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Abstract

The intersection matrix of a simplicial complex has entries equal to the
rank of the intersecction of its facets. We prove that this matrix is enough
to define up to isomorphism a triangulation of a surface.
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1. Introduction

There are several classes of simplicial complexes that are defined by the adjacency
relation between maximal simplices. This is true for triangulations of the sphere
due to the classical theorem of Whitney about the embeddings of 3-connected pla-
nar graphs. It is also true for simplicial convex polytopes of arbitrary dimension
[1,2,4].
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A triangulated surface is a simplicial complex whose underlying topological
space is a connected 2-manifold (without boundary). It turns out that triangu-
lated surfaces are not defined up to isomorphism by their dual graphs. There
exist different triangulated surfaces having the same dual graph (see Goldberg
snarks in [3], pages 890–892). However, it is not easy to build the appropriate
examples. This strongly suggests that with little more information we should be
able to define triangulated surfaces up to isomorphism.

If S is a triangulated surface, then we will denote by V, E and T the sets of its
vertices, edges and triangles. We say that two triangulated surfaces S and S′ have
the same intersection matrix if there is a bijective map f : T −→ T ′ such that
for any two triangles t1, t2 the equality of cardinalities |t1 ∩ t2| = |f (t1) ∩ f (t2)|
holds. In this case we will say that f is an intersection preserving map. We shall
prove the following.

Theorem 1. If two triangulated surfaces have the same intersection matrix, then

they are isomorphic.

Now we shall state a more detailed result from which Theorem 1 follows. We
say that a map f : T −→ T ′ extends to an isomorphism if there is an isomorphism
g : V −→ V ′ which induces f . This means that for any triangle t = {v1, v2, v3}
the equality f (t) = {g (v1) , g (v2) , g (v3)} holds.

It is not true that any intersection preserving map extends to an isomorphism.
To see this, consider the two triangulations of the projective plane in Figure 1.
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Figure 1. Two triangulations of the projective plane which have intersection preserving
maps not extendable to automorphisms.

The triangulation on the left is the half-icosahedron and we will denote it by
I/2. The one on the right can be obtained by triangulating the 3 squares of the
half-cube with 3 additional vertices. We will denote it by T C/2.

It can be easily checked that in the half-icosahedron case, the permutation
of the triangles whose descomposition in cycles is (1, 1′) (2, 2′, 5, 5′) (3, 3′, 4, 4′) is
intersection preserving. In the T C/2 case, the involution i ↔ i′ is intersection
preserving. However, these two maps do not extend to automorphisms because
disks are mapped to Möbius bands.
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Theorem 1 is true because essentially there are no more such examples. More
precisely, our main result is the following.

Theorem 2. Let S and S′ be two triangulated surfaces and f : T −→ T ′ be

an intersection preserving map that does not extend to an isomorphism. Then,

S ≃ S′ ≃ I/2 or S ≃ S′ ≃ T C/2.

The next section is dedicated to introduce and classify cyclic shells: a tool
that we use to prove Theorem 2. The proof of Theorem 2 is given in Section 3.
In the last section we outline some directions of further research.

2. Cyclic Shells

A cyclic shell is a simplicial complex of dimension two spanned by a set of n ≥ 3
triangles {t0, t1, . . . , tn−1} such that for all 0 ≤ i < j ≤ n− 1

|ti ∩ tj | =







2 if i = 0 and j = n− 1,
2 if j = i+ 1,
1 otherwise.

.

Of course, triangulations of disks known as “wheels” in graph theory (see
Figure 2) are cyclic shells. The neighborhoods of all vertices in triangulated
surfaces are wheels. The wheels will be denoted by CWn. Cyclic shells are exactly
those simplicial complexes whose intersection matrix is equal to the intersection
matrix of a wheel.

CWn CE 5 CE 6

Figure 2. Cyclic shells.

More interesting cyclic shells are the two triangulations of the Möbius band
showed in Figure 2. They will be denoted by CE5 and CE6 according to their
number of triangles. We shall prove in this section that there are no more cyclic
shells. This is a necessary step because any intersection preserving map trans-
forms cyclic shells onto cyclic shells.

A linear shell is a simplicial complex of dimension two spanned by a set of
n ≥ 2 triangles {t0, t1, . . . , tn−1} such that for all 0 ≤ i < j ≤ n− 1

|ti ∩ tj | =

{

2 if j = i+ 1,
1 otherwise.

.
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An n-shell is a (linear or cyclic) shell with n triangles. It is clear that if
{t0, . . . , tn−1} spans a cyclic or linear shell, then for every 0 ≤ j < k < n the
set {tj , tj+1, . . . , tk} spans a linear shell. This allows us to classify linear shells
starting with small ones and “gluing” new triangles one by one. The reader should
be prepared to deal with a relative large number of cases but the arguments used
in each case are very simple.

a

b

v v

a´

b´

LW2 LW3 LW4 LE 4

Figure 3. Small shells.

Easy arguments show that the only linear shells with less than 5 triangles
are those in Figure 3. The first three are part of an infinite family obtained by
deleting one triangle from wheels. They will be denoted by LWn. The one on
the right will be denoted by LE4 and can be obtained from LW3 by adding a
triangle and identifying the two vertices labeled the letter “v”.

Observe that the map v ↔ v, a ↔ a′, b ↔ b′ is an automorphism of LE4 and
therefore there are only two ways to glue a triangle to LE4 in order to obtain a
linear 5-shell. They are shown in Figure 4.

a

b

v

v

a´

b´

c

a

b

v

va´

b´ c

LE 5

Figure 4. Adding a triangle to LE4.

The one on the left is a linear 5-shell and will be denoted by LE5. In the one
on the right, the triangles {a, b′, b} and {v, a′, c} do not intersect and therefore
we should identify the new vertex c with one in {a, b′, b}.

Case It is not a linear 5-shell because:

c = a |{v, a′, c} ∩ {a, b, v}| = 2
c = b |{v, a′, c} ∩ {a′, b, b′}| = 2
c = b′ {v, a′, c} = {v, a′, b′} .

In the three cases we do not obtain a linear 5-shell and we must discard this
possibility. Also observe that LE5 contains LW4 and therefore we proved that
the only linear 5-shells are LE5 and LW5.
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Lemma 3. If a linear n-shell contains LW5, then it is LWn.

Proof. If we add a new triangle to LW5, then we obtain either LW6 or the
triangulation in Figure 5.
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Figure 5. Adding a triangle to LW5.

The new triangle {e, f, y} does not intersect the triangles {a, b, x}, {b, c, x}
and {c, d, x} and therefore we should identify the new vertex y with a non existing
common vertex to these three triangles. So, we must discard this possibility. The
same happens when we add a new triangle to LWn for n ≥ 5.

If we add a new triangle to LE5, then we obtain one of the triangulations in
Figure 6. The new triangle is always the one that contains the vertex d.
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Figure 6. Adding a triangle to LE5.

The first triangulation from the left is a linear 6-shell and will be denoted
by LE6. In the second one the new triangle does not intersect {a′, b, b′} . If we
identify d with one of these vertices, then a linear 6-shell is not obtained:

Case It is not a linear 6-shell because:

d = a′ |{v, a, d} ∩ {v, a′, b′}| = 2
d = b′ |{v, a, d} ∩ {v, a′, b′}| = 2
d = b {v, a, d} = {v, a, b} .

In the third one from the left, the new triangle does not intersect {a′, b, b′}. If we
identify d with one of these vertices, then a linear 6-shell is not obtained:

Case It is not a linear 6-shell because:

d = a′ |{v, c, d} ∩ {v, b′, a′}| = 2
d = b |{v, c, d} ∩ {v, a, b}| = 2
d = b′ {v, c, d} = {v, c, b′} .
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The last one contains LW5 and by Lemma 3 we must discard it. So, we proved
that the only linear 6-shells are LE6 and LW6.

The map v ↔ v, a ↔ a′, b ↔ b′, c ↔ d is an automorphism of LE6 and
therefore there are only two ways to glue a triangle to LE6 in order to obtain a
linear 7-shell. They are showed in Figure 7.
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Figure 7. Adding a triangle to LE6.

The one on the left contains LW5 and by Lemma 3 we must discard it. In
the one on the right, the new triangle does not intersect the triangles {a, b, b′}
and {a′, b, b′} . If we identify e with b, then the new triangle has two vertices in
common with {d, b, v}. If we identify e with b′, then the triangulation has only 6
triangles. This shows that LW7 is the only linear 7-shell. Therefore, we proved
the following.

Proposition 4. The linear shells are LWn for n ≥ 2 and LEm for m ∈ {4, 5, 6}.

Proposition 5. The cyclic shells are CWn for n ≥ 3 and CEm for m ∈ {5, 6}.

Proof. We will add a triangle to a linear shell to obtain a cyclic shell. It is easy
to see that the only cyclic shell than can be obtained from LWn is CWn.

Recall that LE4 is on the right of Figure 3, LE5 is on the left of Figure 4 and
LE6 is on the left of Figure 6. We will use the names of vertices given in those
figures. We have that CE5 = LE4 + {v, a, a′} and CE6 = LE5 + {v, c, b}.

To prove that there are no more cyclic shells, observe that the new triangle
has to contain an edge from the first triangle and another edge from the last
triangle. Hence, it contains the common vertex of these two triangles and no new
vertices. So, we only need to check the following four cases:

Triangulation It is not a cyclic shell because:

LE4 + {v, b′, a} |{v, b′, a} ∩ {a, b, b′}| = 2
LE4 + {v, b′, b} |{v, b′, b} ∩ {a, b, b′}| = 2
LE5 + {v, c, a} |{v, c, a} ∩ {a′, b, b′}| = 0
LE6 + {v, c, d} |{v, c, d} ∩ {a′, b, b′}| = 0.
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3. The Proof of Theorem 2

Proof. Now we are ready to prove Theorem 2. Let f : T −→ T ′ be an inter-
section preserving map between the sets of triangles of two triangulated surfaces
S and S′. Since cyclic shells are defined in terms of the cardinalities of the
intersections, then f must map cyclic shells onto cyclic shells.

Let v be a vertex of S. Its neighborhood is some wheel CWn. If the image by
f is also a wheel, then there is a vertex w in S′ which is the center of this wheel.
If this happens for every vertex in S, then we can define in this way the function
g : V ∋ v 7→ w ∈ V ′. It is not hard to prove that the action of g on triangles is
f . Moreover, g is an isomorphism which extends f .

So, the only interesting cases arise when some wheel is mapped by f to a
cyclic shell which is not a wheel. By the classification of cyclic shells, the image
must be CE5 or CE6.
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Figure 8. Mapping CW5 to CE5.

Case CE5. Let {t0, t1, . . . , t4} be a set of triangles on S which spans a wheel.
Denote t′i = f (ti). In this case we suppose that {t′0, t

′

1, . . . , t
′

4} spans a CE5. Since
S is a surface without boundary, there must exist five triangles r0, r1, . . . , r4 such
that |ti ∩ ri| = 2. Denote r′i = f (ri). By the properties of f we have |t′i ∩ r′i| = 2.
This situation is showed in Figure 8. We will use the names of the vertices in this
figure. The drawing on the right is our goal: we must prove that S ≃ I/2 ≃ S′.

Observe that r′2 has non empty intersection with t′0 and t′4. By the properties
of f , the triangle r2 has non empty intersection with t0 and t4. Since S is a
surface, the vertices a2 and b2 are the same. By dihedral symmetry we also have
ai = bi and therefore S ≃ I/2.

Since r0 ∩ r2 = {a2, a0}, we have |r′0 ∩ r′2| = 2 and therefore x′0 = x′2, By
dihedral symmetry we also have x′2 = x′4 = x′1 = x′3. Therefore S

′ can be obtained
by gluing CW5 and CE5 by their boundaries. This implies that S′ ≃ I/2.

Case CE6. Let {t0, t1, . . . , t5} be a set of triangles on S which spans a wheel.
Denote t′i = f (ti). We suppose that {t′0, t

′

1, . . . , t
′

5} spans a CE6. Since S is a
surface without boundary, there must exist six triangles r0, r1, . . . , r6 such that
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|ti ∩ ri| = 2. Denote r′i = f (ri). By the properties of f we have |t′i ∩ r′i| = 2.
This situation is showed in Figure 9. We will use the names of vertices in this
figure. The drawing on the right is our goal: we must prove that S ≃ T C/2 ≃ S′.
This drawing is different from the one on Figure 1 but the triangulation is the
same, the line at the infinity has changed.
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Figure 9. Mapping CW6 to CE6.

Since the triangle r′0 intersects t
′

3 and t′4, we see that r0 must intersects t3 and
t4. Since S is a surface, b0 = u. Since r′1 intersects t′3 and t′4, we have b1 = u. By
triangular symmetry we also have that b5 = b4 = w and b2 = b3 = v. We proved
that S is isomorphic to T C/2.

Since |r0 ∩ r1| = |r1 ∩ r4| = |r4 ∩ r5| = |r5 ∩ r2| = |r2 ∩ r3| = 2 in S, we
have x′0 = x′1 = x′4 = x′5 = x′2 = x′3 in S′. From this we conclude that S′ can
be obtained by gluing CW6 and CE6 by their boundaries. This implies that
S′ ≃ T C/2.

4. Conclusion

The reader might wonder if the intersection matrix characterizes triangulations
of connected surfaces with boundaries. The answer to this question is negative
and some examples of this are provided by the objects in Section 2.

However, some of the surfaces in Section 2 are non orientable, thus one may
further ask if the intersection matrix of a triangulation of a connected orientable
surface with boundary defines it. Here, we conjecture that the answer to this
question is positive.

Further, one might wonder on the generalizations of Theorem 1 to simplicial
complexes of higher dimension. We have strong evidence to suggest that the
statement of Theorem 1 can indeed be extended to some classes of simplicial
complexes of higher dimension. For example, triangulations of 3-dimensional
balls.

Another interesting question is the algorithmic one. How fast can we build the
lists of vertices and triangles of a triangulated closed surface from its intersection
matrix?
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