertex of maximum degree and again by Lemma 2.2, G is
not saturated.

Case 3. If p = 1 and q = 0, then G is K3 with a leaf attached and clearly it
is not saturated.

Case 4. If p = 0 and q ≥ 2, then either x is a vertex of maximum degree
∆ ≥ 3 and there is a leaf in the branch not connected to x, so by Lemma 2.2 G is
not saturated, or there is a vertex of maximum degree in one of these branches,
so the leaf at x is not connected to the vertex of maximum degree and again by
Lemma 2.2, G is not saturated.

Case 5. If p = 0 and q = 1, then deg(x) = 3. Let z be the neighbour of x in
this branch. If deg(z) ≥ 3, then mp(G) ≥ 4, a contradiction. Hence deg(z) = 2,
and let w be the neighbour of z. If deg(w) = 1, then x has maximum degree, w
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is not connected to x and by Lemma 2.2, G is not saturated. So deg(w) ≥ 2 and
we consider two cases.

Case 5.1. deg(w) = 2. Let u be the neighbour of w. If deg(u) ≤ 2, then we
have a degree monotone path uwzv of length four. So deg(u) ≥ 3.

If deg(u) > 3, then if the edge xw is added, mp(G + xw) = 3 and G is not
saturated. Hence deg(u) = 3. Let s and y be the neighbours of u. If either s or
y have degree at least three, then we have degree montone paths of length four
zwux or zwuy, a contradiction. So both s and y have degree at most two.

If either s or y is a leaf, say s, then either ∆ = 3 and s is a leaf not connected
to x, so by Lemma 2.2 G is not saturated, or ∆ ≥ 4 and is realized by a vertex
r say on the branch at y. Again s is a leaf not adjacent to r, and by Lemma 2,2
G is not saturated.

So deg(s) = deg(y) = 2, and either the maximum degree ∆ = 3 and there is
a leaf not adjacent to x, so by Lemma 2.2 G is not saturated, or there is a vertex
r of maximum degree ∆ ≥ 4, which is on one of the branches starting at s or y,
say s. But then there is a leaf on the branch starting at y not adjacent to the
vertex r, and again by Lemma 2.2 G is saturated.

Case 5.2. deg(w) = t ≥ 3. Let x1, . . . , xt be the neighbors of w. If for some
j, deg(xj) = 1, then either ∆ = 3 and xj is not connected to x, so by Lemma 2.2
G is not saturated, or ∆ ≥ 4 and is realized by a vertex r on a branch at some xi,
i 6= j. Then xj is a leaf not adjacent to r, and by Lemma 2.2 G is not saturated.

So deg(xj) ≥ 2 for j = 1, . . . , t. Now if ∆ = 3, then a leaf on one these
branches starting at x1, . . . , xt is not connected to x, and by Lemma 2.2 G is not
saturated. Otherwise, ∆ ≥ 4 and a vertex r of maximum degree appears on the
branch starting at say xj . Then a leaf on any other branch is not connected to
r, and by Lemma 2.2 G is not saturated.

Hence G = K3 is the only saturated graph with |E(G)| ≤ |V (G)| and
mp(G) = 3.

Theorem 3.3. For n ≡ 0(mod 3), h(n, 4) = n, while for n ≡ 1, 2(mod 3),
h(n, 4) = n+ 1.

Proof. First we prove the upperbound for h(n, 4). Consider the following cases.

Case 1. Assume n ≡ 0(mod 3). If G is made up of n
3 copies of K3, then

clearly mp(G) = 3. Any edge we add gives a degree monotone path of length 4.
So G is saturated and hence h(n, 4) ≤ n for n ≡ 0(mod 3).

Case 2. Assume n ≡ 1(mod 3). Let G be made up of n−4
3 copies of K3

and a copy of K4 − e, e ∈ E(K4). Clearly mp(G) = 3 and it is easy to see that
mp(G+ e) ≥ 4. So G is saturated and hence h(n, 4) ≤ n+ 1 for n ≡ 1(mod 3).
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Case 3. Assume n ≡ 2(mod 3). Let G be made up of n−5
3 copies of K3 and

two copies of K3 with a common vertex. Clearly mp(G) = 3 and it is easy to
see that mp(G + e) ≥ 4. So G is saturated and hence h(n, 4) ≤ n + 1 for n≡ 2
(mod 3).

Now to the lower bound. Suppose G is a graph on n ≥ 3 vertices realising
h(n, 4). If G is connected, then by Lemma 3.2, either G is K3 or |E(G)| ≥ n+1.
Hence we may assume that G is not connected, and let G1, G2, . . . , Gt be the
connected components of G. Again, by Lemma 3.2, every component Gj on at
least 3 vertices is either K3 or contains at least |V (Gj)|+ 1 edges.

If there are at least two components, say Gi and Gj , on at most two vertices
each, then we can just add an edge between a vertex in Gi and one in Gj without
creating a degree monotone path of length more than 3, contradicting the fact
that G is saturated.

Lastly, if there is just one component Gj on at most two vertices, then if we
connect a vertex in this component to a vertex v of maximum degree in another
component of G, then clearly no degree monotone path of length 4 or more is
created, once again contradicting that G is saturated.

Hence all components of G have at least 3 vertices. If there are at least two
components which are not K3, then |E(G)| ≥ n + 2, and this is not optimal
by the constructions above. If there is just one component which is not K3,
then |E(G)| ≥ n + 1 and so for n ≡ 1, 2(mod 3), h(n, 4) ≥ n + 1 proving the
constructions above are optimal .

Finally, if all components are K3, then |E(G)| = n, proving h(n, 4) = n for
n ≡ 0(mod 3).

4. Concluding Remarks and Open Problems

Several open problems have arised during our work on this paper. We list some
of the more interesting ones.

• The major role played in this paper by Lemma 2.2 and its consequences
suggest:

Problem 1: Find further structural conditions (along the lines indicated
in Lemma 2.2) indicating that a graph G is not saturated.

• In Corollary 2.3, we characterise saturated trees. In a previous paper [2] we
characterised saturated graphs withmp(G) = 2. This leads to the following:

Problem 2: Characterise k-saturated graphs for other families of graphs
such as maximal outerplanar graphs, maximal planar graphs, regular graphs,
etc.
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Problem 3: Characterise saturated graphs with mp(G) = 3.

• The parameter mp(G) can be very sensitive to edge-addition and edge-
deletion, as shown in [3]. Also Theorem 2.5 gives h(n, 7) ≤ 5n

3 for n ≡ 0
(mod 9) while Theorem 2.7 gives h(n, 6) ≤ 13n

7 for n ≡ 0(mod 7). These
facts suggest the following monotonicity problem.

Problem 4: Is it true that, at least for n large enough, depending on k,
and for k ≥ 2, h(n, k + 1) ≥ h(n, k)?

If true, this will have the immediate implication that the construction for
h(n, 6) is not optimal and that in fact h(n, 6) ≤ 5n(1+o(1))

3 by the above
upper bound for h(n, 7).

• The upper bound constructions given in Theorem 2.5 and Theorem 2.7 are
probably not optimal.

Problem 5: Improve upon the upper bounds obtained in Theorems 2.5
and 2.7.

• The lower bound given in Theorem 2.4 proved to be sharp in the case k = 4.

Problem 6: Improve upon the lower bound h(n, k) ≥ n for k ≥ 5.

• In Proposition 2.8 we have shown that h(n, 5) ≤ 7n
6 + c(n(mod 6)).

Problem 7: Determine h(n, 5) exactly. In particular, is it true that

h(n, 5) = 7n(1+o(1))
6 ?

• Lastly, recall that sat(n, k) = n(1− c(k)) < n for every large k and n.

Problem 8: Is it true that h(n, k) ≤ cn for some constant c independent
of k?
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