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Abstract

Given a coloring of the vertices, we say subgraph H is monochromatic
if every vertex of H is assigned the same color, and rainbow if no pair of
vertices of H are assigned the same color. Given a graph G and a graph F ,
we define an F -WORM coloring of G as a coloring of the vertices of G
without a rainbow or monochromatic subgraph H isomorphic to F . We
present some results on this concept especially as regards to the existence,
complexity, and optimization within certain graph classes. The focus is on
the case that F is the path on three vertices.
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1. Introduction

Let F be a graph. Consider a coloring of the vertices of G. We say that a copy
of F (as a subgraph) is rainbow if all its vertices receive different colors. We say
that a copy of F (as a subgraph) is monochromatic if all its vertices receive the
same color. It is easy to avoid monochromatic copies: color every vertex in G a
different color. It is also easy to avoid rainbow copies: color every vertex the same
color. But things are more challenging if one tries to avoid both simultaneously.
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572 W. Goddard, K. Wash and H. Xu

For example, if G = K5, then any coloring of G yields either a monochromatic
or a rainbow P3. On the other hand, if we color G = K4 giving two vertices red
and two vertices blue, we avoid both a rainbow and a monochromatic P3.

So we define an F -WORM coloring of G as a coloring of the vertices of G
without a rainbow or monochromatic subgraph H isomorphic to F . We assume
the graph F has at least 3 vertices, since any subgraph on 1 or 2 vertices is
automatically rainbow or monochromatic. For example, if G is bipartite (and
F is not empty), then the bipartition is automatically an F -WORM coloring.
Indeed, if G is k-colorable with k less than the order of F (and F is nonempty),
then a proper k-coloring of G is an F -WORM coloring.

In this paper we explore the concept and establish some basic properties. We
also consider, for a graph that has such a coloring, what the range of colors is. To
this end, we define W+(G,F ) as the maximum number of colors and W−(G,F )
as the minimum number of colors in an F -WORM coloring of graph G. In this
paper we focus on the fundamental results and the case that F is the path P3.
Some further results where a cycle or clique is forbidden are given in [6].

Vertex colorings with various local constraints, especially avoiding monochro-
matic subgraphs, have been studied extensively; see for example [10]. Edge-
colorings that avoid rainbow subgraphs have been studied under the term “anti-
Ramsey numbers”; see for example [2]. There are also a few papers on edge-
colorings that avoid some monochromatic and some rainbow subgraph; see for
example [1].

More recently, vertex colorings that avoid rainbow subgraphs have been con-
sidered by Bujtás et al. [4], whose 3-consecutive C-coloring is equivalent to a
coloring without a rainbow P3, and by Bujtás et al. [3] who defined the star-[k]
upper chromatic number as the maximum number of colors in a coloring of the
vertices without a rainbow K1,k. It follows that W+(G,P3) is at most the star-[2]
upper chromatic number. However, our parameter is not equal to theirs (even in
graphs where W+(G,P3) exists). For example, take the tree S obtained from the
star on three edges by subdividing each edge once. Then one can color S with
4 colors while avoiding a rainbow P3 (color the center and all its neighbors the
same color, and color each leaf with a different color). On the other hand, one
can easily check that any P3-WORM coloring of S uses at most three colors (or
see Theorem 17 below).

We proceed as follows. In Section 2 we show that if a graph has a P3-
WORM coloring then it has one using two colors, from which it follows that
the decision problem is NP-hard. In Sections 3 and 4 we consider the existence
and range of P3-WORM colorings for several graph families including bipartite
graphs, Cartesian products, cubic graphs, outerplanar graphs, and trees. Finally,
we consider some related complexity results in Section 5 and an extremal question
in Section 6.
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2. Basics

In this section we consider the maximum and minimum number of colors in a
P3-WORM coloring. In particular, we show that if a graph has a P3-WORM
coloring then it has such a coloring with only two colors. Note that we consider
only connected graphs G, since if G is disconnected then the existence and range of
colors for G is determined by the existence and range of colors for the components.
For example, W+(G,P3) is the sum of W+(Gi, P3) over all components Gi of G.

We consider first the maximum number of colors that a P3-WORM coloring
may use.

Theorem 1. If a graph G on n vertices has a P3-WORM coloring, then

W+(G,P3) ≤ n/2 + 1.

Proof. Note that if we add edges to the graph, then the constraints increase,
and so W+ can only decrease. So it suffices to prove the result for G a tree. The
result is by induction. The base case of n = 1 is trivial. Further, if G is a star
then W+(G,P3) = 2; so we may assume that G is not a star. Let v be a non-leaf
vertex that has at most one non-leaf neighbor w. Let G′ = G− {v} − Lv, where
Lv is the set of leaf-neighbors of v. Then G′ is connected. Further, NG[v] receives
at most two colors, and if exactly two colors, then one of those colors is the same
color as w. It follows that the number of colors in G is at most one more than
the number of colors in G′, and the bound follows.

One example of equality in Theorem 1 is the case that G is a path.

Observation 2. For the path on n vertices, W+(Pn, P3) = ⌊n/2⌋ + 1.

Proof. Say the vertices of the path are v1v2 · · · vn. Color v1 with color 1, color
v2 and v3 with color 2, color v4 and v5 with color 3, and so on. This coloring has
neither a rainbow nor a monochromatic P3 and uses ⌊n/2⌋ + 1 colors.

The above theorem can also be deduced from a result of Bujt’as et al. [4].
They showed that their 3-consecutive C-coloring number of a connected graph is
at most one more than the vertex cover number, which we denote by β(G). By
definition, a P3-WORM coloring is a 3-consecutive C-coloring. Thus:

Observation 3. If a connected graph G has a P3-WORM coloring, then

W+(G,P3) ≤ β(G) + 1.

We next consider the minimum number of colors that a P3-WORM coloring
may use.

Theorem 4. A graph G has a P3-WORM coloring if and only if G has a P3-

WORM coloring using only two colors.
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Proof. Consider a P3-WORM coloring of the graph G. Say an edge is monochro-
matic if its two ends have the same color. By the lack of monochromatic P3’s,
the monochromatic edges form a matching. Let H be the spanning subgraph of
G with the monochromatic edges removed. Consider any edge uv in H; say u
is color i and v is color j. Then by the lack of rainbow P3’s, every neighbor of
u is color j and every neighbor of v is color i. It follows that H is bipartite.
If we 2-color G by the bipartition of H, the monochromatic edges still form a
matching, and so this is a P3-WORM coloring.

Recall that a 1-defective 2-coloring of a graph G is a 2-coloring such that
each vertex has at most one neighbor of its color. It follows that:

A 1-defective 2-coloring is equivalent to a P3-WORM 2-coloring.

For example, Cowen [5] proved that determining whether a graph has a 1-defective
2-coloring is NP-complete. It follows that determining whether a graph has a P3-
WORM coloring is NP-complete.

It is not true, however, that if a graph has a a P3-WORM coloring using
k colors, then it has one using j colors for every 2 < j < k. Indeed, we now
construct a graph Hk that has a P3-WORM coloring using k colors and one using
2 colors, but for no other number of colors.

For k ≥ 3 we construct graph Hk as follows. Let s = max(3, k−2). For every
ordered pair of distinct i and j, with i, j ∈ {1, . . . , k}, create disjoint sets Bj

i of s

vertices. For each i define Ci =
⋃

j 6=iB
j
i . Then add all s2 possible edges between

sets Bj
i and Bi

j for all i 6= j. For each triple of distinct integers i, j, j′, add exactly

one edge between Bj
i and Bj′

i such that for each i the subgraph induced by Ci

has maximum degree 1. One possibility for the graph H4 is shown in Figure 1.

Observation 5. For k ≥ 3, every P3-WORM coloring of Hk uses either 2 or k
colors.

Proof. Consider a P3-WORM coloring of Hk. Note that the subgraph induced
by Bj

i ∪Bi
j is Ks,s. It is easy to show that for s ≥ 3 the only P3-WORM coloring

of Ks,s is the bipartition. It follows that for each i and j, all s vertices in Bj
i

receive the same color; further, the color of Bj
i is different from the color of Bi

j .

Because there is a P3 that goes from Bi
j to Bj

i to Bj′

i , it must be that Bj′

i receives

either the color of Bj
i or the color of Bi

j . That is, there are precisely two colors
on all of Ci ∪ Cj .

So suppose some Ci receives two colors. Then every other Cj is colored with
a subset of these two colors. Otherwise, assume every Ci is monochromatic. It
follows that every Ci is a different color, and thus we use k colors.
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Figure 1. The graph H4 whose P3-WORM colorings use either 2 or 4 colors.

3. Some Calculations

Now we consider P3-WORM colorings for some specific families of graphs.

3.1. Bipartite graphs

As observed earlier, the bipartite coloring of a bipartite graph is automatically a
P3-WORM coloring. So we focus on the maximum number of colors a WORM-
coloring may use. We observed above that every P3-WORM coloring of Km,m

uses two colors. Indeed, we now observe the following slightly more general result:

Observation 6. For n ≥ m ≥ 2, W+(Kn,n,K1,m) = 2m− 2.

Proof. One can achieve 2m − 2 colors by using disjoint sets of m − 1 different
colors on each partite set. So we need to prove the upper bound.

Let A and B denote the partite sets of Kn,n and consider a K1,m-WORM
coloring. Suppose that one partite set receives at least m different colors, say A.
Then starting with these m vertices, it follows that every vertex v in B must be
one of these m colors. Furthermore, v cannot see m distinct colors different from
it. That is, the coloring uses exactly m colors. On the other hand, if every partite
set has at most m− 1 colors, the total number of colors is at most 2(m− 1). It
follows that W+(Kn,n,K1,m) ≤ max(m, 2m− 2) = 2m− 2.

We saw earlier that W+(Pn, P3) = ⌊n/2⌋ + 1. This result can be generalized
slightly to other forbidden paths:

Theorem 7. For n ≥ m ≥ 3, W+(Pn, Pm) =
⌊

(m−2)n
m−1

⌋

+ 1.
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Proof. Let the path Pn be v1v2 · · · vn. Give every vertex a different color except
that va(m−1) and va(m−1)+1 receive the same color for 1 ≤ a ≤ ⌊(n− 1)/(m− 1)⌋.
For example, if m = 4, then the coloring of Pn starts 1, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8, 9, . . .
Thus, the total number of colors is n − ⌊(n− 1)/(m− 1)⌋, which equals the
claimed formula. It is easily checked that the coloring has neither a rainbow nor
a monochromatic Pm.

We next prove the upper bound by induction on n for fixed m. The base
cases are n ≤ 2m − 2. For these n, ⌊(m− 2)n/(m− 1)⌋ + 1 = n − 1, and the
desired conclusion is true. Now let n ≥ 2m− 1. By the induction hypothesis, the
number of colors used by the first n−m + 1 vertices of Pn is at most

⌊

(m− 2)(n−m + 1)

(m− 1)

⌋

+ 1 =

⌊

(m− 2)n

(m− 1)

⌋

−m + 3.

Also note that the last m− 1 vertices of Pn use at most m− 2 colors other than
those used by the first n−m+1 vertices, otherwise we would have a rainbow Pm.
Therefore, the total number of colors used is at most ⌊(m− 2)n/(m− 1)⌋ + 1.
This completes the proof.

3.2. Cartesian products

Recall that the Cartesian product of graphs G and H, denoted G✷H, is the graph
whose vertex set is V (G) × V (H), in which two vertices (u1, u2) and (v1, v2) are
adjacent if u1v1 ∈ E(G) and u2 = v2, or u1 = v1 and u2v2 ∈ E(H). We next
consider a P3-WORM coloring of G✷H.

Theorem 8. If G and H are nontrivial connected graphs and G✷H has a P3-

WORM coloring, then it uses only two colors.

Proof. It suffices to prove the result when G and H are trees. We proceed by
induction. Clearly when G = H = K2, we have W+(C4, P3) = 2.

So assume that at least one of the factors, say G, has order at least 3. Let
u be a leaf of G, with neighbor u′, and let G′ = G − {u}. By the inductive
hypothesis, every P3-WORM coloring of G′

✷H uses only two colors. Consider
any vertex v of H. Since G is not K2, vertex u′ has at least one neighbor in G′,
and so vertex (u′, v) is the center of a P3 in G′

✷H. This means that the vertex
(u′, v) has a neighbor x of a different color in G′

✷H, and thus (u, v) must get
either the color of (u′, v) or x.

3.3. Cubic graphs

Let G be a connected cubic graph. We know from [8] that G has a 2-coloring
where every vertex has at most one neighbor of the same color. This coloring is
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a P3-WORM. So the natural question is: What is the minimum and maximum
value of W+(G,P3) as a function of the order n?

There are many cubic graphs G that have W+(G,P3) = 2. One general
family is the ladder Cm✷K2. (See Theorem 8.)

Computer checking of small cases suggests that the maximum value of pa-
rameter W+(G,P3) is n/4+1. This value is achieved by several graphs including
the following graph. For s ≥ 2 create Bs by taking s copies of K4− e and adding
edges to make the graph cubic and connected. For example, B5 is illustrated in
Figure 2.

Figure 2. Graph B5 conjectured to have maximum W+(G,P3) for cubic graphs.

Observation 9. For s ≥ 2, W+(Bs, P3) = s + 1.

Proof. Consider a P3-WORM coloring of Bs. It is easy to show that each copy
of K4−e has exactly two colors, and one of those colors is also present at the end
of each edge leading out of the copy. Thus s + 1 is an upper bound. An optimal
coloring is obtained by coloring each central pair from a K4− e with a new color,
and coloring all other vertices the same color.

Another interesting case is where the forbidden graph is the star on three
edges. Here the maximum W+(G,K1,3) for cubic graphs G of order n is 3n/4,
achieved uniquely by the above graph Bs. The upper bound is given by Propo-
sition 18 of [3]:

Theorem 10 [3]. For an r-regular graph G of order n, W+(G,K1,r) ≤ rn/(r+1).

3.4. Outerplanar graphs

Recall that a maximal outerplanar graph, or MOP, is an outerplanar graph with a
maximum number of edges. That is, an outer cycle with chords triangulating the
interior. In this section, we determine which maximal outerplanar graphs have a
P3-WORM coloring. But first we note that if such a graph G has a P3-WORM
coloring, then W+(G,P3) = W−(G,P3) = 2.
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Observation 11. If a MOP has a P3-WORM coloring, then that coloring uses

two colors.

Proof. Consider some triangle T0 = {x, y, z}. It must have exactly two colors;
say red and blue. If this is the whole graph we are done. Otherwise, there is
another triangle T1 that overlaps T0 in two vertices. Say T1 has vertices {x, y, w}.
Then if x and y have different colors, w must be one of their colors. Further, if
x and y are both red say, since zxw is a P3 it must be that w is the same color
as z. That is, all vertices of T1 are red or blue. Repeating the argument we see
that all vertices in the graph are red or blue.

We now consider the necessary conditions for a P3-WORM coloring. Note
that by Theorem 4, this is equivalent to determining which MOPs have a 1-
defective 2-coloring. Let F6 denote the fan given by the join K1∨P6. This graph
and the Hajós graph (also known as a 3-sun) are shown in Figure 3.

Figure 3. Two MOPs: the fan F6 and the Hajós graph.

Observation 12. Neither the fan F6 nor the Hajós graph has a P3-WORM

coloring.

Proof. Consider a 2-coloring of the fan F6. Let v be the central vertex; say v is
colored red. Then at most one other vertex can be colored red. It follows that
there must be 3 consecutive non-red vertices on the path. Thus, the coloring is
not WORM.

Consider a 2-coloring of the Hajós graph. It is immediate that two of the
central vertices must be one color, say red, and the other central vertex the other
color, say blue. Now let u and v be the two vertices of degree 2 that have a blue
neighbor. Then, coloring either of them red creates a red P3, but coloring both
of them blue creates a blue P3.

So it is necessary that the MOP has maximum degree at most 5 and contains
no copy of the Hajós graph. For example, one such MOP is drawn in Figure 4.
(The vertices of degree 5 are in white.)

The interior graph of a MOP G, denoted by CG, is the subgraph of G induced
by the chords. (This is well-defined as a MOP has a unique Hamiltonian cycle.)

Observation 13. A MOP G contains a copy of Hajós graph if and only if the

interior graph CG has a cycle.
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Figure 4. A MOP that has no F6 or Hajós subgraph.

Proof. If G contains a copy of Hajós graph, then CG contains a triangle. Con-
versely, assume CG contains a cycle; then it must contain a triangle. Since every
chord of G is contained in two adjacent triangles, it follows that G contains a
copy of the Hajós graph.

A caterpillar is a tree in which every vertex is within distance one of a central
path. Hedetniemi et al. [7] showed that if the interior graph of a MOP is acyclic,
then it is a caterpillar. Let V5 denote the set of vertices of degree 5 in a MOP G.
Equivalently, V5 is the vertices of degree 3 in CG. Define a stem as a path in CG

whose ends are in V5 and whose interior vertices are not.

Theorem 14. A MOP G has a 1-defective 2-coloring (equivalently a P3-WORM

coloring) if and only if

(a) G has maximum degree at most 5,

(b) the interior graph CG is a caterpillar, and

(c) every stem of CG has odd length.

Proof. We first prove necessity. Let G be a MOP with a P3-WORM coloring. By
Observations 12 and 13, G has maximum degree at most 5 and CG is a caterpillar.
Let P denote the central path of the caterpillar CG. We are done unless CG has
a stem; so assume Pu,v is a stem with ends u and v.

Let the path through N(u) be u1u2u3u4u5. Note that u1 and u5 are neighbors
of u on the outer cycle. Further, by the lack of Hajós subgraph, the edge u2u3 is
not in CG; that is, u2 and u3 are consecutive on the outer cycle. Similarly, so are
u3 and u4. It follows that u3 has degree exactly 3 in G, and so u3 is a leaf in CG.

Now consider the P3-WORM coloring of G. By Observation 11, this coloring
uses two colors, say 1 and 2. It is easy to see that u must have the same color
as u3, while u1, u2, u4, u5 have the other color. In particular, u has no neighbor
on P of the same color. Similarly, v has no neighbor on P of the same color.
Further, since the subgraph of G induced by the vertices of Pu,v is its square, all
other vertices do have neighbors on P of the same color. Indeed, assume u has
color 1; then the coloring pattern of Pu,v must be either 1, 2, 2, 1, 1, . . . , 2, 2, 1 or
1, 2, 2, 1, 1, . . . , 1, 1, 2. Hence, the stem Pu,v must have odd length.

Now we prove sufficiency. Assume G has maximum degree at most 5, and
the interior graph CG is a caterpillar with every stem of CG having odd length.
We color P with two colors such that every vertex of V5 has no neighbor on P of
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the same color and all other vertices (except possibly the end-vertices of P ) do
have neighbors on P of the same color. Then we give each vertex of CG − P the
same color as their neighbor in CG.

It remains to color the (at most two) vertices of degree 2 in G. Let x be
a vertex of degree 2 in G, and let y and z be its neighbors. Let t be the other
vertex with which y and z forms a triangle. Say t is adjacent to z on the outer
cycle. By the construction of the coloring so far, it follows that either y has the
same color as t, in which case we can give x the same color as z, or y has the
same color as z, in which case we can give x the other color. Thus we can extend
the coloring to the whole graph, as required.

4. Trees

The following observation will facilitate bounds for W+(T, P3) when T is a tree.

Observation 15. Consider a tree T . A P3-WORM coloring of some of the ver-

tices, such that the colored vertices induce a connected subgraph, can be extended

to a P3-WORM coloring of the whole tree.

Proof. Assume we have a P3-WORM coloring of U ⊆ V (T ) such that U induces
a connected subgraph of T . Consider any uncolored vertex v that is adjacent
to some colored vertex wv (since T is a tree, wv is unique). If wv sees a color c
different from its own color, then assign v the color c. If wv has no colored
neighbor or its only colored neighbor has the same color as it, then give v any
other color. In both cases we do not create a monochromatic or rainbow P3.
Repeat until all vertices colored.

For example, since a tree T contains a path of the same diameter, it follows from
Observation 2 that W+(T, P3) ≥ diam(T )/2 + 1.

We consider next a tree algorithm. There are general results (see for exam-
ple [9]) that show that there is a linear-time algorithm to compute the parameter
W+(T, P3) for a tree T , and indeed for bounded treewidth. Nevertheless, we
give the details of an algorithm below, and then use it to calculate the value of
W+(T, P3) for a spider (sometimes called an octopus). We do the standard pos-
torder traversal algorithm. That is, we root the tree at some vertex r and then
calculate a vector at each vertex representing the values of several parameters on
the subtree rooted at that vertex.

For vertex v, define Tv to be the subtree rooted at v and k(v) to be the
number of children of v. Define p(v) to be the maximum number of colors in
a P3-WORM coloring of Tv with the constraint that v has a child of the same
color (“partnered”); and define s(v) to be the maximum number of colors in a
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P3-WORM coloring of Tv with the constraint that v has no child of the same
color (“solitary”). By Observation 15, such a coloring exists (that is, p(v) and
s(v) are defined) except for the case of p(v) when k(v) = 0.

Define ℓp(v) = 2 if k(v) ≥ 2 and 1 otherwise; define ℓs(v) = 2 if k(v) ≥ 1,
and 1 otherwise. Note that ℓp(v) and ℓs(v) denote the number of colors in N [v]
in a partnered and solitary coloring of Tv respectively. Let P (v) = p(v) − ℓp(v)
and S(v) = s(v) − ℓs(v).

Theorem 16. If vertex v has children c1, . . . , ck, k ≥ 1, then

p(v) =

{

max
1≤i≤k

{

1 + s(ci) +
∑

j 6=i max (P (cj), S(cj))
}

, if k ≥ 2,

s(c1), otherwise;

s(v) = 2 +
∑k

i=1
max (P (ci), S(ci)) .

Proof. Consider a P3-WORM coloring of Tv. Say v has children c1, . . . , ck. To
maximize the colors, the color-set used in Tci should be as disjoint as possible
from the color-set used in Tcj . But note that there has to be some overlap.

Specifically, if v is solitary, then all its children have the same color. In the
tree Tci , any child of ci has the same color as either ci or v. So the maximum
number of colors that appear only in Tci − {ci} is max(P (ci), S(ci)). Further, if
v is partnered, say with ci, then there are s(ci) colors in the subtree Tci . There
is 1 color for all other children cj of v. As above, the maximum number of colors
that appear only in Tcj − {cj} is max(P (cj), S(cj)).

Since these maxima can be computed in time proportional to k(v), and
W+(T, P3) = max(p(r), s(r)), we obtain a linear-time algorithm to calculate
W+(T, P3) for a tree T .

As an application, we determine the value of W+(T, P3) for an octopus:

Theorem 17. Let X be a star with k ≥ 2 leaves, and let T be the subdivision

of X where the ith edge of X is subdivided ai ≥ 0 times for 1 ≤ i ≤ k. Then

W+(T, P3) = 2 +
∑k

i=1

⌈

ai − 1

2

⌉

+ x,

where x is 1 if at least one ai is odd and 0 otherwise.

Proof. This follows from Theorem 16 by considering the children c1, . . . , ck of
the original center. It is easy to check that P (ci) = ⌈(ai − 1)/2⌉ and S(ci) =
⌈(ai − 2)/2⌉.
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5. WORM is Easy Sometimes

We observed earlier that determining whether a graph has a P3-WORM coloring
is NP-hard. There are at least a few cases of forbidden graphs where the problem
has a polynomial-time algorithm. The first case is trivial:

Observation 18. For F = mK1, graph G has an F -WORM-coloring if and only

if G has at most (m− 1)2 vertices.

Here is another forbidden graph with a characterization:

Observation 19. Let F be the one-edge graph on three vertices. A graph G has

an F -WORM coloring if and only if G is

(a) bipartite,

(b) a subgraph of the join K2 ∨mK1 for some m ≥ 1, or

(c) K4.

Proof. Clearly a graph with order at most 4 has an F -WORM coloring using
only 2 colors. We already know that a proper 2-coloring of a bipartite graph is an
F -WORM coloring. If G is a subgraph of K2 ∨mK1, color the vertices of the K2

with one color and the other vertices a second color. This gives an F -WORM
coloring.

Conversely, let G be a graph with an F -WORM coloring and suppose G is
not bipartite. Then consider any vertex u with at least two neighbors. Since
there is no monochromatic F , it must be that u has a different color to at least
one of its neighbors, say v. Since there is no rainbow F , it follows that every
other vertex has the same color as either u or v.

But since G is not bipartite, this means there exists an edge xy where x and y
have the same color, say color 1. By the lack of monochromatic F it follows that
every other vertex has the other color, say 2. If the vertices of color 2 form an
independent set, then we have a subgraph of the join K2 ∨mK1 for some m > 0.
Otherwise, by the same reasoning there are exactly two vertices of color 2 and
we have a subgraph of K4.

6. Extremal Questions

The classical Turán problem ask for the maximum number of edges of a graph
with n vertices that does not contain some given subgraph H. This maximum
is called the Turán number of H. Here we consider an analogue of the classical
Turán problem: what is the maximum number of edges of a graph with n vertices
if the graph admits a F -WORM coloring? We will let wex (n, F ) denote this
maximum. We have the following result when F = P3.
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Theorem 20. For n ≥ 1,

wex (n, P3) =











n(n+2)
4 , if n is a multiple of 4,

n2+2n−4
4 , if n ≡ 2 (mod 4),

(n−1)(n+3)
4 , otherwise.

Proof. Consider a graph G that has a P3-WORM coloring. By Theorem 4, there
is such a coloring using only two colors, say red and blue. Such a coloring is a P3-
WORM coloring if and only if there is no monochromatic P3. It follows that the
maximum number of edges in G is obtained by taking some complete bipartite
graph and adding a maximum matching within each partite set.

When n is a multiple of 4, then the number of edges is obviously maximized
when the two colors are used equally. When n is odd, the maximum is when the
two colors are used as equally as possible. When n is even but not a multiple
of 4, there are actually two extremal graphs: adding n/2 edges to Kn/2−1,n/2+1

or adding 2(n/2 − 1)/2 edges to Kn/2,n/2. We omit the calculations.

7. Conclusion

We have considered WORM colorings where the forbidden graph is P3 and pro-
vided existence results and bounds on the maximum number of colors for several
graph families. The next step would be to consider other forbidden graphs, such
as K3. Indeed a natural generalization is to consider sets of forbidden graphs,
such as all cycles. Some results in this direction are given in [6].

References

[1] M. Axenovich and P. Iverson, Edge-colorings avoiding rainbow and monochromatic

subgraphs , Discrete Math. 308 (2008) 4710–4723.
doi:10.1016/j.disc.2007.08.092

[2] M. Axenovich, T. Jiang and A. Kündgen, Bipartite anti-Ramsey numbers of cycles ,
J. Graph Theory 47 (2004) 9–28.
doi:10.1002/jgt.20012

[3] Cs. Bujtás, E. Sampathkumar, Zs. Tuza, C. Dominic and L. Pushpalatha, Vertex
coloring without large polychromatic stars , Discrete Math. 312 (2012) 2102–2108.
doi:10.1016/j.disc.2011.04.013

[4] Cs. Bujtás, E. Sampathkumar, Zs. Tuza, M.S. Subramanya and C. Dominic, 3-
consecutive C-colorings of graphs , Discuss. Math. Graph Theory 30 (2010) 393–405.
doi:10.7151/dmgt.1502

[5] R. Cowen, Some connections between set theory and computer science, Lecture Notes
in Comput. Sci. 713 (1993) 14–22.
doi:10.1007/BFb0022548

http://dx.doi.org/10.1016/j.disc.2007.08.092
http://dx.doi.org/10.1002/jgt.20012
http://dx.doi.org/10.1016/j.disc.2011.04.013
http://dx.doi.org/10.7151/dmgt.1502
http://dx.doi.org/10.1007/BFb0022548


584 W. Goddard, K. Wash and H. Xu

[6] W. Goddard, K. Wash and H. Xu, WORM colorings forbidding cycles or cliques ,
Congr. Numer. 219 (2014) 161–173.

[7] S.M. Hedetniemi, A. Proskurowski and M.M. Sys lo, Interior graphs of maximal

outerplane graphs , J. Combin. Theory Ser.B 38 (1985) 156–167.
doi:10.1016/0095-8956(85)90081-4

[8] L. Lovász, On decomposition of graphs , Studia Sci. Math. Hungar. 1 (1966) 237–238.

[9] J.A. Telle and A. Proskurowski, Algorithms for vertex partitioning problems on par-

tial k-trees , SIAM J. Discrete Math. 10 (1997) 529–550.
doi:10.1137/S0895480194275825

[10] Zs. Tuza, Graph colorings with local constraints—a survey , Discuss. Math. Graph
Theory 17 (1997) 161–228.
doi:10.7151/dmgt.1049

Received 5 June 2014
Revised 17 November 2014

Accepted 17 November 2014

Powered by TCPDF (www.tcpdf.org)

http://dx.doi.org/10.1016/0095-8956\(85\)90081-4
http://dx.doi.org/10.1137/S0895480194275825
http://dx.doi.org/10.7151/dmgt.1049
http://www.tcpdf.org

