Discussiones Mathematicae Graph Theory 35 (2015) 557–569 doi:10.7151/dmgt.1817

THE SATURATION NUMBER FOR THE LENGTH OF DEGREE MONOTONE PATHS

YAIR CARO¹, JOSEF LAURI²

AND

CHRISTINA ZARB²

¹Department of Mathematics University of Haifa-Oranim, Israel

²Department of Mathematics University of Malta, Malta

e-mail: yacaro@kvgeva.org.il josef.lauri@um.edu.mt christina.zarb@um.edu.mt

Abstract

A degree monotone path in a graph G is a path P such that the sequence of degrees of the vertices in the order in which they appear on P is monotonic. The length (number of vertices) of the longest degree monotone path in G is denoted by mp(G). This parameter, inspired by the well-known Erdős-Szekeres theorem, has been studied by the authors in two earlier papers. Here we consider a saturation problem for the parameter mp(G). We call G saturated if, for every edge e added to G, mp(G + e) > mp(G), and we define h(n, k) to be the least possible number of edges in a saturated graph G on n vertices with mp(G) < k, while $mp(G + e) \ge k$ for every new edge e.

We obtain linear lower and upper bounds for h(n, k), we determine exactly the values of h(n, k) for k = 3 and 4, and we present constructions of saturated graphs.

Keywords: paths, degrees, saturation.

2010 Mathematics Subject Classification: 05C07, 05C35, 05C38.

1. INTRODUCTION

Given a graph G, a degree monotone path is a path $v_1v_2\cdots v_k$ such that $deg(v_1) \leq deg(v_2) \leq \cdots \leq deg(v_k)$ or $deg(v_1) \geq deg(v_2) \geq \cdots \geq deg(v_k)$. This notion,

inspired by the well-known Erdős-Szekeres theorem [7, 9], was introduced in [6] under the name of uphill and downhill path in relation to domination problems, also studied in [4, 5, 11]. In [6], the study of the parameter mp(G), which denotes the length of the longest degree monotone path in G, was specifically suggested. This parameter was studied by the authors in [2, 3], and among many results obtained, the parameter $f(n,k) = \max\{|E(G)| : |V(G)| = n, mp(G) < k\}$ was also defined. It was shown that this is closely related to the Turán numbers $t(n,k) = \max\{|E(G)| : |V(G)| = n, G$ contains no copy of $K_k\}$.

A general form of the Turán numbers with respect to a graph H is $t(n, H) = \max\{|E(G)| : |V(G)| = n, G \text{ contains no copy of } H\}$. The study of Turán numbers is undoubtedly considered as one of the fundamental problems in extremal graph and hypergraph theory [1].

The Turán number has a counter-part known as the saturation number with respect to a given graph H, defined as

$$sat(n, H) = \min\{|E(G)| : |V(G)| = n, G \text{ contains no copy of } H,$$

but $G + e$ contains H for any edge added to $G\}.$

Tuza and Kászonyi in [12] launched a systematic study of sat(n, H) following an earlier result by Erdős, Hajnal and Moon [8] who proved that $sat(n, K_k) = {\binom{k-2}{2}} + (k-2)(n-k+2)$ with a unique graph attaining this bound, namely $K_{k-2} + \overline{K_{n-k+2}}$. For the current paper, it is worth noting that $sat(n, P_k)$ (sat(n, k) for short) is known [12] for every k and n sufficiently large with respect to k, and in particular for n large enough, sat(n, k) = n(1-c(k)), where c(k) < 1 is a positive constant which depends only on k (for the exact value we refer the interested reader to [12]). For a survey and recent information about saturation, see [10].

In this spirit, we call a graph G saturated if mp(G+e) > mp(G) for all new edges e joining non-adjacent vertices in G. If it happens that $mp(G+e) \ge k$ for all new edges e we sometimes refer to the saturated graph G as k-saturated. By convention we say that K_m is k-saturated for $m \le k - 1$. Then we define

$$h(n,k) = \min\{|E(G)| : |V(G)| = n, G \text{ is } k\text{-saturated}\}.$$

In Section 2, we prove linear lower and upper bounds for this parameter. In Section 3, we provide exact determination of h(n,k) for k = 3,4. In Section 4 we present several open problems concerning h(n,k) for $k \ge 5$ as well as several other problems and conjectures.

2. General Lower and Upper Bounds

2.1. Lower bounds

We begin by showing that sat(n, k) is a lower bound for h(n, k).

Proposition 2.1. For $k \ge 2$, $h(n,k) \ge sat(n,k)$.

Proof. Clearly, if G is a graph realising $sat(n, P_k) = sat(n, k)$, this means that G does not contain a copy of P_k , and hence no degree monotone path of length k. But G + e contains P_k , but not necessarily a degree monotone path of length k. Hence $h(n, k) \ge sat(n, k)$.

Recall that for fixed k and large n, sat(n,k) = n(1-c(k)) < n. We now strengthen Proposition 2.1 to show that for $k \ge 4$, $h(n,k) \ge n$. First we prove a lemma, and subsequently a corollary, which will then be used in the main proof.

Lemma 2.2. Let G be a connected graph with a vertex u of degree 1 and a vertex v of maximum degree $\Delta \ge 2$ which are not adjacent. Then $mp(G+uv) \le mp(G)$, namely G is not saturated.

Proof. Let H = G + uv and let P be a path in H which realizes mp(H). Let u^* and v^* be the vertices u and v as they appear in H.

If $\Delta = 2$, then clearly G is a path on $k \ge 4$ vertices and mp(G) = k - 1, and if we take u to be the first vertex of the path, and v to be the $(k - 1)^{th}$ vertex, then mp(H) = k - 1 = mp(G).

So we may assume $\Delta \geq 3$. Now, if u^* and v^* are not on P, then P is degree monotone in G and hence $mp(H) \leq mp(G)$. If v^* is on P but u^* is not, then v^* must be the last vertex on P, and hence the path P with v^* replaced by v is also degree monotone in G and $mp(H) \leq mp(G)$. Similarly, if u^* is on P but v^* is not, then u^* must be the first vertex on P, since clearly u^* cannot be in the "middle" of the path as then the next vertex on P must be v^* , which is not on P. Then the path P in G with u^* replaced by u is also degree monotone in Gand again $mp(H) \leq mp(G)$. If u^* is the last vertex on the path, then clearly Pis not maximal as $P \cup \{v^*\}$ via the edge u^*v^* is a longer degree monotone path, contradicting maximality of P.

So the only remaining case to consider is when u^* and v^* are both on P. Then clearly v^* is the last vertex on P. If u^* is the first vertex, then either $P = u^*v^*$ and $mp(H) = 2 \leq mp(G)$, or the path P is degree monotone in G too. If u^* is not the first vertex, then the next vertex on P must be v^* which is the last vertex. Hence, in this case, all predecessors of u^* on P must have degree at most 2. But if the first vertex y in P has degree 1, then, in G, the path $y \cdots u$ is disconnected from the rest of G, which is impossible. Therefore deg(y) = 2 and y has a neighbour w which must have degree greater than 2 (note that w may be equal to v^* but cannot be any other vertex on P). But then, the path $u \cdots yw$ is degree monotone in G and is of the same length as P, and hence $mp(H) \leq mp(G)$.

Lemma 2.2 is best possible with respect to the adjacency condition between minimum degrees and maximum degrees because if the minimum degree is greater than 1, and a vertex u of minimum degree is not adjacent to vertex v, then mp(G + uv) may be larger than mp(G). As an example, consider a graph G_n made up of the cycle C_{2n} , $n \geq 3$, with vertices labelled v_1, v_2, \ldots, v_{2n} , and a vertex w connected to vertices $v_1, v_3, v_5, \ldots, v_{2n-1}$. Thus w has degree $\Delta = n$ and $\delta = 2$, and $mp(G_n) = 3$. The vertices of degree 2 are not connected to w, but connecting any such vertex to w by an edge e gives $mp(G_n + e) = 5$. In fact, these graphs are 5-saturated even though they have non-adjacent vertices of maximum degree $\Delta \geq 3$ and minimum degree $\delta = 2$.

Corollary 2.3. Let T be a tree on $n \ge 3$ vertices. Then T is saturated for a degree monotone path if and only if $T = K_{1,n-1}$.

Proof. Suppose first $mp(T) \ge 3$. Then clearly T is not a star, hence there is a leaf not connected to a vertex of maximum degree and by Lemma 2.2, T is not saturated.

So suppose mp(T) = 2. If not all leaves are adjacent to the same vertex of maximum degre, then again by Lemma 2.2, T is not saturated. Hence T must be a star $K_{1,n-1}$.

Indeed, $K_{1,n-1}$ is saturated and $mp(K_{1,n-1}) = 2$ while $mp(K_{1,n-1} + e) = 3$ for every edge $e \notin E(K_{1,n-1})$.

Theorem 2.4. For $n \ge 3$ and $k \ge 4$, $h(n,k) \ge n$.

Proof. We may assume that $n \ge k$ for otherwise, trivially, K_n is saturated having $\binom{n}{2} \ge n$ edges for $n \ge 3$.

So let G be a graph on $n \ge k$ vertices realizing h(n,k), $k \ge 4$. If G is connected, then by Corollary 2.3, G is not a tree, and hence $|E(G)| \ge n$ as required.

So we may assume that G is not connected, and let G_1, G_2, \ldots, G_t be the connected components of G. Again, by Corollary 2.3, we infer that every component on at least three vertices is not a tree and hence must have at least $|V(G_j)|$ edges.

If there are two components G_i and G_j on at most two vertices, adding an edge joining these two components does not create a degree monotone path of length 4 or more, contradicting the fact that G is saturated.

If there is just one component on at most two vertices, then one can connect one vertex of this component to a vertex of maximum degree in another component, and again no degree monotone path of length four or more is created, contradicting the fact that G is saturated.

Hence

$$|E(G)| = \sum_{i=1} |E(G_i)| \ge \sum_{i=1} |V(G_i)| = n,$$

and therefore $h(n,k) \ge n$ for $n \ge 3$ and $k \ge 4$.

560

2.2. Upper bounds

We now give a linear upper bound for h(n, k). We consider separately k odd and k even.

First, we recall the definition of the Cartesian product $G \Box H$ for two graphs G and H. The vertex set of the product is $V(G) \times V(H)$. Two vertices (u_1, v_1) and (u_2, v_2) are adjacent if either u_1 and u_2 are adjacent in G and $v_1 = v_2$, or v_1, v_2 are adjacent in H and $u_1 = u_2$.

Theorem 2.5. If $k \geq 3$ is an odd integer, then $h(n,k) \leq \frac{n(3k-1)}{12}$ for $n \equiv 0 \pmod{\frac{3(k-1)}{2}}$.

Proof. Consider the graph $G = P_3 \Box K_t$ for $k \ge 3$ odd and $t = \frac{k-1}{2}$. Clearly, $|V(G)| = \frac{3(k-1)}{2}$ and $|E(G)| = \frac{3(k-1)(k-3)}{8} + \frac{2(k-1)}{2} = \frac{(k-1)(3k-1)}{8}$. For k = 3 (so t = 1) this is simply P_3 and $mp(P_3) = 2$, while for k = 5 (so t = 2) this gives the graph $G = P_3 \Box K_2$, which is C_6 plus one edge joining two antipodal vertices and clearly mp(G) = 4.

We now show that this graph, which has mp(G) = k - 1, is saturated. In $G = P_3 \Box K_t$, let the top t vertices be u_1, \ldots, u_t , all having degree t, the middle vertices v_1, \ldots, v_t all having degree t + 1, and the bottom vertices w_1, \ldots, w_t all having degree t. It is clear that mp(G) = 2t = k - 1, taking for example the path $u_1 \cdots u_t v_t \cdots v_1$. Because of the symmetry of G, we only need to check the addition of the edges u_1v_2, v_1w_2 and u_1w_1 .

- If the edge u_1v_2 is added, then the path $w_1 \cdots w_t v_t \cdots v_3 v_1 u_1 v_2$ has exactly t + t 2 + 3 = 2t + 1 = k vertices.
- If the edge v_1w_2 is added, then the path $u_1 \cdots u_t v_t \cdots v_2 w_2 v_1$ has exactly t + t 1 + 2 = 2t + 1 = k vertices.
- If the edge u_1w_1 is added, then the path $u_2 \cdots u_t v_t \cdots v_1 w_1 u_1$ has exactly t 1 + t + 2 = 2t + 1 = k vertices.

Hence G is saturated with mp(G) = k - 1.

We now consider two disjoint copies of G, G_1 and G_2 . We label this graph 2G and show that this graph is also saturated. Again labelling the vertices of G as above, by the symmetry of G we only need to consider the addition of the edges joining u_t in G_1 to u_1 in G_2 , u_t in G_1 to v_1 in G_2 , and v_t in G_1 to v_1 in G_2 .

- If the edge joining u_t in G_1 to u_1 in G_2 is added, then the path $u_1 \cdots u_t$ in G_1 followed by $u_1v_1 \cdots v_t$ in G_2 has exactly t + t + 1 = 2t + 1 = k vertices.
- If the edge joining u_t in G_1 to v_1 in G_2 is added, then the path $v_1 \cdots v_t u_t$ in G_1 followed by $v_1 \cdots v_t$ in G_2 has exactly t + 1 + t = 2t + 1 = k vertices.

• If the edge joining v_t in G_1 to v_1 in G_2 is added, then the path $u_t \cdots u_1 v_1 \cdots v_t$ in G_1 followed by v_1 in G_2 has exactly 2t + 1 = k vertices.

Hence 2G is saturated, and clearly this also applies to $p \ge 3$ disjoint copies of G, pG. Now pG has $n = p \frac{3(k-1)}{2}$ vertices and $p \frac{(k-1)(3k-1)}{8}$ edges. Hence, for $n \equiv 0 \pmod{\frac{3(k-1)}{2}}$, the number of edges is $\frac{n(3k-1)}{12}$, as stated.

Lemma 2.6. Let G be a saturated graph with mp(G) = k. Consider the graph H = G + v, where v is a new vertex connected to all the vertices of G. Then mp(H) = k + 1, and H is saturated.

Proof. Consider the graph H. Then deg(v) = |V(G)| and v has maximum degree. So any degree monotone path in G can be extended in H by including vertex v, and hence mp(H) = mp(G) + 1 = k + 1.

Now, since G is saturated, adding any edge e creates a degree monotone path of length k + 1, and hence, adding the same edge in H creates a path of length k + 2. The only edges which can be added in H are those that can be added in G, and hence H is saturated with mp(H) = k + 1, as required.

This lemma together with Theorem 2.5 leads to the following result.

Theorem 2.7. For even $k, k \ge 4, h(n,k) \le \frac{n(3k+8)(k-2)}{4(3k-4)}$ for $n \equiv 0 \pmod{\frac{3k-4}{2}}$.

Proof. In Theorem 2.5 we proved that $G = P_3 \Box K_t$, where $t = \frac{j-1}{2}$, has mp(G) = j-1, and G is saturated for $j \ge 3$ and j odd. Now by Lemma 2.6, H = G + v has mp(H) = j + 1 (even) and is saturated. Then H has $\frac{3(j-1)}{2} + 1 = \frac{3j-1}{2}$ vertices and $\frac{(j-1)(3j-1)}{8} + \frac{3(j-1)}{2} = \frac{(3j+11)(j-1)}{8}$ edges. Now let k = j + 1, and hence we have $\frac{3k-4}{2}$ vertices and $\frac{(3k+8)(k-2)}{2}$ edges.

We now consider two disjoint copies of H, H_1 and H_2 and call this graph 2H. We need only consider edges which involve the new vertex of degree $\frac{3(k-2)}{2}$, which has the largest degree, as other edges have the same effect as they have in 2G. If we connect the vertex of degree $\frac{3(k-2)}{2}$ in H_1 to that of the same degree in H_2 , then we can take a path of length k - 1 in H_1 ending with the vertex of maximum degree, and then move to the vertex in H_2 , giving a path of length k. If we connect the vertex of degree $\frac{3(k-2)}{2}$ in H_1 to one of degree $\frac{k}{2}$ in H_2 , then we take a path of length k - 1 in H_2 ending with the vertex connected to the vertex in H_1 , and then move to this vertex in H_1 to give a degree monotone path of length k. Finally, if we connect the vertex of degree $\frac{3(k-2)}{2}$ in H_1 to one of degree $\frac{4k+2}{2}$ in H_2 , then we can take a degree monotone path in H_2 of length k - 1 ending with the vertex in H_2 to give a degree monotone path of length k. I ending with the vertex connected to H_2 , and then the vertex in H_2 to give a degree monotone path of length k - 1 ending with the vertex connected to H_2 , and then the vertex in H_2 to give a degree monotone path of length k - 1 ending with the vertex connected to H_2 , and then the vertex in H_2 to give a degree monotone path of length k - 1 ending with the vertex connected to H_2 , and then the vertex in H_2 to give a degree monotone path of length k in 2H.

Hence 2H is saturated, and this also applies to $p \ge 3$ disjoint copies of H, pH. This graph has $n = p\frac{3k-4}{2}$ vertices and $p\frac{(3k+8)(k-2)}{8}$ edges. Hence for $n \equiv 0 \pmod{\frac{3k-4}{2}}$, the number of edges is $\frac{n(3k+8)(k-2)}{4(3k-4)}$, as stated.

Next We show, as an example, how to extend the results given in Theorems 2.5 and 2.7, to the case where $n \not\equiv 0 \pmod{f(k)}$, where f(k) is the modulus given in these theorems. We will demonstrate it in the case k = 5.

Proposition 2.8. For $n \ge 8$, $h(n,5) \le \frac{7n+c(n \pmod{6})}{6}$, where $c(n \pmod{6}) = \{0,35,16,27,8,28\}$ for $n \equiv 0,1,2,3,4,5 \pmod{6}$, respectively.

Proof. Consider the graphs $G = P_3 \Box K_2$, $H = K_5 - e$ for $e \in E(K_5)$ and K_4 , which are sturated for k = 5 and clearly $mp(G) = mp(H) = mp(K_4) = 4$. Every integer $n \ge 8$ can be represented in the form 6x + 5y + 4z with x, y, z non-negative integers. Hence x copies of G, y copies of H and z copies of K_4 produce graphs for every $n \ge 8$. It is easy to check that any graph made up of two vertex disjoint copies of any combination of G, H and K_4 is also saturated, and hence any combination of vertex disjoint copies of these graphs is saturated.

Hence any graph made up of a disjoint combination of any number of these three graphs is saturated.

For $n \equiv 0 \pmod{6}$, the result follows immediately by substituting k = 5 in Theorem 2.5.

For $n \equiv 1 \pmod{6}$, we take the graph made up of $\frac{n-13}{6}$ copies of G, two copies K_4 and one copy of H. The graph thus obtained is saturated and has $\frac{7(n-13)}{6} + 12 + 9 = \frac{7n+35}{6}$ edges. For $n \equiv 2 \pmod{6}$, we take the graph made up of $\frac{n-8}{6}$ copies of G and two

For $n \equiv 2 \pmod{6}$, we take the graph made up of $\frac{n-8}{6}$ copies of G and two copies K_4 . The graph thus obtained is saturated and has $\frac{7(n-8)}{6} + 12 = \frac{7n+16}{6}$ edges.

For $n \equiv 3 \pmod{6}$, we take the graph made up of $\frac{n-9}{6}$ copies of G, one copy of K_4 and one copy of H. The graph thus obtained is saturated and has $\frac{7(n-9)}{6} + 6 + 9 = \frac{7n+27}{6}$ edges. For $n \equiv 4 \pmod{6}$, we take the graph made up of $\frac{n-4}{6}$ copies of G and one

For $n \equiv 4 \pmod{6}$, we take the graph made up of $\frac{n-4}{6}$ copies of G and one copy of K_4 . The graph thus obtained is saturated and has $\frac{7(n-4)}{6} + 6 = \frac{7n+8}{6}$ edges.

For $n \equiv 5 \pmod{6}$, we take the graph made up of $\frac{n-5}{6}$ copies of G and one copy of H. The graph thus obtained is saturated and has $\frac{7(n-5)}{6} + 9 = \frac{7n+28}{6}$ edges.

Note: Applying the technique demonstrated in Proposition 2.8, we can extend Theorems 2.5 and 2.7 to cover all $n \ge (k-1)(k-2)$, and we state it rather crudely as follows.

1. For odd $k, k \ge 3$, and $n \ge (k-1)(k-2), h(n,k) \le \frac{n(3k-1)}{12} + O(k^2)$.

2. For even
$$k, k \ge 4$$
, and $n \ge (k-1)(k-2), h(n,k) \le \frac{n(3k+8)(k-2)}{4(3k-4)} + O(k^2)$.

3. Determination of h(n,k) for k = 2, 3, 4.

First we determine the exact value of h(n, 2) and h(n, 3).

Proposition 3.1. (1) h(n,2) = 0. (2) $h(n,3) = \frac{n}{2}$ for *n* even, while $h(n,3) = \frac{n+1}{2}$ for *n* odd.

Proof. 1. mp(G) = 1 if and only if G is a graph with no edges, and any edge we add gives mp(G + e) = 2.

2. By Proposition 2.1, $h(n,3) \ge sat(n,3) = \lfloor \frac{n}{2} \rfloor$. Consider even. Let G be made up of $\frac{n}{2}$ copies of K_2 . This is the only graph which achieves sat(n,3). Clearly mp(G) = 2, and adding any edge will create a copy of P_4 so mp(G+e) = 3.

Now if n is odd, then the graph G made up of $\lfloor \frac{n}{2} \rfloor$ copies of K_2 , and one copy of K_1 achieves sat(n,3), and is the only such graph. Again mp(G) = 2. If we add an edge joining two vertices from disjoint copies of K_2 , then we get a copy of P_4 and mp(G+e) = 3. However, if we add a vertex joining a vertex from K_2 to the vertex in K_1 , then this gives a copy of P_3 , and mp(G+e) = 2, hence $h(n,3) \ge sat(n,3) + 1$.

Consider the graph G made up of $\frac{n-3}{2}$ copies of K_2 , and a single copy of P_3 . Again it is clear that mp(G) = 2. Adding an edge joining two vertices from disjoint copies of K_2 then we get a copy of P_4 and mp(G + e) = 3, while adding an edge joining a vertex from K_2 to one in P_3 gives mp(G + e) = 4. The number of edges in this graph is $\frac{n+1}{2} = sat(n,3) + 1$, as stated.

We now determine the exact value of h(n, 4). For this we need another lemma.

Lemma 3.2. Let G be a saturated connected graph with $|E(G)| \leq |V(G)|$ and $2 \leq mp(G) \leq 3$. Then

- (1) If mp(G) = 2, then $G = K_{1,\Delta}$, and for $\Delta \ge 2$, mp(G + e) = 3, for every $e \notin E(G)$.
- (2) If mp(G) = 3, then $G = K_3$, which is saturated by definition.

Proof. Let G be such a graph. Then since $|E(G)| \leq |V(G)|$, G is either a tree or is unicyclic.

If G is a tree such that all leaves are adjacent to the same vertex which has maximum degree, that is $G = K_{1,\Delta}$, then mp(G) = 2 and, in case $\Delta \ge 2$, adding any edge between two leaves u and v gives mp(G + uv) = 3. If G is a tree but not $K_{1,\Delta}$, then there is a leaf u and a vertex v of maximum degree which are not adjacent, and hence by Lemma 2.2, G is not saturated.

So suppose G is unicyclic. Then it cannot be a simple cycle C_n on $n \ge 4$ vertices, since otherwise $mp(C_n) = n \ge 4$. Observe that $C_3 = K_3$ is saturated by definition. So G is unicyclic with at least one leaf if the cycle has at least four vertices.

Suppose mp(G) = 2. If there are at least two vertices on the cycle which have branches attached, then on one of these branches (including the vertex on the cycle) there must be a vertex of maximum degree, and on the other branch there must be a leaf not connected to this vertex of maximum degree, and hence by Lemma 2.2 G is not saturated. So there is precisely one vertex on the cycle with degree greater than two, which means that mp(G) > 2, a contradiction.

So now suppose mp(G) = 3. If there are at least two vertices on the cycle which have branches attached, then on one of these branches (including the vertex on the cycle) there must be a vertex of maximum degree, and on the other branch there must be a leaf not connected to this vertex of maximum degree, and hence by Lemma 2.2 G is not saturated. So there is precisely one vertex on the cycle with degree greater than two, and if the cycle has at least four vertices, then $mp(G) \ge 4$, a contradiction.

So it remains to consider the cycle K_3 with exactly one vertex x with degree greater than two. Suppose the vertex x has p leaves and q branches with $p, q \ge 0$. We consider several cases.

Case 1. If $p \ge 2$, then we connect two leaves to get H with mp(H) = mp(G) = 3, and G is not saturated. Hence $p \le 1$.

Case 2. If p = 1 and $q \ge 1$, then either x is a vertex of maximum degree $\Delta \ge 3$, and there is a leaf not connected to x, so by Lemma 2.2 G is not saturated, or there is a vertex of maximum degree in one of these branch, so the leaf at x is not connected to the vertex of maximum degree and again by Lemma 2.2, G is not saturated.

Case 3. If p = 1 and q = 0, then G is K_3 with a leaf attached and clearly it is not saturated.

Case 4. If p = 0 and $q \ge 2$, then either x is a vertex of maximum degree $\Delta \ge 3$ and there is a leaf in the branch not connected to x, so by Lemma 2.2 G is not saturated, or there is a vertex of maximum degree in one of these branches, so the leaf at x is not connected to the vertex of maximum degree and again by Lemma 2.2, G is not saturated.

Case 5. If p = 0 and q = 1, then deg(x) = 3. Let z be the neighbour of x in this branch. If $deg(z) \ge 3$, then $mp(G) \ge 4$, a contradiction. Hence deg(z) = 2, and let w be the neighbour of z. If deg(w) = 1, then x has maximum degree, w

is not connected to x and by Lemma 2.2, G is not saturated. So $deg(w) \ge 2$ and we consider two cases.

Case 5.1. deg(w) = 2. Let u be the neighbour of w. If $deg(u) \le 2$, then we have a degree monotone path uwzv of length four. So $deg(u) \ge 3$.

If deg(u) > 3, then if the edge xw is added, mp(G + xw) = 3 and G is not saturated. Hence deg(u) = 3. Let s and y be the neighbours of u. If either s or y have degree at least three, then we have degree montone paths of length four zwux or zwuy, a contradiction. So both s and y have degree at most two.

If either s or y is a leaf, say s, then either $\Delta = 3$ and s is a leaf not connected to x, so by Lemma 2.2 G is not saturated, or $\Delta \ge 4$ and is realized by a vertex r say on the branch at y. Again s is a leaf not adjacent to r, and by Lemma 2,2 G is not saturated.

So deg(s) = deg(y) = 2, and either the maximum degree $\Delta = 3$ and there is a leaf not adjacent to x, so by Lemma 2.2 G is not saturated, or there is a vertex r of maximum degree $\Delta \ge 4$, which is on one of the branches starting at s or y, say s. But then there is a leaf on the branch starting at y not adjacent to the vertex r, and again by Lemma 2.2 G is saturated.

Case 5.2. $deg(w) = t \ge 3$. Let x_1, \ldots, x_t be the neighbors of w. If for some $j, deg(x_j) = 1$, then either $\Delta = 3$ and x_j is not connected to x, so by Lemma 2.2 G is not saturated, or $\Delta \ge 4$ and is realized by a vertex r on a branch at some x_i , $i \ne j$. Then x_j is a leaf not adjacent to r, and by Lemma 2.2 G is not saturated.

So $deg(x_j) \geq 2$ for j = 1, ..., t. Now if $\Delta = 3$, then a leaf on one these branches starting at $x_1, ..., x_t$ is not connected to x, and by Lemma 2.2 G is not saturated. Otherwise, $\Delta \geq 4$ and a vertex r of maximum degree appears on the branch starting at say x_j . Then a leaf on any other branch is not connected to r, and by Lemma 2.2 G is not saturated.

Hence $G = K_3$ is the only saturated graph with $|E(G)| \leq |V(G)|$ and mp(G) = 3.

Theorem 3.3. For $n \equiv 0 \pmod{3}$, h(n, 4) = n, while for $n \equiv 1, 2 \pmod{3}$, h(n, 4) = n + 1.

Proof. First we prove the upperbound for h(n, 4). Consider the following cases.

Case 1. Assume $n \equiv 0 \pmod{3}$. If G is made up of $\frac{n}{3}$ copies of K_3 , then clearly mp(G) = 3. Any edge we add gives a degree monotone path of length 4. So G is saturated and hence $h(n, 4) \leq n$ for $n \equiv 0 \pmod{3}$.

Case 2. Assume $n \equiv 1 \pmod{3}$. Let G be made up of $\frac{n-4}{3}$ copies of K_3 and a copy of $K_4 - e$, $e \in E(K_4)$. Clearly mp(G) = 3 and it is easy to see that $mp(G + e) \geq 4$. So G is saturated and hence $h(n, 4) \leq n + 1$ for $n \equiv 1 \pmod{3}$.

Case 3. Assume $n \equiv 2 \pmod{3}$. Let G be made up of $\frac{n-5}{3}$ copies of K_3 and two copies of K_3 with a common vertex. Clearly mp(G) = 3 and it is easy to see that $mp(G+e) \ge 4$. So G is saturated and hence $h(n,4) \le n+1$ for $n \equiv 2 \pmod{3}$.

Now to the lower bound. Suppose G is a graph on $n \ge 3$ vertices realising h(n, 4). If G is connected, then by Lemma 3.2, either G is K_3 or $|E(G)| \ge n+1$. Hence we may assume that G is not connected, and let G_1, G_2, \ldots, G_t be the connected components of G. Again, by Lemma 3.2, every component G_j on at least 3 vertices is either K_3 or contains at least $|V(G_j)| + 1$ edges.

If there are at least two components, say G_i and G_j , on at most two vertices each, then we can just add an edge between a vertex in G_i and one in G_j without creating a degree monotone path of length more than 3, contradicting the fact that G is saturated.

Lastly, if there is just one component G_j on at most two vertices, then if we connect a vertex in this component to a vertex v of maximum degree in another component of G, then clearly no degree monotone path of length 4 or more is created, once again contradicting that G is saturated.

Hence all components of G have at least 3 vertices. If there are at least two components which are not K_3 , then $|E(G)| \ge n + 2$, and this is not optimal by the constructions above. If there is just one component which is not K_3 , then $|E(G)| \ge n + 1$ and so for $n \equiv 1, 2 \pmod{3}$, $h(n, 4) \ge n + 1$ proving the constructions above are optimal.

Finally, if all components are K_3 , then |E(G)| = n, proving h(n, 4) = n for $n \equiv 0 \pmod{3}$.

4. Concluding Remarks and Open Problems

Several open problems have arised during our work on this paper. We list some of the more interesting ones.

• The major role played in this paper by Lemma 2.2 and its consequences suggest:

Problem 1: Find further structural conditions (along the lines indicated in Lemma 2.2) indicating that a graph G is not saturated.

• In Corollary 2.3, we characterise saturated trees. In a previous paper [2] we characterised saturated graphs with mp(G) = 2. This leads to the following:

Problem 2: Characterise *k*-saturated graphs for other families of graphs such as maximal outerplanar graphs, maximal planar graphs, regular graphs, etc.

Problem 3: Characterise saturated graphs with mp(G) = 3.

• The parameter mp(G) can be very sensitive to edge-addition and edgedeletion, as shown in [3]. Also Theorem 2.5 gives $h(n,7) \leq \frac{5n}{3}$ for $n \equiv 0$ (mod 9) while Theorem 2.7 gives $h(n,6) \leq \frac{13n}{7}$ for $n \equiv 0 \pmod{7}$. These facts suggest the following monotonicity problem.

Problem 4: Is it true that, at least for *n* large enough, depending on *k*, and for $k \ge 2$, $h(n, k+1) \ge h(n, k)$?

If true, this will have the immediate implication that the construction for h(n, 6) is not optimal and that in fact $h(n, 6) \leq \frac{5n(1+o(1))}{3}$ by the above upper bound for h(n, 7).

• The upper bound constructions given in Theorem 2.5 and Theorem 2.7 are probably not optimal.

Problem 5: Improve upon the upper bounds obtained in Theorems 2.5 and 2.7.

- The lower bound given in Theorem 2.4 proved to be sharp in the case k = 4.
 Problem 6: Improve upon the lower bound h(n, k) ≥ n for k ≥ 5.
- In Proposition 2.8 we have shown that $h(n,5) \leq \frac{7n}{6} + c(n \pmod{6})$.
- **Problem 7**: Determine h(n, 5) exactly. In particular, is it true that $h(n, 5) = \frac{7n(1+o(1))}{6}$?
- Lastly, recall that sat(n, k) = n(1 c(k)) < n for every large k and n.

Problem 8: Is it true that $h(n,k) \leq cn$ for some constant c independent of k?

Acknowledgements

We thank the referees for their valuable remarks and suggestions that contributed to the structure and readability of this paper.

References

- [1] B. Bollobás, Extremal Graph Theory (Dover Publications, New York, 2004).
- [2] Y. Caro, J. Lauri and C. Zarb, *Degree monotone paths*, ArXiv e-prints (2014) submitted.
- [3] Y. Caro, J. Lauri and C. Zarb, *Degree monotone paths and graph operations*, ArXiv e-prints (2014) submitted.
- [4] J. Deering, Uphill and downhill domination in graphs and related graph parameters, Ph.D. Thesis, ETSU (2013).

- [5] J. Deering, T.W. Haynes, S.T. Hedetniemi and W. Jamieson, *Downhill and uphill domination in graphs*, (2013) submitted.
- [6] J. Deering, T.W. Haynes, S.T. Hedetniemi and W. Jamieson, A Polynomial time algorithm for downhill and uphill domination, (2013) submitted.
- M. Eliáš and J. Matoušek, *Higher-order Erdős–Szekeres theorems*, Adv. Math. 244 (2013) 1–15.
 doi:10.1016/j.aim.2013.04.020
- [8] P. Erdős, A. Hajnal and J.W. Moon, A problem in graph theory, Amer. Math. Monthly 71 (1964) 1107–1110. doi:10.2307/2311408
- [9] P. Erdős and G. Szekeres, A combinatorial problem in geometry, Compos. Math. 2 (1935) 463–470.
- [10] J.R. Faudree, R.J. Faudree and J.R. Schmitt, A survey of minimum saturated graphs, Electron. J. Combin. 18 (2011) #DS19.
- [11] T.W. Haynes, S.T. Hedetniemi, J.D. Jamieson and W.B. Jamieson, Downhill domination in graphs, Discuss. Math. Graph Theory 34 (2014) 603–612. doi:10.7151/dmgt.1760
- [12] L. Kászonyi and Zs. Tuza, Saturated graphs with minimal number of edges, J. Graph Theory 10 (1986) 203–210. doi:10.1002/jgt.3190100209

Received 14 September 2014 Revised 6 November 2014 Accepted 14 November 2014